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1. Introduction

We view the equation
y′(t) = −a(t)y(t) + g(t)yq(t − ψ(t)), (1.1)

where a(t), ψ(t) and g(t) > 0 are continuous function T -periodic functions and
∫ T

0
a(u)du > 0

(T > 0). Such functional differential equations arise in ecological models, such as the dynamic
disease model [1], population dynamics model [2], population model [3], and the Nicholson blowflies
model [4].

In 1750, one of the earliest functional differential equation problems was the Euler’s problem of
finding a curve so that it resembles a shrinking line. In the past 50 years, many mathematicians are
familiar with first-order functional differential equations (see [5–17]). They researched the same and
critical question of whether these equations can support positive periodic solutions. Jiang, Wei and

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2023032


677

Zhang [8], Cheng and Zhang [15], and Wang [16] proved the existence of positive periodic solution
for the first-order functional differential in their papers. In particular, Wang [16] studied the following
equation

x
′

(t) = a(t)g(x(t))x(t) − λb(t) f (x(t − τ(t))). (1.2)

Using a famous result of the fixed point index, the author derived the existence results of the positive
periodic solution to Eq (1.2) (for any x > 0, f (x) > 0). Among others, the writer proved the connection
between the open intervals (eigenvalue intervals) of the parameter λ and the asymptotic behaviors of the
quotient f (x)

x (at x → 0 and x → ∞) so that Eq (1.2) admits zero, one and multiple positive solutions.
However, the criteria for the uniqueness of the positive periodic solution of Eq (1.2) have not been
established.

In [6], Liu and Li analyzed the existence of the positive periodic solutions to the equation

y′(t) = −a(t)y(t) + λh(t) f (y(t − τ(t))), (1.3)

where f : [0,+∞) → [0,+∞) is continuous with f (0) = 0. The authors first proved the existence of
the positive periodic solution to Eq (1.3) by applying the eigenvalue theory in cones. In addition, by
employing the theory of α-concave operator, they derived an excellent result regarding the uniqueness
of the periodic solution to Eq (1.3). However, it is difficult to prove the uniqueness of positive periodic
solution for Eq (1.1) when q = −1 and −1 < q < 0.

Inspired by the pieces above, in our paper, we will construct two results for the uniqueness
of positive periodic solutions to Eq (1.1) by employing the method of Hilbert’s metric, which is
completely different from that used in [5–17]. We establish uniqueness results, especially when q = −1
and −1 < q < 1 for Eq (1.1).

Hilbert [18] first considered Hilbert’s metric on the foundations of geometry in 1895. Three
noncollinear points have been modeled algebraically, in which the length of one side is equal to the
sum of the other two sides. In 1957, Birkhoff [19] proved several extensions of Jentzsch’s theorem on
integral equations with positive kernels by employing Hilbert’s metric. He gives some applications to
the projective contraction theorem and simply Jentzsch’s theorem. The earlier paper of Klein [20] also
presented particular examples of Hilbert’s metric. In the past time, the applications of Hilbert’s metric
were mentioned by plenty of authors, see [21–23].

Furthermore, we research the existence of the positive periodic solution to the following equation:

y′(t) = −a(t)y(t) + g(t) f (y(t − ψ(t))), (1.4)

where a(t), ψ(t) and g(t) > 0 are T -periodic functions and
∫ T

0
a(u)du > 0 (T > 0). Comparing with

Wang [16] and Liu-Li [17], we here employ a completely different technique to treat Eq (1.4), for detail
to see the proof of Theorem 4.1.

In Section 2, we discuss a large number of necessary definitions and lemmas related to Hilbert’s
metric, which are necessary to prove our main point. In Section 3, we state and prove the uniqueness
results of the positive periodic solution to Eq (1.1) by applying the theory of Hilbert’s metric. In
Section 4, based on the fixed point theorem in a cone, we prove the existence of the positive periodic
solution to Eq (1.4). In the last section, the results of our study are illustrated by two examples.
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2. Preliminaries

In this section, we review plenty of crucial lemmas and definitions, which will help us to prove our
primary results.

Definition 2.1. (See Definition 1.1.1 of [24]) Let P be a convex closed set, and P , ∅. The following
conditions must be met for P to be considered a cone:

(i) if a ∈ P, λ > 0, then λa ∈ P;
(ii) if a ∈ P and −a ∈ P, then a = 0, i.e., 0 ∈ P.
A cone P defines a partial ordering in X by a ≤ b (a, b ∈ P) if and only if b − a ∈ P.

Let the set of all the interior points of P be P◦.
We identify that

M(a/b) = inf{ξ|a ≤ ξb}, m(a/b) = sup{ζ |ζb ≤ a}, a, b ∈ P◦.

There is no doubt in our minds that

m(a/b)b ≤ a ≤ M(a/b)b. (2.1)

Definition 2.2. (See Definition 2.2 of [25]) Hilbert’s metric is described in P◦ by

d(a, b) = ln{M(a/b)/m(a/b)}.

Lemma 2.1. (See [25]) d(a, b) meets the following requirements: d(a, b) = 0 is equal to a = κb, κ > 0.

Lemma 2.2. (See Lemma 2.2 of [25]) If a, b ∈ P◦, then d(µa, νb) = d(a, b) for all µ > 0 and ν > 0.

Lemma 2.3. (See Lemma 3.1 of [26]) Set the norm is monotonic with respect to P (i.e., for any u, v ∈
P ∩ U 0 ≤ u ≤ v⇒ ‖u‖ ≤ ‖v‖),

(i) 0 < m(u/v) ≤ 1 ≤ M(u/v) < +∞;
(ii) ‖u − v‖ ≤ 2(ed(u,v) − 1).

Lemma 2.4. (See [26]) If the norm is monotonic with respect to P, then (P ∩ U, d) is a Banach space,
where U = {x|x ∈ P, ‖x‖ = 1}.

Definition 2.3. (See Definition 3.1 of [25]) If A : P → P, we say that A is nonnegative, and if
A : P◦ → P◦, A is considered positive.

Definition 2.4. (See Definition 3.6 of [25]) If A : P → P, a, b ∈ P and a ≤ b ⇒ Aa ≤ Ab (Aa ≥ Ab),
A is said to be increasing (decreasing).

Definition 2.5. (See Definition 3.2 of [25]) If A is positive and A(µa) = µαAa ( f or all a ∈ P◦, µ > 0),
A is said to be positive homogeneous of degree α in P◦.

Lemma 2.5. (See [27]) Supposed that X is a Banach space, A : X → X is an operator. There is

d(Au, Av) ≤ θd(u, v), u, v ∈ X, 0 < θ < 1.

Then there exists a unique fixed point u0 ∈ X of T . Alternatively,

Au0 = u0.
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Lemma 2.6. We make the following assumptions:
(1) the norm is monotonic with respect to P,
(2) A : P◦ → P◦ is an operator and positive homogeneous of degree q in P◦, where |q| ∈ (0, 1),
(3) A is increasing (0 < q < 1) or decreasing (−1 < q < 0).
Then A has a unique fixed point in P◦.

Proof. If 0 < q < 1, then T is an increasing operator and positive homogeneous of degree q. By
Eq (2.1), we have

[m(a/b)]qAb ≤ Aa ≤ [M(a/b)]qAb.

It shows that
M(Aa/Ab) ≤ [M(a/b)]q, m(Aa/Ab) ≥ [m(a/b)]q,

thus

d(Aa, Ab) = ln{M(Aa/Ab)/m(Aa/Ab)}
≤ qln{M(a/b)/m(a/b)}
= qd(a, b). (2.2)

Let A1x =
Aa
‖Aa‖

(a ∈ P). Obviously, ‖A1x‖ = 1, then A1 : P ∩ U → P ∩ U. By Lemma 2.2, for any

a, b ∈ P ∩ U,

d(A1a, A1b) = d
(

Aa
‖Aa‖

,
Ab
‖Ab‖

)
= d(Aa, Ab)
≤ qd(a, b).

Next, we will show that the (P ∩ U, d) is a Banach space.
Let {an} be a Cauchy sequence in (P ∩ U, d), for all ε > 0, N1 > 0, we have

d(an, am) < ε (m, n > N1).

There exists 0 < ι < 1 so that
ln

1 + ι

1 − ι
< ε.

Since Lemma 2.3, we know that

M(an/am)→ 1, m(an/am)→ 1 (n, m→ +∞).

Then there exists N2 > 0 so that

1 − ι < m(an/am) ≤ 1, 1 ≤ M(an/am) < 1 + ι (n,m > N2).

Thus
(1 − ι)am ≤ an ≤ (1 + ι)am . (2.3)
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In addition, by Lemma 2.3, there is no doubt about the fact that

‖am − an‖ ≤ 2(ed(am,an) − 1), (2.4)

if m→ n, then ‖am − an‖ → 0. There exists a0 ∈ X so that an → a0 (n→ ∞). Let n→ ∞ and m be not
changed for (2.3). Then we have

(1 − ι)am ≤ a0 ≤ (1 + ι)am (m > N2),

hence a0 ∈ P◦. Obviously, ‖a0‖ = 1, then a0 ∈ P ∩ U. We see that

m(a0/am) ≥ 1 − ι, M(a0/am) ≤ 1 + ι (m > N2).

Then for m ≥ max{N1,N2}, we have

d(a0, am) = ln
[M(a0/am)

m(a0/am)

]
≤ ln

1 + ι

1 − ι
< ε.

That is to say d(a0, am)→ 0 (m→ ∞). Therefore (P ∩ U, d) is a Banach space.
Since Lemma 2.5, A1 is a contraction mapping with a unique fixed point a1 (a1 ∈ P ∩ U), i.e.,

A1a1 = a1.
Set a∗ = ‖Aa1‖

1
1−q a1. Then a∗ ∈ P◦, and

Aa∗ = ‖Aa1‖
q

1−q Aa1 = ‖Aa1‖
q

1−q +1A1a1 = a∗.

Hence there is a fixed point a∗ of A in P◦. In addition, if there exists b∗ ∈ P◦ so that Ab∗ = b∗.
Equation (2.2) shows that

d(a∗, b∗) = d(Aa∗, Ab∗) ≤ qd(a∗, b∗),

then d(a∗, b∗) = 0. By Lemma 2.1, a∗ = κb∗, λ > 0. In fact,

a∗ = Aa∗ = A(κb∗) = κqAb∗ = κqb∗,

so κ = 1 and a∗ = b∗. To put it another way, a∗ is a unique fixed point for 0 < q < 1.
If −1 < q < 0, then A is decreasing. Based on Eq (2.1), we have

A[M(a/b)b] ≤ Aa ≤ A[m(a/b)b],

that is
[M(a/b)]qAb ≤ Aa ≤ [m(a/b)]qAb,

which illustrates that
M(Aa/Ab) ≤ [m(a/b)]q, m(Aa/Ab) ≥ [M(a/b)]q.

Thus

d(Aa, Ab) ≤ ln{[m(a/b)]q/[M(a/b)]q}

≤ qln{m(a/b)/M(a/b)}
≤ (−q)d(a, b) (2.5)
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= |q|d(a, b).

Let A2a =
Aa
‖Aa‖

, a ∈ P. Then A2 : P ∩ U → P ∩ U, and for all a, b ∈ P ∩ U,

d(A2a, A2b) ≤ |q|d(a, b).

Banach’s contraction mapping theorem indicates that there is a fixed point of A2, i.e., there exists
a2 ∈ P ∩ U such that A2a2 = a2. Now we assert that there is a fixed point a∗ of A. Set a∗ = ‖Aa2‖

1
1−q a2.

Then

Aa∗ = A
(
‖Aa2‖

1
1−q a2

)
= ‖Aa2‖

q
1−q Aa2

= ‖Aa2‖
q

1−q +1A2a2

= ‖Aa2‖
1

1−q a2

= a∗.

Furthermore, if there exists b∗ ∈ S so that Tb∗ = b∗. Then

d(a∗, b∗) = d(Aa∗, Ab∗) ≤ |q|d(a∗, b∗).

Consequently, d(a∗, b∗) = 0, i.e., a∗ = δb∗ (δ > 0). Then we have

a∗ = Aa∗ = A(δb∗) = δqAb∗ = δqb∗.

Obviously, δ = 1 and a∗ = b∗. All in all, A has a unique fixed point a∗ for −1 < q < 0. �

Definition 2.6. (See Definition 3.3 of [25]) Assume that A : P◦ → P◦, we clarify the projective
diameter Λ(T ) of A by

Λ(T ) = sup{d(Au, Av)|u, v ∈ P◦}.

Definition 2.7. (See Definition 3.4 of [25]) Suppose that A : P◦ → P◦, we define the contraction ratio
r(A) of A by

r(A) = inf{ξ|d(Aa, Ab) ≤ ξd(a, b), a, b ∈ P◦}.

Lemma 2.7. (See Theorem 3.2 of [25]) Assume that A : P◦ → P◦, then

r(A) = tanh
1
4

Λ(A).

Lemma 2.8. (See Theorem 1 of [25]) Let A be a monotone decreasing operator and satisfy

A(µx) = µ−aA(x) f or x ∈ P◦, µ > 0.

Then the contraction ratio r(A) ≤ a.

Lemma 2.9. (See Theorem 4.2 of [25]) If X = C[0,T ] and P = {u(x)|u(x) ≥ 0 in 0 ≤ x ≤ T }, then
{P ∩ U, d} is Banach space.
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3. Uniqueness of the positive periodic solution

In this section, we consider the uniqueness of the positive periodic solution to Eq (1.1) by employing
the method of Hilbert’s metric.

It is well known that Eq (1.1) is equal to the following equation

y(t) =

∫ t+T

t
D(t, s)g(s)yq(s − ψ(s))ds, (3.1)

where

D(t, s) =
e
∫ s

t a(u)du

e
∫ T

0 a(u)du − 1
, s ∈ [t, t + T ].

Let
X = {g(y)|g(y) is continuous, and g(y + T ) = g(y),T > 0}.

Then X is a real Banach space.
Set

P = {u|u ∈ X, u ≥ 0}.

Then P is a cone of X.
Define the interior of P by

P◦ = {u|u ∈ X, u > 0}

and
S = P ∩ U,

where U = {u|u ∈ X, ‖u‖ = 1}.
The norm in X is defined by

‖u‖ = sup
0≤t≤T

|u(t)|.

Theorem 3.1. Suppose that 0 < |q| < 1. Then Eq (1.1) has a unique positive periodic solution.

Proof. We define the operator T : P◦ → P◦ by

Ty(t) =

∫ t+T

t
D(t, s)g(s)yq(s − ψ(s))ds, t ∈ [0,T ]. (3.2)

As we all know, the solutions of Eq (1.1) are equal to the fixed points of

Ty(t) = y(t), t ∈ [0,T ]. (3.3)

For any µ > 0,

T (µy)(t) = µq
∫ t+T

t
D(t, s)g(s)yq(s − ψ(s))ds

= µqTy(t). (3.4)

Together with Definition 2.5, we note that the operator T is positive homogeneous of degree q in P◦.
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If y1 < y2 and y1, y2 ∈ P◦, then yq
1 < yq

2 for 0 < q < 1. Besides, D(t, s) and g(t) are positive, thus

Ty1 − Ty2 < 0.

Then T is an increasing mapping.
For any y1, y2 ∈ P and y1 > y2 > 0, we have

‖y1‖ = sup
0<t<T

|y1(t)| > sup
0<t<T

|y2(t)| = ‖y2‖.

Thus the norm is monotonic with respect to P by Lemma 2.3.
By Lemma 2.6, T has a unique fixed point in P◦, which implies that Eq (1.1) has a unique positive

periodic solution in P◦ for 0 < q < 1.
If −1 < q < 0, yq

1 > yq
2, then Ty1 − Ty2 > 0, that is T is decreasing.

Combine the above proof, T has a unique fixed point in P◦, that is to say, Eq (1.1) has a unique
positive periodic solution in P◦ for −1 < q < 0.

To sum up, Eq (1.1) has a unique positive periodic solution for 0 < |q| < 1.
�

Theorem 3.2. Consider the following equation

Ty(t) =

∫ t+T

t
D(t, s)g(s)y−1(s − ψ(s))ds = y(t). (3.5)

Then Eq (3.5) has one and only one solution.

Proof. For all µ > 0,
T (µy)(t) = µ−1Ty(t), (3.6)

then T is positive homogeneous of degree −1 in P◦. For any y1, y2 ∈ P◦, and y1 < y2, we have

Ty1 − Ty2

=

∫ t+T

t
D(t, s)g(s)[y−1

1 (s − ψ(s)) − y−1
2 (s − ψ(s))]ds. (3.7)

Obviously, we find that y−1
1 > y−1

2 , and D(t, s) > 0, g(s) > 0. Then Ty1 − Ty2 > 0, which means T
is a monotone decreasing operator. Lemma 2.8 shows us that r(T ) ≤ 1. By Lemma 2.4, we note that
r(T ) ≤ tanh1

4Λ(T ). However, the range of r(T ) is (−1, 1), thus r(T ) < 1.

Next, we consider the mapping T̂ y =
Ty
‖Ty‖

, then for x, y ∈ P◦,

d(T̂ x, T̂ y) = d(T x,Ty)
≤ r(T )d(x, y).

But r(T ) < 1 and so T̂ is a contraction mapping. By Lemma 2.9, S is a Banach space and T̂ has a
unique fixed point y3 ∈ S , i.e., T̂ y3 = y3. Set ȳ = ‖Ty3‖

1
2 y3. Now we will verify ȳ is a unique fixed

point of T in S .

T ȳ = T
(
‖Ty3‖

1
2 y3

)
AIMS Mathematics Volume 8, Issue 1, 676–690.
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= ‖Ty3‖
− 1

2 Ty3

= ‖Ty3‖
− 1

2 +1T3y3

= ‖Ty3‖
1
2 y3

= ȳ.

There is no doubt that α = 1 and x̄ = ȳ. So Eq (3.5) has a unique positive periodic solution. �

4. Existence of the positive periodic solution

In this section, we will analyze the existence of the positive periodic solution for Eq (1.4).
Let X = C[0,T ] denote a real Banach space with the norm

‖y‖ = sup
0≤t≤T

|y(t)|.

Set
Γr = {y ∈ P|‖y‖ < r}, Γr = {y ∈ P|‖y‖ ≤ r}, ∂Γr = {y ∈ P|‖y‖ = r}, f or r > 0.

Define a cone P by
P = {y ∈ X|y(t) ≥ 0}.

We specify the operator A : P→ P by

Ay(t) =

∫ T

0
D(t, s)g(s) f (y(s − ψ(s)))ds, (4.1)

where

D(t, s) =
e
∫ s

t a(u)du

e
∫ T

0 a(u)du − 1
, f or s ∈ [0,T ].

As is well known, Eq (4.1) has a fixed point ŷ ∈ P (ŷ > 0) if and only if ŷ is the positive periodic
solution to Eq (1.4). We verify the existence of the fixed point for Eq (4.1) by employing the fixed
point theorem in a cone.

Lemma 4.1. (See [26]) Let Γ1, Γ2 be open bounded sets of P with 0 ∈ Γ1 and Γ1 ⊂ Γ2. Supposed that
T : P∩ (Γ2 \Γ1)→ P is complete continuous, and it satisfies at least one of the following requirements:

(H1) If there exists u0 ∈ P \ {0} so that a − Ta , du0 for all a ∈ P ∩ ∂Γ2 and all d ≥ 0; Ta , µx for
all a ∈ P ∩ ∂Γ1 and all µ ≥ 1.

(H2) If there exists u0 ∈ P \ {0} so that a − Ta , du0 for all a ∈ P ∩ ∂Γ1 and all d ≥ 0; Ta , µx, for
all a ∈ P ∩ ∂Γ2 and all µ ≥ 1.

Then there is a fixed point of T in P ∩ (Γ2 \ Γ1).

Theorem 4.1. Suppose that
(1) g(s) is continuous function, and

∫ T

0
g(s)ds > 0.

(2) f (y) is continuous and f (y) ≥ 0 for 0 ≤ y < ∞.
(3) there exists 0 < α < 1 so that

0 < lim
y→0+

f (y)
yα
≤ +∞,

AIMS Mathematics Volume 8, Issue 1, 676–690.



685

(4) there exists 0 < α∗ < 1 such that

0 ≤ lim
y→+∞

f (y)
yα∗

< +∞.

As a result, (4.1) has and only has one positive periodic solution.

Proof. If there exists ε0 > 0 so that

y − Ay , 0, f or y ∈ P with 0 < ‖y‖ ≤ ε0. (4.2)

Otherwise, there is a fixed point in P will be accurate.
By (3), there exist η > 0 and ε1 > 0 so that

f (y) ≥ ηyα, f or 0 ≤ y ≤ ε1.

According to the definition of D(t, s), we might as well assume

min
0≤t≤T

D(t, s) = K1

and
max
0≤t≤T

D(t, s) = K2,

where K1 and K2 are positive constants.
Define B : C[0,T ]→ C[0,T ] by

By = φ, f or y ∈ C[0,T ],

where φ(t) ≡ 1, φ ∈ C[0,T ]. Then it is obvious to prove that B : P ∩ Γr → P is completely continuous
and inf

P∩Γr
‖By‖ > 0, φ ∈ P \ {0} with ‖φ‖ = 1.

Choose

ε2 = min

ε0, ε1,

(
K2η

∫ T

0
g(s)ds

) 1
1−α

 ,
and 0 < r ≤ ε2. Now we verify that

y − Ay , qBy, f or y ∈ P ∩ ∂Γr, q ≥ 0. (4.3)

Indeed, if not, there exist y1 ∈ P ∩ ∂Γr and q1 ≥ 0 so that y1 − Ay1 = q1By1. By (4.2), we have q1 > 0.
Then y1 = q1By1 + Ay1 ≥ q1φ. Let q∗ = sup{q|y1(s) ≥ qφ(s), s ∈ [0,T ]}, then q1 ≤ q∗ < +∞, and
y1(s) ≥ q∗φ(s) = q∗. So

q∗ ≤ y1(s) ≤ ‖y1‖ = r ≤
(
K1η

∫ T

0
g(s)ds

) 1
1−α

, s ∈ [0,T ]. (4.4)

Then if t ∈ [0,T ], we have

y1(t) =

∫ T

0
D(t, s)g(s) f (y1(s − ψ(s)))ds + q1φ(t)

AIMS Mathematics Volume 8, Issue 1, 676–690.



686

≥

∫ T

0
D(t, s)g(s)η[y1(t)]αds + q1

≥

∫ T

0
D(t, s)g(s)η(q∗)αds + q1

≥ K1η(q∗)α
∫ T

0
g(s)ds + q1

≥ q∗ + q1,

which shows that y1(t) ≥ q∗ + q1 (for t ∈ C[0,T ]). This conflicts withthe definition of q∗. So Eq (4.3)
is true.

On the other hand, from (4), there exist a > 0 and y0 > 0 such that

f (y) ≤ ayα
∗

, f or y ≥ y0.

Then

0 ≤ f (y) ≤ µ + ayα
∗

, f or 0 ≤ y < +∞, (4.5)

where µ = max
0≤y≤y0

f (y).

Choose sufficiently large R > 0 so that

µ

R
+

a
R1−α∗ <

1

K2

∫ T

0
g(s)ds

. (4.6)

Next, we will verify that

y ∈ P ∩ ∂ΓR, θ ≥ 1⇒ Ay , θy.

Indeed, if not, there exist y0 ∈ P ∩ ∂ΓR and θ0 ≥ 1 such that Ay0 = θ0y0, then if t ∈ [0,T ], we have

θ0y0(t) =

∫ T

0
D(t, s)g(s) f (y0(s − ψ(s)))ds

≤

∫ T

0
D(t, s)g(s)(µ + ayα

∗

0 )ds

≤ (µ + ayα
∗

0 )K2

∫ T

0
g(s)ds.

Therefore, θ0R = θ0‖y0‖ ≤ (µ + ayα
∗

0 )K2

∫ T

0
g(s)ds. That is to say,

θ0 ≤ (
µ

R
+

a
R1−α∗ )M

∫ T

0
g(s)ds < 1,

which is a conflict to θ0 ≥ 1.
In light of Lemma 4.1, there is a fixed point of A in P ∩ (ΓR \ Γr). �
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5. Conclusions

This study sets out to verify the uniqueness and existence of positive periodic solutions for Eq (1.1).
It contributes to our solving of other mathematical problems and practical problems. Our study shows
that using the theory of Hilbert’s metric to prove the uniqueness of positive periodic solution for
Eq (1.1), as well as employing the fixed point theorem in a cone to prove the existence of positive
periodic solution for Eq (1.4).

We employ the theory of Hilbert’s metric to prove the uniqueness of the positive periodic solution
for Eq (1.4) when f (y(t−ψ(t))) = yq(t−ψ(t)). When 0 < q < 1, q = −1 and −1 < q < 0, the uniqueness
results are verified based on the theory of Hilbert’s metric. The major limitation of this study is that it
is difficult to directly verify the uniqueness of the positive periodic solution for Eq (1.4) by applying
the theory of Hilbert’s metric.

6. Two examples

This section illustrates our conclusions in Section 3 with two examples.

Example 6.1. Suppose that X, P, P◦, and S have the same meanings with Section 3, we think about
the equation

v′(t) = −
1
π

v(t) + sin2t · v
1
3 (t − π/1000), t ∈ [0, 1]. (6.1)

Then Eq (6.1) has a unique positive periodic solution.

Proof. In this example, a(t) =
1
π

, h(t) = sin2t, ψ(t) = π/1000, and q =
1
3

.

As we all know, Eq (6.1) has a unique solution if and only if the equation

Av(t) = v(t) =

∫ 1

0
D(t, s)sin2t · v

1
3 (s − π/1000)ds (6.2)

has a fixed point, where

D(t, s) =
e

s−t
π

eT − 1
, s ∈ [0, 1].

It is easy to see that A is an increasing operator which is positive homogeneous of degree 1
3 in P◦.

Moreover, the norm is monotonic with respect to P.
In a word, A has a unique fixed point in P◦, which shows Eq (6.1) has a unique positive periodic

solution.
�

Example 6.2. We examine the following equation

u′(t) = (cos2t)u(t) + u−
1
2 (t − sint), t ∈ [0,T ]. (6.3)

Then Eq (6.3) has one and only one positive periodic solution.
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Proof. In this equation, a(t) = cos2t, h(t) = 1, ψ(t) = −sint, and q = −
1
2

.

We think about

Au(t) =

∫ T

0
D(t, s)u−

1
2 (s − sins)ds = u(t), (6.4)

where D(t, s) =
e
∫ t

s cos2udu

e
∫ T

0 cos2udu − 1
, s ∈ [0,T ].

Next, we will verify that there is a fixed point of Eq (6.4).

Clearly, A is a decreasing operator and positive homogeneous of degree −
1
2

in P◦. What’s more, the
norm is monotonic with respect to P◦.

As a result, Eq (6.3) has a unique solution in P◦. �
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