Mathematics

Research article

Uniqueness and existence of positive periodic solutions of functional differential equations

Jiaqi Xu and Chunyan Xue*
School of Applied Science, Beijing Information Science \& Technology University, Beijing, 100192, China

* Correspondence: Email: xue_chunyan@126.com; Tel: +86 13241838376.

Abstract

In this paper, some new findings on the uniqueness and existence of positive periodic solutions to first-order functional differential equations are presented. These equations have wide applications in a variety of fields. The most important feature of our argument is that we use the theory of Hilbert's metric to prove the uniqueness of the positive periodic solution when $q=-1$ and $-1<q<0$. In addition, we also investigate the existence results of positive periodic solutions by applying a fixed point theorem for completely continuous maps in a cone. Two examples demonstrate our findings.

Keywords: functional differential equation; positive periodic solution; uniqueness and existence; Hilbert's metric; fixed point theorem
Mathematics Subject Classification: 34K13

1. Introduction

We view the equation

$$
\begin{equation*}
y^{\prime}(t)=-a(t) y(t)+g(t) y^{q}(t-\psi(t)), \tag{1.1}
\end{equation*}
$$

where $a(t), \psi(t)$ and $g(t)>0$ are continuous function T-periodic functions and $\int_{0}^{T} a(u) d u>0$ ($T>0$). Such functional differential equations arise in ecological models, such as the dynamic disease model [1], population dynamics model [2], population model [3], and the Nicholson blowflies model [4].

In 1750, one of the earliest functional differential equation problems was the Euler's problem of finding a curve so that it resembles a shrinking line. In the past 50 years, many mathematicians are familiar with first-order functional differential equations (see [5-17]). They researched the same and critical question of whether these equations can support positive periodic solutions. Jiang, Wei and

Zhang [8], Cheng and Zhang [15], and Wang [16] proved the existence of positive periodic solution for the first-order functional differential in their papers. In particular, Wang [16] studied the following equation

$$
\begin{equation*}
x^{\prime}(t)=a(t) g(x(t)) x(t)-\lambda b(t) f(x(t-\tau(t))) . \tag{1.2}
\end{equation*}
$$

Using a famous result of the fixed point index, the author derived the existence results of the positive periodic solution to Eq (1.2) (for any $x>0, f(x)>0$). Among others, the writer proved the connection between the open intervals (eigenvalue intervals) of the parameter λ and the asymptotic behaviors of the quotient $\frac{f(x)}{x}$ (at $x \rightarrow 0$ and $x \rightarrow \infty$) so that Eq (1.2) admits zero, one and multiple positive solutions. However, the criteria for the uniqueness of the positive periodic solution of Eq (1.2) have not been established.

In [6], Liu and Li analyzed the existence of the positive periodic solutions to the equation

$$
\begin{equation*}
y^{\prime}(t)=-a(t) y(t)+\lambda h(t) f(y(t-\tau(t))), \tag{1.3}
\end{equation*}
$$

where $f:[0,+\infty) \rightarrow[0,+\infty)$ is continuous with $f(0)=0$. The authors first proved the existence of the positive periodic solution to Eq (1.3) by applying the eigenvalue theory in cones. In addition, by employing the theory of α-concave operator, they derived an excellent result regarding the uniqueness of the periodic solution to Eq (1.3). However, it is difficult to prove the uniqueness of positive periodic solution for $\operatorname{Eq}(1.1)$ when $q=-1$ and $-1<q<0$.

Inspired by the pieces above, in our paper, we will construct two results for the uniqueness of positive periodic solutions to Eq (1.1) by employing the method of Hilbert's metric, which is completely different from that used in [5-17]. We establish uniqueness results, especially when $q=-1$ and $-1<q<1$ for Eq (1.1).

Hilbert [18] first considered Hilbert's metric on the foundations of geometry in 1895. Three noncollinear points have been modeled algebraically, in which the length of one side is equal to the sum of the other two sides. In 1957, Birkhoff [19] proved several extensions of Jentzsch's theorem on integral equations with positive kernels by employing Hilbert's metric. He gives some applications to the projective contraction theorem and simply Jentzsch's theorem. The earlier paper of Klein [20] also presented particular examples of Hilbert's metric. In the past time, the applications of Hilbert's metric were mentioned by plenty of authors, see [21-23].

Furthermore, we research the existence of the positive periodic solution to the following equation:

$$
\begin{equation*}
y^{\prime}(t)=-a(t) y(t)+g(t) f(y(t-\psi(t))), \tag{1.4}
\end{equation*}
$$

where $a(t), \psi(t)$ and $g(t)>0$ are T-periodic functions and $\int_{0}^{T} a(u) d u>0(T>0)$. Comparing with Wang [16] and Liu-Li [17], we here employ a completely different technique to treat Eq (1.4), for detail to see the proof of Theorem 4.1.

In Section 2, we discuss a large number of necessary definitions and lemmas related to Hilbert's metric, which are necessary to prove our main point. In Section 3, we state and prove the uniqueness results of the positive periodic solution to Eq (1.1) by applying the theory of Hilbert's metric. In Section 4, based on the fixed point theorem in a cone, we prove the existence of the positive periodic solution to Eq (1.4). In the last section, the results of our study are illustrated by two examples.

2. Preliminaries

In this section, we review plenty of crucial lemmas and definitions, which will help us to prove our primary results.

Definition 2.1. (See Definition 1.1.1 of [24]) Let P be a convex closed set, and $P \neq \varnothing$. The following conditions must be met for P to be considered a cone:
(i) if $a \in P, \lambda>0$, then $\lambda a \in P$;
(ii) if $a \in P$ and $-a \in P$, then $a=0$, i.e., $0 \in P$.

A cone P defines a partial ordering in X by $a \leq b(a, b \in P)$ if and only if $b-a \in P$.
Let the set of all the interior points of P be P°.
We identify that

$$
M(a / b)=\inf \{\xi \mid a \leq \xi b\}, m(a / b)=\sup \{\zeta \mid \zeta b \leq a\}, a, b \in P^{\circ} .
$$

There is no doubt in our minds that

$$
\begin{equation*}
m(a / b) b \leq a \leq M(a / b) b . \tag{2.1}
\end{equation*}
$$

Definition 2.2. (See Definition 2.2 of [25]) Hilbert's metric is described in P° by

$$
d(a, b)=\ln \{M(a / b) / m(a / b)\} .
$$

Lemma 2.1. (See [25]) $d(a, b)$ meets the following requirements: $d(a, b)=0$ is equal to $a=\kappa b, \kappa>0$.
Lemma 2.2. (See Lemma 2.2 of [25]) If $a, b \in P^{\circ}$, then $d(\mu a, v b)=d(a, b)$ for all $\mu>0$ and $v>0$.
Lemma 2.3. (See Lemma 3.1 of [26]) Set the norm is monotonic with respect to P (i.e., for any $u, v \in$ $P \cap U 0 \leq u \leq v \Rightarrow\|u\| \leq\|v\|)$,
(i) $0<m(u / v) \leq 1 \leq M(u / v)<+\infty$;
(ii) $\|u-v\| \leq 2\left(e^{d(u, v)}-1\right)$.

Lemma 2.4. (See [26]) If the norm is monotonic with respect to P, then $(P \cap U, d)$ is a Banach space, where $U=\{x \mid x \in P,\|x\|=1\}$.

Definition 2.3. (See Definition 3.1 of [25]) If $A: P \rightarrow P$, we say that A is nonnegative, and if $A: P^{\circ} \rightarrow P^{\circ}, A$ is considered positive.

Definition 2.4. (See Definition 3.6 of [25]) If $A: P \rightarrow P, a, b \in P$ and $a \leq b \Rightarrow A a \leq A b(A a \geq A b)$, A is said to be increasing (decreasing).

Definition 2.5. (See Definition 3.2 of [25]) If A is positive and $A(\mu a)=\mu^{\alpha} A a\left(\right.$ for all $\left.a \in P^{\circ}, \mu>0\right)$, A is said to be positive homogeneous of degree α in P°.

Lemma 2.5. (See [27]) Supposed that X is a Banach space, $A: X \rightarrow X$ is an operator. There is

$$
d(A u, A v) \leq \theta d(u, v), \quad u, v \in X, 0<\theta<1 .
$$

Then there exists a unique fixed point $u_{0} \in X$ of T. Alternatively,

$$
A u_{0}=u_{0}
$$

Lemma 2.6. We make the following assumptions:
(1) the norm is monotonic with respect to P,
(2) $A: P^{\circ} \rightarrow P^{\circ}$ is an operator and positive homogeneous of degree q in P°, where $|q| \in(0,1)$,
(3) A is increasing $(0<q<1)$ or decreasing $(-1<q<0)$.

Then A has a unique fixed point in P°.
Proof. If $0<q<1$, then T is an increasing operator and positive homogeneous of degree q. By Eq (2.1), we have

$$
[m(a / b)]^{q} A b \leq A a \leq[M(a / b)]^{q} A b .
$$

It shows that

$$
M(A a / A b) \leq[M(a / b)]^{q}, m(A a / A b) \geq[m(a / b)]^{q},
$$

thus

$$
\begin{align*}
d(A a, A b) & =\ln \{M(A a / A b) / m(A a / A b)\} \\
& \leq q \ln \{M(a / b) / m(a / b)\} \\
& =q d(a, b) . \tag{2.2}
\end{align*}
$$

Let $A_{1} x=\frac{A a}{\|A a\|}(a \in P)$. Obviously, $\left\|A_{1} x\right\|=1$, then $A_{1}: P \cap U \rightarrow P \cap U$. By Lemma 2.2, for any $a, b \in P \cap U$,

$$
\begin{aligned}
d\left(A_{1} a, A_{1} b\right) & =d\left(\frac{A a}{\|A a\|}, \frac{A b}{\|A b\|}\right) \\
& =d(A a, A b) \\
& \leq q d(a, b) .
\end{aligned}
$$

Next, we will show that the $(P \cap U, d)$ is a Banach space.
Let $\left\{a_{n}\right\}$ be a Cauchy sequence in $(P \cap U, d)$, for all $\varepsilon>0, N_{1}>0$, we have

$$
d\left(a_{n}, a_{m}\right)<\varepsilon\left(m, n>N_{1}\right) .
$$

There exists $0<\iota<1$ so that

$$
\ln \frac{1+\iota}{1-\iota}<\varepsilon .
$$

Since Lemma 2.3, we know that

$$
M\left(a_{n} / a_{m}\right) \rightarrow 1, m\left(a_{n} / a_{m}\right) \rightarrow 1(n, m \rightarrow+\infty) .
$$

Then there exists $N_{2}>0$ so that

$$
1-\iota<m\left(a_{n} / a_{m}\right) \leq 1,1 \leq M\left(a_{n} / a_{m}\right)<1+\iota\left(n, m>N_{2}\right) .
$$

Thus

$$
\begin{equation*}
(1-\imath) a_{m} \leq a_{n} \leq(1+\iota) a_{m} . \tag{2.3}
\end{equation*}
$$

In addition, by Lemma 2.3, there is no doubt about the fact that

$$
\begin{equation*}
\left\|a_{m}-a_{n}\right\| \leq 2\left(e^{d\left(a_{m}, a_{n}\right)}-1\right) \tag{2.4}
\end{equation*}
$$

if $m \rightarrow n$, then $\left\|a_{m}-a_{n}\right\| \rightarrow 0$. There exists $a_{0} \in X$ so that $a_{n} \rightarrow a_{0}(n \rightarrow \infty)$. Let $n \rightarrow \infty$ and m be not changed for (2.3). Then we have

$$
(1-\iota) a_{m} \leq a_{0} \leq(1+\iota) a_{m}\left(m>N_{2}\right),
$$

hence $a_{0} \in P^{\circ}$. Obviously, $\left\|a_{0}\right\|=1$, then $a_{0} \in P \cap U$. We see that

$$
m\left(a_{0} / a_{m}\right) \geq 1-\iota, M\left(a_{0} / a_{m}\right) \leq 1+\iota\left(m>N_{2}\right)
$$

Then for $m \geq \max \left\{N_{1}, N_{2}\right\}$, we have

$$
d\left(a_{0}, a_{m}\right)=\ln \left[\frac{M\left(a_{0} / a_{m}\right)}{m\left(a_{0} / a_{m}\right)}\right] \leq \ln \frac{1+\iota}{1-\iota}<\varepsilon .
$$

That is to say $d\left(a_{0}, a_{m}\right) \rightarrow 0(m \rightarrow \infty)$. Therefore $(P \cap U, d)$ is a Banach space.
Since Lemma 2.5, A_{1} is a contraction mapping with a unique fixed point $a_{1}\left(a_{1} \in P \cap U\right)$, i.e., $A_{1} a_{1}=a_{1}$.

Set $a^{*}=\left\|A a_{1}\right\|^{\frac{1}{1-q}} a_{1}$. Then $a^{*} \in P^{\circ}$, and

$$
A a^{*}=\left\|A a_{1}\right\|^{\frac{q}{1-q}} A a_{1}=\left\|A a_{1}\right\|^{\frac{q}{1-q}+1} A_{1} a_{1}=a^{*} .
$$

Hence there is a fixed point a^{*} of A in P°. In addition, if there exists $b^{*} \in P^{\circ}$ so that $A b^{*}=b^{*}$. Equation (2.2) shows that

$$
d\left(a^{*}, b^{*}\right)=d\left(A a^{*}, A b^{*}\right) \leq q d\left(a^{*}, b^{*}\right),
$$

then $d\left(a^{*}, b^{*}\right)=0$. By Lemma 2.1, $a^{*}=\kappa b^{*}, \lambda>0$. In fact,

$$
a^{*}=A a^{*}=A\left(\kappa b^{*}\right)=\kappa^{q} A b^{*}=\kappa^{q} b^{*},
$$

so $\kappa=1$ and $a^{*}=b^{*}$. To put it another way, a^{*} is a unique fixed point for $0<q<1$.
If $-1<q<0$, then A is decreasing. Based on Eq (2.1), we have

$$
A[M(a / b) b] \leq A a \leq A[m(a / b) b],
$$

that is

$$
[M(a / b)]^{q} A b \leq A a \leq[m(a / b)]^{q} A b,
$$

which illustrates that

$$
M(A a / A b) \leq[m(a / b)]^{q}, m(A a / A b) \geq[M(a / b)]^{q} .
$$

Thus

$$
\begin{align*}
d(A a, A b) & \leq \ln \left\{[m(a / b)]^{q} /[M(a / b)]^{q}\right\} \\
& \leq q \ln \{m(a / b) / M(a / b)\} \\
& \leq(-q) d(a, b) \tag{2.5}
\end{align*}
$$

$$
=|q| d(a, b) .
$$

Let $A_{2} a=\frac{A a}{\|A a\|}, a \in P$. Then $A_{2}: P \cap U \rightarrow P \cap U$, and for all $a, b \in P \cap U$,

$$
d\left(A_{2} a, A_{2} b\right) \leq|q| d(a, b) .
$$

Banach's contraction mapping theorem indicates that there is a fixed point of A_{2}, i.e., there exists $a_{2} \in P \cap U$ such that $A_{2} a_{2}=a_{2}$. Now we assert that there is a fixed point a_{*} of A. Set $a_{*}=\left\|A a_{2}\right\|^{\frac{1}{1-q}} a_{2}$. Then

$$
\begin{aligned}
A a_{*} & =A\left(\left\|A a_{2}\right\|^{\frac{1}{1-q}} a_{2}\right) \\
& =\left\|A a_{2}\right\|^{\frac{q}{1-q}} A a_{2} \\
& =\left\|A a_{2}\right\|^{\frac{q}{1-q}+1} A_{2} a_{2} \\
& =\left\|A a_{2}\right\|^{\frac{1}{1-q}} a_{2} \\
& =a_{*} .
\end{aligned}
$$

Furthermore, if there exists $b_{*} \in S$ so that $T b_{*}=b_{*}$. Then

$$
d\left(a_{*}, b_{*}\right)=d\left(A a_{*}, A b_{*}\right) \leq|q| d\left(a_{*}, b_{*}\right) .
$$

Consequently, $d\left(a_{*}, b_{*}\right)=0$, i.e., $a_{*}=\delta b_{*}(\delta>0)$. Then we have

$$
a_{*}=A a_{*}=A\left(\delta b_{*}\right)=\delta^{q} A b_{*}=\delta^{q} b_{*} .
$$

Obviously, $\delta=1$ and $a_{*}=b_{*}$. All in all, A has a unique fixed point a_{*} for $-1<q<0$.
Definition 2.6. (See Definition 3.3 of [25]) Assume that $A: P^{\circ} \rightarrow P^{\circ}$, we clarify the projective diameter $\Lambda(T)$ of A by

$$
\Lambda(T)=\sup \left\{d(A u, A v) \mid u, v \in P^{\circ}\right\} .
$$

Definition 2.7. (See Definition 3.4 of [25]) Suppose that $A: P^{\circ} \rightarrow P^{\circ}$, we define the contraction ratio $r(A)$ of A by

$$
r(A)=\inf \left\{\xi \mid d(A a, A b) \leq \xi d(a, b), a, b \in P^{\circ}\right\}
$$

Lemma 2.7. (See Theorem 3.2 of [25]) Assume that $A: P^{\circ} \rightarrow P^{\circ}$, then

$$
r(A)=\tanh \frac{1}{4} \Lambda(A) .
$$

Lemma 2.8. (See Theorem 1 of [25]) Let A be a monotone decreasing operator and satisfy

$$
A(\mu x)=\mu^{-a} A(x) \quad \text { for } x \in P^{\circ}, \mu>0 .
$$

Then the contraction ratio $r(A) \leq a$.
Lemma 2.9. (See Theorem 4.2 of [25]) If $X=C[0, T]$ and $P=\{u(x) \mid u(x) \geq 0$ in $0 \leq x \leq T\}$, then $\{P \cap U, d\}$ is Banach space.

3. Uniqueness of the positive periodic solution

In this section, we consider the uniqueness of the positive periodic solution to Eq (1.1) by employing the method of Hilbert's metric.

It is well known that $\mathrm{Eq}(1.1)$ is equal to the following equation

$$
\begin{equation*}
y(t)=\int_{t}^{t+T} D(t, s) g(s) y^{q}(s-\psi(s)) d s, \tag{3.1}
\end{equation*}
$$

where

$$
D(t, s)=\frac{e^{\int_{t}^{s} a(u) d u}}{e^{\int_{0}^{T} a(u) d u}-1}, s \in[t, t+T] .
$$

Let

$$
X=\{g(y) \mid g(y) \text { is continuous, and } g(y+T)=g(y), T>0\} .
$$

Then X is a real Banach space.
Set

$$
P=\{u \mid u \in X, u \geq 0\} .
$$

Then P is a cone of X.
Define the interior of P by

$$
P^{\circ}=\{u \mid u \in X, u>0\}
$$

and

$$
S=P \cap U,
$$

where $U=\{u \mid u \in X,\|u\|=1\}$.
The norm in X is defined by

$$
\|u\|=\sup _{0 \leq \leq \leq T}|u(t)| .
$$

Theorem 3.1. Suppose that $0<|q|<1$. Then Eq (1.1) has a unique positive periodic solution.
Proof. We define the operator $T: P^{\circ} \rightarrow P^{\circ}$ by

$$
\begin{equation*}
T y(t)=\int_{t}^{t+T} D(t, s) g(s) y^{q}(s-\psi(s)) d s, t \in[0, T] \tag{3.2}
\end{equation*}
$$

As we all know, the solutions of Eq (1.1) are equal to the fixed points of

$$
\begin{equation*}
T y(t)=y(t), t \in[0, T] . \tag{3.3}
\end{equation*}
$$

For any $\mu>0$,

$$
\begin{align*}
T(\mu y)(t) & =\mu^{q} \int_{t}^{t+T} D(t, s) g(s) y^{q}(s-\psi(s)) d s \\
& =\mu^{q} T y(t) . \tag{3.4}
\end{align*}
$$

Together with Definition 2.5, we note that the operator T is positive homogeneous of degree q in P°.

If $y_{1}<y_{2}$ and $y_{1}, y_{2} \in P^{\circ}$, then $y_{1}^{q}<y_{2}^{q}$ for $0<q<1$. Besides, $D(t, s)$ and $g(t)$ are positive, thus

$$
T y_{1}-T y_{2}<0 .
$$

Then T is an increasing mapping.
For any $y_{1}, y_{2} \in P$ and $y_{1}>y_{2}>0$, we have

$$
\left\|y_{1}\right\|=\sup _{0<t<T}\left|y_{1}(t)\right|>\sup _{0<t<T}\left|y_{2}(t)\right|=\left\|y_{2}\right\| .
$$

Thus the norm is monotonic with respect to P by Lemma 2.3.
By Lemma 2.6, T has a unique fixed point in P°, which implies that Eq (1.1) has a unique positive periodic solution in P° for $0<q<1$.

If $-1<q<0, y_{1}^{q}>y_{2}^{q}$, then $T y_{1}-T y_{2}>0$, that is T is decreasing.
Combine the above proof, T has a unique fixed point in P°, that is to say, Eq (1.1) has a unique positive periodic solution in P° for $-1<q<0$.

To sum up, $\mathrm{Eq}(1.1)$ has a unique positive periodic solution for $0<|q|<1$.

Theorem 3.2. Consider the following equation

$$
\begin{equation*}
T y(t)=\int_{t}^{t+T} D(t, s) g(s) y^{-1}(s-\psi(s)) d s=y(t) \tag{3.5}
\end{equation*}
$$

Then Eq (3.5) has one and only one solution.
Proof. For all $\mu>0$,

$$
\begin{equation*}
T(\mu y)(t)=\mu^{-1} T y(t) \tag{3.6}
\end{equation*}
$$

then T is positive homogeneous of degree -1 in P°. For any $y_{1}, y_{2} \in P^{\circ}$, and $y_{1}<y_{2}$, we have

$$
\begin{align*}
& T y_{1}-T y_{2} \\
& =\int_{t}^{t+T} D(t, s) g(s)\left[y_{1}^{-1}(s-\psi(s))-y_{2}^{-1}(s-\psi(s))\right] d s \tag{3.7}
\end{align*}
$$

Obviously, we find that $y_{1}^{-1}>y_{2}^{-1}$, and $D(t, s)>0, g(s)>0$. Then $T y_{1}-T y_{2}>0$, which means T is a monotone decreasing operator. Lemma 2.8 shows us that $r(T) \leq 1$. By Lemma 2.4, we note that $r(T) \leq \tanh \frac{1}{4} \Lambda(T)$. However, the range of $r(T)$ is $(-1,1)$, thus $r(T)<1$.

Next, we consider the mapping $\hat{T} y=\frac{T y}{\|T y\|}$, then for $x, y \in P^{\circ}$,

$$
\begin{aligned}
d(\hat{T} x, \hat{T} y) & =d(T x, T y) \\
& \leq r(T) d(x, y) .
\end{aligned}
$$

But $r(T)<1$ and so \hat{T} is a contraction mapping. By Lemma $2.9, S$ is a Banach space and \hat{T} has a unique fixed point $y_{3} \in S$, i.e., $\hat{T} y_{3}=y_{3}$. Set $\bar{y}=\left\|T y_{3}\right\|^{\frac{1}{2}} y_{3}$. Now we will verify \bar{y} is a unique fixed point of T in S.

$$
T \bar{y}=T\left(\left\|T y_{3}\right\|^{\frac{1}{2}} y_{3}\right)
$$

$$
\begin{aligned}
& =\left\|T y_{3}\right\|^{-\frac{1}{2}} T y_{3} \\
& =\left\|T y_{3}\right\|^{-\frac{1}{2}+1} T_{3} y_{3} \\
& =\left\|T y_{3}\right\|^{\frac{1}{2}} y_{3} \\
& =\bar{y} .
\end{aligned}
$$

There is no doubt that $\alpha=1$ and $\bar{x}=\bar{y}$. So Eq (3.5) has a unique positive periodic solution.

4. Existence of the positive periodic solution

In this section, we will analyze the existence of the positive periodic solution for Eq (1.4).
Let $X=C[0, T]$ denote a real Banach space with the norm

$$
\|y\|=\sup _{0 \leq t \leq T}|y(t)| .
$$

Set

$$
\Gamma_{r}=\{y \in P\|y\|<r\}, \quad \bar{\Gamma}_{r}=\{y \in P\| \| y \| \leq r\}, \quad \partial \bar{\Gamma}_{r}=\{y \in P\| \| y \|=r\}, \quad \text { for } r>0 .
$$

Define a cone P by

$$
P=\{y \in X \mid y(t) \geq 0\} .
$$

We specify the operator $A: P \rightarrow P$ by

$$
\begin{equation*}
A y(t)=\int_{0}^{T} D(t, s) g(s) f(y(s-\psi(s))) d s \tag{4.1}
\end{equation*}
$$

where

$$
D(t, s)=\frac{e_{t}^{s} a(u) d u}{e_{0}^{T} a(u) d u}-1, \quad \text { for } s \in[0, T] .
$$

As is well known, Eq (4.1) has a fixed point $\hat{y} \in P(\hat{y}>0)$ if and only if \hat{y} is the positive periodic solution to Eq (1.4). We verify the existence of the fixed point for Eq (4.1) by employing the fixed point theorem in a cone.
Lemma 4.1. (See [26]) Let Γ_{1}, Γ_{2} be open bounded sets of P with $0 \in \Gamma_{1}$ and $\bar{\Gamma}_{1} \subset \Gamma_{2}$. Supposed that $T: P \cap\left(\bar{\Gamma}_{2} \backslash \Gamma_{1}\right) \rightarrow P$ is complete continuous, and it satisfies at least one of the following requirements:
(H_{1}) If there exists $u_{0} \in P \backslash\{0\}$ so that $a-T a \neq d u_{0}$ for all $a \in P \cap \partial \Gamma_{2}$ and all $d \geq 0 ; T a \neq \mu x$ for all $a \in P \cap \partial \Gamma_{1}$ and all $\mu \geq 1$.
(H_{2}) If there exists $u_{0} \in P \backslash\{0\}$ so that $a-T a \neq d u_{0}$ for all $a \in P \cap \partial \Gamma_{1}$ and all $d \geq 0 ; T a \neq \mu x$, for all $a \in P \cap \partial \Gamma_{2}$ and all $\mu \geq 1$.

Then there is a fixed point of T in $P \cap\left(\Gamma_{2} \backslash \bar{\Gamma}_{1}\right)$.
Theorem 4.1. Suppose that
(1) $g(s)$ is continuous function, and $\int_{0}^{T} g(s) d s>0$.
(2) $f(y)$ is continuous and $f(y) \geq 0$ for $0 \leq y<\infty$.
(3) there exists $0<\alpha<1$ so that

$$
0<\varliminf_{y \rightarrow 0^{+}} \frac{f(y)}{y^{\alpha}} \leq+\infty,
$$

(4) there exists $0<\alpha^{*}<1$ such that

$$
0 \leq \varlimsup_{y \rightarrow+\infty} \frac{f(y)}{y^{\alpha^{*}}}<+\infty .
$$

As a result, (4.1) has and only has one positive periodic solution.
Proof. If there exists $\varepsilon_{0}>0$ so that

$$
\begin{equation*}
y-A y \neq 0, \quad \text { for } y \in P \quad \text { with } 0<\|y\| \leq \varepsilon_{0} . \tag{4.2}
\end{equation*}
$$

Otherwise, there is a fixed point in P will be accurate.
By (3), there exist $\eta>0$ and $\varepsilon_{1}>0$ so that

$$
f(y) \geq \eta y^{\alpha}, \quad \text { for } 0 \leq y \leq \varepsilon_{1} .
$$

According to the definition of $D(t, s)$, we might as well assume

$$
\min _{0 \leq t \leq T} D(t, s)=K_{1}
$$

and

$$
\max _{0 \leq t \leq T} D(t, s)=K_{2},
$$

where K_{1} and K_{2} are positive constants.
Define $B: C[0, T] \rightarrow C[0, T]$ by

$$
B y=\phi, \quad \text { for } y \in C[0, T],
$$

where $\phi(t) \equiv 1, \phi \in C[0, T]$. Then it is obvious to prove that $B: P \cap \Gamma_{r} \rightarrow P$ is completely continuous and $\inf _{P \cap \Gamma_{r}}\|B y\|>0, \phi \in P \backslash\{0\}$ with $\|\phi\|=1$.

Choose

$$
\varepsilon_{2}=\min \left\{\varepsilon_{0}, \varepsilon_{1},\left(K_{2} \eta \int_{0}^{T} g(s) d s\right)^{\frac{1}{1-\alpha}}\right\}
$$

and $0<r \leq \varepsilon_{2}$. Now we verify that

$$
\begin{equation*}
y-A y \neq q B y, \quad \text { for } y \in P \cap \partial \Gamma_{r}, q \geq 0 . \tag{4.3}
\end{equation*}
$$

Indeed, if not, there exist $y_{1} \in P \cap \partial \Gamma_{r}$ and $q_{1} \geq 0$ so that $y_{1}-A y_{1}=q_{1} B y_{1}$. By (4.2), we have $q_{1}>0$. Then $y_{1}=q_{1} B y_{1}+A y_{1} \geq q_{1} \phi$. Let $q^{*}=\sup \left\{q \mid y_{1}(s) \geq q \phi(s), s \in[0, T]\right\}$, then $q_{1} \leq q^{*}<+\infty$, and $y_{1}(s) \geq q^{*} \phi(s)=q^{*}$. So

$$
\begin{equation*}
q^{*} \leq y_{1}(s) \leq\left\|y_{1}\right\|=r \leq\left(K_{1} \eta \int_{0}^{T} g(s) d s\right)^{\frac{1}{1-\alpha}}, \quad s \in[0, T] . \tag{4.4}
\end{equation*}
$$

Then if $t \in[0, T]$, we have

$$
y_{1}(t)=\int_{0}^{T} D(t, s) g(s) f\left(y_{1}(s-\psi(s))\right) d s+q_{1} \phi(t)
$$

$$
\begin{aligned}
& \geq \int_{0}^{T} D(t, s) g(s) \eta\left[y_{1}(t)\right]^{\alpha} d s+q_{1} \\
& \geq \int_{0}^{T} D(t, s) g(s) \eta\left(q^{*}\right)^{\alpha} d s+q_{1} \\
& \geq K_{1} \eta\left(q^{*}\right)^{\alpha} \int_{0}^{T} g(s) d s+q_{1} \\
& \geq q^{*}+q_{1}
\end{aligned}
$$

which shows that $y_{1}(t) \geq q^{*}+q_{1}$ (for $t \in C[0, T]$). This conflicts withthe definition of q^{*}. So Eq (4.3) is true.

On the other hand, from (4), there exist $a>0$ and $y_{0}>0$ such that

$$
f(y) \leq a y^{\alpha^{*}}, \quad \text { for } y \geq y_{0} .
$$

Then

$$
\begin{equation*}
0 \leq f(y) \leq \mu+a y^{\alpha^{\alpha^{*}}}, \quad \text { for } 0 \leq y<+\infty, \tag{4.5}
\end{equation*}
$$

where $\mu=\max _{0 \leq y \leq y_{0}} f(y)$.
Choose sufficiently large $R>0$ so that

$$
\begin{equation*}
\frac{\mu}{R}+\frac{a}{R^{1-\alpha^{*}}}<\frac{1}{K_{2} \int_{0}^{T} g(s) d s} \tag{4.6}
\end{equation*}
$$

Next, we will verify that

$$
y \in P \cap \partial \Gamma_{R}, \theta \geq 1 \Rightarrow A y \neq \theta y .
$$

Indeed, if not, there exist $y_{0} \in P \cap \partial \Gamma_{R}$ and $\theta_{0} \geq 1$ such that $A y_{0}=\theta_{0} y_{0}$, then if $t \in[0, T]$, we have

$$
\begin{aligned}
\theta_{0} y_{0}(t) & =\int_{0}^{T} D(t, s) g(s) f\left(y_{0}(s-\psi(s))\right) d s \\
& \leq \int_{0}^{T} D(t, s) g(s)\left(\mu+a y_{0}^{\alpha^{*}}\right) d s \\
& \leq\left(\mu+a y_{0}^{\alpha^{*}}\right) K_{2} \int_{0}^{T} g(s) d s
\end{aligned}
$$

Therefore, $\theta_{0} R=\theta_{0}\left\|y_{0}\right\| \leq\left(\mu+a y_{0}^{\alpha^{*}}\right) K_{2} \int_{0}^{T} g(s) d s$. That is to say,

$$
\theta_{0} \leq\left(\frac{\mu}{R}+\frac{a}{R^{1-\alpha^{*}}}\right) M \int_{0}^{T} g(s) d s<1,
$$

which is a conflict to $\theta_{0} \geq 1$.
In light of Lemma 4.1, there is a fixed point of A in $P \cap\left(\Gamma_{R} \backslash \bar{\Gamma}_{r}\right)$.

5. Conclusions

This study sets out to verify the uniqueness and existence of positive periodic solutions for Eq (1.1). It contributes to our solving of other mathematical problems and practical problems. Our study shows that using the theory of Hilbert's metric to prove the uniqueness of positive periodic solution for Eq (1.1), as well as employing the fixed point theorem in a cone to prove the existence of positive periodic solution for Eq (1.4).

We employ the theory of Hilbert's metric to prove the uniqueness of the positive periodic solution for Eq (1.4) when $f(y(t-\psi(t)))=y^{q}(t-\psi(t))$. When $0<q<1, q=-1$ and $-1<q<0$, the uniqueness results are verified based on the theory of Hilbert's metric. The major limitation of this study is that it is difficult to directly verify the uniqueness of the positive periodic solution for Eq (1.4) by applying the theory of Hilbert's metric.

6. Two examples

This section illustrates our conclusions in Section 3 with two examples.
Example 6.1. Suppose that X, P, P°, and S have the same meanings with Section 3, we think about the equation

$$
\begin{equation*}
v^{\prime}(t)=-\frac{1}{\pi} v(t)+\sin ^{2} t \cdot v^{\frac{1}{3}}(t-\pi / 1000), t \in[0,1] . \tag{6.1}
\end{equation*}
$$

Then Eq (6.1) has a unique positive periodic solution.
Proof. In this example, $a(t)=\frac{1}{\pi}, h(t)=\sin ^{2} t, \psi(t)=\pi / 1000$, and $q=\frac{1}{3}$.
As we all know, Eq (6.1) has a unique solution if and only if the equation

$$
\begin{equation*}
A v(t)=v(t)=\int_{0}^{1} D(t, s) \sin ^{2} t \cdot v^{\frac{1}{3}}(s-\pi / 1000) d s \tag{6.2}
\end{equation*}
$$

has a fixed point, where

$$
D(t, s)=\frac{e^{\frac{s-t}{\pi}}}{e^{T}-1}, s \in[0,1] .
$$

It is easy to see that A is an increasing operator which is positive homogeneous of degree $\frac{1}{3}$ in P°. Moreover, the norm is monotonic with respect to P.

In a word, A has a unique fixed point in P°, which shows Eq (6.1) has a unique positive periodic solution.

Example 6.2. We examine the following equation

$$
\begin{equation*}
u^{\prime}(t)=\left(\cos ^{2} t\right) u(t)+u^{-\frac{1}{2}}(t-\sin t), t \in[0, T] . \tag{6.3}
\end{equation*}
$$

Then Eq (6.3) has one and only one positive periodic solution.

Proof. In this equation, $a(t)=\cos ^{2} t, h(t)=1, \psi(t)=-\sin t$, and $q=-\frac{1}{2}$.
We think about

$$
\begin{equation*}
A u(t)=\int_{0}^{T} D(t, s) u^{-\frac{1}{2}}(s-\sin s) d s=u(t) \tag{6.4}
\end{equation*}
$$

where $D(t, s)=\frac{e^{\int_{s}^{t} \cos ^{2} u d u}}{e^{\int_{0}^{T} \cos ^{2} u d u}-1}, s \in[0, T]$.
Next, we will verify that there is a fixed point of Eq (6.4).
Clearly, A is a decreasing operator and positive homogeneous of degree $-\frac{1}{2}$ in P°. What's more, the norm is monotonic with respect to P°.

As a result, Eq (6.3) has a unique solution in P°.

Conflict of interest

The authors declare no conflict of interest.

References

1. M. C. Mackey, L. Glass, Oscillation theory of differential equations with deviating arguments, Dekker, New York, 1987.
2. Y. Kuang, Delay differential equations: With applications in population dynamics, Boston: Academic Press, 1993.
3. B. S. Lalli, B. G. Zhang, On a periodic delay population model, Quart. Appl. Math., 52 (1994), 35-42. https://doi.org/10.1090/qam/1262316
4. S. H. Saker, S. Agarwal, Oscillation and global attractivity in a periodic Nicholson's blowflies model, Math. Comput. Model., 35 (2002), 719-731. http://dx.doi.org/10.1016/S0895-7177(02)00043-2
5. S. N. Chow, Remarks on one dimensional delay-differential equations, J. Math. Anal. Appl., 41 (1973), 426-429. http://dx.doi.org/10.1016/0022-247X(73)90217-5
6. H. I. Freedman, J. Wu, Periodic solutions of single-species models with periodic delay, SIAM J. Math. Anal., 23 (1992), 689-701. http://dx.doi.org/10.1137/0523035
7. Y. Kuang, H. L. Smith, Periodic solutions of differential delay equations with threshold-type delays, oscillations and dynamics in delay equations, Contemp. Math., 129 (1992), 153-176. http://dx.doi.org/10.1090/conm/129/1174140
8. Y. H. Fan, W. T. Li, L. L. Wang, Periodic solutions of delayed ratio-dependent predator-prey models with monotonic or nonmonotonic functional response, Nonlinear Anal., 129 (1992), 153-176. https://doi.org/10.1016/S1468-1218(03)00036-1
9. D. Q. Jiang, J. J. Wei, B. Zhang, Positive periodic solutions of functional differential equations and population models, Electron. J. Differ. Eq., 71 (2002), 1-13.
10. L. L. Wang, W. T. Li, Periodic solutions and permanence for a delayed nonautonomous ratiodependent predator-prey model with Holling type functional response, J. Comput. Appl. Math., 162 (2004), 341-357. http://dx.doi.org/10.1016/j.cam.2003.06.005
11. Y. S. Liu, Periodic boundary value problems for first order functional differential equations with impulse, J. Comput. Appl. Math., 223 (2009), 27-39. http://dx.doi.org/10.1016/j.cam.2007.12.015
12. J. L. Li, J. H. Shen, New comparison results for impulsive functional differential equations, Appl. Math. Lett., 23 (2010), 487-493. http://dx.doi.org/10.1016/j.aml.2009.12.010
13. J. R. Graef, L. J. Kong, Existence of multiple periodic solutions for first order functional differential equations, Math. Comput. Mod., 54 (2011), 2962-2968. http://dx.doi.org/10.1016/j.mcm.2011.07.018
14. X. M. Zhang, M. Q. Feng, Multi-parameter, impulsive effects and positive periodic solutions of first-order functional differential equations, Bound. Value Probl., 2015 (2015), 137. http://dx.doi.org/10.1186/s13661-015-0401-x
15. S. S. Cheng, G. Zhang, Existence of positive periodic solutions for non-autonomous functional differential equations, Electron. J. Differ. Eq., 59 (2001), 1-8. http://dx.doi.org/10.1111/14680262.00185
16. H. Y. Wang, Positive periodic solutions of functional differential equations, J. Differential Equations, 202 (2004), 354-366. http://dx.doi.org/10.1016/j.jde.2004.02.018
17. W. X. Liu, W. T. Li, Existence and uniqueness of positive periodic solutions of functional differential equations, J. Math. Anal. Appl., 293 (2004), 28-39. http://dx.doi.org/10.1016/j.jmaa.2003.12.012
18. D. Hilbert, Ueber die gerade Linie als kürzeste Verbindung zweier Punkte, Math. Ann., 46 (1970), 91-96. http://dx.doi.org/10.1007/BF02096204
19. G. Birkhoff, Extensions of Jentzsch's theorem, Trans. Amer. Math. Soc., 85 (1957), 219-227. http://dx.doi.org/10.2307/1992971
20. F. Klein, Ueber die sogenannte nicht-euklidische geometrie, J. Math. Ann., 4 (1871), 573-625. http://dx.doi.org/10.1007/BF02100583
21. P. J. Bushell, The Cayley-Hilbert metric and positive operators, Linear Algebra Appl., 84 (1986), 271-280. https://doi.org/10.1016/0024-3795(86)90319-8
22. M. J. Huang, C. Y. Huang, T. M. Tsai, Applications of Hilbert's projective metric to a class of positive nonlinear operators, Linear Algebra Appl., 413 (2006), 202-211. http://dx.doi.org/10.1016/j.laa.2005.08.024
23. K. Koufany, Application of Hilbert's projective metric on symmetric cones, Acta Math. Sin., 22 (2006), 1467-1472. http://dx.doi.org/10.1007/s10114-005-0755-6
24. D. J. Guo, V. Lakshmikantham, Nonlinear problems in abstract cones, New York: Academic Press, 1988. https://doi.org/10.1016/C2013-0-10750-7
25. P. J. Bushell, Hilbert's metric and positive contraction mappings in a Banach space, Arch. Ration. Mech. Anal., 52 (1973), 330-338. http://dx.doi.org/10.1007/BF00247467
26. P. J. Bushell, On a class of Volterra and Fredholm nonlinear integral equations, Math. Proc. Camb. Phil. Soc., 79 (1976), 329-335. http://dx.doi.org/10.1017/s0305004100052324
27. H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Review, 18 (1976), 620-709. http://dx.doi.org/10.1137/1018114
28. A. J. B. Potter, Existence theorem for a non-linear integral equation, J. London Math. Soc., 1 (1975), 7-10. http://dx.doi.org/10.1112/jlms/s2-11.1.7
29. A. Meir, E. B. Keller, A theorem on contraction mappings, J. Math. Anal. Appl., 28 (1969), 326329. http://dx.doi.org/10.1016/0022-247X(69)90031-6

AIMS Press
© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

