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Abstract: In light of the COVID-19 pandemic, many patients have suffered from Acute Respiratory
Distress Syndrome (ARDS) in Intensive Care Units (ICUs) around the world. In the medical field, it
is known that the so-called artificial ventilation device, which has become the mainstay of treatment
of such syndrome, decreases mortality in critically ill COVID-19 patients. Due to the high reliability
of this device, there is an emergency need to follow up the progress made on designing a robust
controller for improving its performance. From this perspective, this work introduces different control
design schemes for obtaining an optimal Fractional-order PID controller (or simply PIρDµ-controller)
of the Artificial Ventilation (AV) system through two optimization algorithms: the Bacteria Foraging
Optimization (BFO) and the Particle Swarm Optimization (PSO) algorithms. The realization of the
controller is accomplished using four approximations: Oustaloup’s approximation, the Continued
Fractional Expansion (CFE) approximation and the 1st- and 2nd-order El-Khazali approximations.
The validation of the controller design and the AV system behavior are verified via numerical
simulation in order to demonstrate the effectiveness and the potency of all proposed schemes.
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1. Introduction

Nowadays, all hospitals around the world have confronted a huge surge of COVID-19 patients that
require emergency health-care and services. This matter, however, has caused an enormous pressure
on the available resources in many hospitals, especially with limited resources [1]. Meanwhile,
worldwide knowledge and expertise have rapidly developed new and innovative ideas to reduce the
spread of COVID-19 and treat infected patients. Acute Respiratory Distress Syndrome (ARDS) is one
of the likely symptoms of coronavirus patients that can possibly cause death [2]. This intractable
symptom can be overcome using one of the significant medical devices called an Artificial
Ventilator (AV). In general, such a device is put forward to help individuals to regain healthy
breathing when normal breathing is not possible. The principle of its operation is based on
introducing oxygen into the lungs and withdrawing extra carbon dioxide from the body. This would
enhance the gas exchange rate and hence provide comfortable breathing of sufferers. In view of
technological advancement and continual modernization in introducing some technical procedures
associated with control theory for medical devices, an AV system is one of these typical devices (see,
e.g., [3–8]). Hence, for complementing this work, this paper proposes several optimal
proportional-integral-derivative fractional-order controllers (or simply PIρDµ-controllers), where
0 < ρ < 1 and 0 < µ < 1 represent the orders of the integral and the differential parts of the controller,
respectively. This is for the purpose of developing dynamic stabilization capabilities of the
Volume-Controlled Artificial Ventilation (VCAV) system, see Figure 1.

Figure 1. Modern high class artificial ventilator needed by most COVID-19 patients in ICU.

It is known that the optimized PIρDµ-controller has better performance than the traditional PID
controller. As is known to all, it can offer more degrees of freedom by adding two parameters to
the construction of the traditional one, as was reported in numerous references. For instance, it was
demonstrated in [9] that one can obtain better simulation results with the use of the PIρDµ-controller
than with the integer-order PID controllers when we deal with some time-delay systems. In addition,
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the same result was presented in [10], when the authors designed a multivariable decoupling PIρDµ-
controller for variable air volume systems.

In this work, all proposed controllers have been optimally designed by carrying out two
optimization techniques, namely, Particle Swarm Optimization (PSO) [11] and Bacteria Foraging
Optimization (BFO) [12], for the purpose of fulfilling the high performance of the VCAV system. In
particular, the key role of these two techniques is minimizing the objective function’s value in light of
specific constraints related to time or frequency domain, such as the system’s rise time, overshoot and
settling time. These constraints have a major task in quantifying the robustness of the controlled
system. It is entirely normal that, once the two algorithms generate successfully the five optimal
parameters (κp, κi, κd, ρ and µ) of the PIρDµ-controller, the focus would be oriented towards the needs
of approximating the so-called fractional-order Laplacian operator sρ and/or sµ (or simply s±γ, where
γ = {ρ, µ} and 0 < γ < 1). Such approximation would be in the form of a finite integer-order rational
transfer function due to the arbitrariness of sγ in its original form [13–18]. Actually, this new
analytical function of sγ, which permits one to design and analyze the system without a need to
address some hard time-domain compositions, can be typically derived by applying multiple
approximations, like Oustaloup’s approximation [19, 20], the Continued Fraction
Expansion (CFE) [19, 21] approximation and more recently the 1st- and 2nd-order El-Khazali
approximations [22, 23]. In this work, only these four approximations will be used in order to provide
the operators s±γ with their corresponding transfer functions. Thus, we intend to tune eight
PIρDµ-BFO/PSO controllers by generating them through implementing the two aforesaid
optimization algorithms. Numerical simulations of these eight controllers provide sufficient
information to adopt the best performance of the controlled AV system, such as settling time, minimal
overshoot and least rise time.

The rest of the paper is arranged as follows: An overview of the fractional-order linear
time-invariant system is presented in the next section, followed by presenting some basic concepts of
designing PIρDµ-controllers in Section 2. Four approximations of finite-order rational transfer
functions of the fractional-order integro-differential Laplacian operators are outlined in Section 3,
while the final section includes the main results and all numerical outcomes of the proposed design
methods.

2. Fractional-order linear time-invariant systems

Fundamentally, the elementary principles of fractional calculus are typically utilized as a tool to
transmit a class of control systems called the integer-order linear-time invariant (LTI) system into its
fractional-order version, which is called the fractional-order LTI system (or simply FoLTI system) [24,
25]. In light of some manifestations presented in [24,26], it has been confirmed that the FoLTI systems
exceed the other integer-order counterparts by virtue of their flexibility in taking into account more
additional parameters. In general, a FoLTI system can be expressed by the following fractional-order
differential equation [24, 27]:

pnDδny(t)+pn−1Dδn−1y(t)+...+p1Dδ1y(t)+p0Dδ0y(t) = qmDνmu(t)+qm−1Dνm−1u(t)+...+q1Dν1u(t)+q0Dν0u(t),
(2.1)

where y(t) and u(t) are two variables over the time t that indicate the control output and input of the
system, respectively, and where D{δi,νk} represents the Caputo fractional differential operator of orders
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δi, i = 1, 2, 3, ..., n, and νk, k = 1, 2, 3, ...,m, such that n,m ∈ N.
Modeling system (2.1) can be accomplished by replacing s±γ by finite-order rational transfer

functions, where 0 < γ < 1. This would permit one to design and analyze the controlled system with
finite-order controllers. The numerical method that generates such an approximate transfer function
determines the bounds on the order of the controller. In a similar context, the frequency response of
the LTI system can be represented by a transfer function which is the ratio of the Laplace transform of
the system’s output to the Laplace transform of its input for zero initial conditions [27], i.e.,

T (s) =
Y(s)
U(s)

=
qmsνm + qm−1sνm−1 + ... + q1sν1 + q0sν0

pnsδn + pn−1sδn−1 + ... + p1sδ1 + p0sδ0
, (2.2)

where Y(s) = L {y(t)}, U(s) = L {u(t)} are the Laplace transforms of y(t) and u(t), respectively.

3. Design of PIρDµ controllers

The principal structure of the PIρDµ-controller was proposed by Podlubny et al. [28]. It was shown
that the PIρDµ-controller outperforms the traditional PID-controller. From this vantage point, many
real-life technical applications have been improved by applying this controller. The structure of this
controller is based upon appending two further parameters (ρ and µ) to the primary
parameters (κp, κi, κd) of the traditional PID-controller. Those two additional parameters would offer
additional degrees of freedom in the controller algorithms. Nevertheless, the PIρDµ-controller is
definitely inferred from the following fractional-order integro-differential equation [24, 28]:

u(t) = κpe(t) + κiIρe(t) + κdDµe(t), (3.1)

where e(t) is the error signal, Dµ is the Caputo operator of order µ, and Iρ is the Riemann-Liouville
operator of order ρ. The transfer function of the PIρDµ-controller is given by

C(s) =
U(s)
E(s)

= κp + κis−ρ + κd sµ, (3.2)

where E(s) = L {e(t)}.
The subsequent mission concentrates on using the PIρDµ-controller with one of the most

significant industrial systems during this coronavirus time: the AV system. The key purpose of
implementing such a controller is to further improve the process control of the VCAV system by
enhancing its dynamic performance. This demands implementing a robust optimization algorithm to
enhance the system’s step response by means of optimally designing the five parameters of the
PIρDµ-controller. For this purpose, the BFO and PSO algorithms will be applied to determine the
optimum values of these parameters through different approximations of s±γ that are encountered
in (3.2), where γ = {ρ, µ}, 0 < γ < 1. It is necessary to establish the main objective function of the
optimization algorithms. Notice that there are multiple standard objective functions that could be
engaged for tuning the best parameters for the PIρDµ-controller, like the Integral Absolute
Error (IAE), Integral Time Square Error (ITSE), Integral Time-Absolute Error (ITAE) and Integral
Square Error (ISE). For instance, minimizing any objective function value is the key goal of the
chosen optimization algorithm with the aim of accomplishing the best values of the PIρDµ-controller.
The motivation of using the PSO and BFO algorithms comes back to their simple concepts, easy
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implementations, powerful abilities to control parameters and computational efficiencies when
compared with other mathematical algorithms and other heuristic optimization techniques [29].
Nevertheless, to get a full overview about the BFO and PSO algorithms, one may consult [27, 30–34].
The design procedure of the PIρDµ-controller through the BFO and the PSO algorithms is described
by the block diagram shown in Figure 2.

Figure 2. Block diagram of BFO/PSO running to tune the PIρDµ-controller.

To obtain the best parameters of the PIρDµ-controller, an objective function is established based on
four terms to be minimized: the rise time, steady-state error, peak overshoot and the settling time of
the controlled system. It takes the following form [32, 35]:

J = (1 − e−β)(Mp + ess) + e−β(Ts − Tr), (3.3)

where ess is the steady state error, Ts is the settling time, Tr is the rise time, Mp is the peak overshoot
and β is a scaling factor. It is relevant to note that although the scaling factor β is typically chosen by
a designer, it can definitely identify the roles of the four aforementioned items in the basic objective
function [32, 35]. In this work, this factor has been selected to be 0.5 for the same reasons as reported
in [32].

4. Rational approximations of fractional-order Laplacian operators

This part briefly introduces four approximations formulated as finite-order rational transfer
functions of the fractional-order integro-differential Laplacian operators, s±γ, where 0 < γ < 1. The
need to employ such approximations promptly emerges after determining the best values of the
PIρDµ-controller by applying some optimization algorithms. Those four approximations permit one
to design the target system without the need to treat some hard time-domain compositions [13, 14].

4.1. El-Khazali Approximations

El-Khazali proposed two practical approximations of 1st- and 2nd-orders, respectively. The 1st-order
approximation is represented by a rational transfer function to replace sγ, where 0 < γ < 1, and given
by [22]:

sγ =
N(s, γ)
D(s, γ)

�

sτ
ωcn

+ 1
s
ωcn

+ τ
, (4.1)

where ωcn is a corner frequency, and

τ = tan
γπ

2
+ sec

γπ

2
. (4.2)
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It is worth mentioning that the fractional-order integral Laplacian operator s−γ could be simply
found from the reciprocal of (4.1) [22]. MATLAB Code C1, to calculate (4.1), is given in Appendix A
for completeness.

In [23], a 2nd-order approximation was proposed for setting up a finite-order rational transfer
function of the operators sγ, where 0 < γ < 1. The reciprocal of such approximation yields s−γ. It
provides an exact phase response at its center frequency and can be represented by the following
modular structure [23]: ( s

ωg

)γ
=

n∏
i=1

Fi(s/ωi) =

n∏
i=1

Ni

(
s

(ωi/ωg)

)
Di

(
s

(ωi/ωg)

) , (4.3)

where ωi, i = 1, 2, ..., n, is the center frequency of each biquadratic module and ωg = n
√∏n

i=1 ωi is their
geometric mean. If the leading center frequency ω1 of the beginning section is determined, then to
detect the constant phase element, the next center frequencies of every section could be evaluated from
the following recursive equation [19]:

ωi = ω2(i−1)
x ω1, i = 2, 3, ..., n, (4.4)

where ωx is the maximum real solution of the following equation:

a0a2ηλ
4 + a1(a2 − a0)λ3 + (a2

1 − a2
2 − a2

0)ηλ2 + a1(a2 − a0)λ + a0a2η = 0, (4.5)

where η = tan γπ

4 . Every biquadratic component in (4.3) can be determined by

( s
ωg

)γ
= Fi

( s
ωi

)
=

Ni( s
ωi

)

Di( s
ωi

)
�

a0( s
ωi

)2 + a1( s
ωi

) + a2

a2( s
ωi

)2 + a1( s
ωi

) + a0
, (4.6)

where i = 1, 2, 3, ..., and 
a0 = γγ + 2γ + 1
a2 = γγ − 2γ + 1
a1 = (a2 − a0)tan

(
(2+γ)π

4

)
= −6γ tan

(
(2+γ)π

4

)
.

(4.7)

Note that (4.6) is the exclusive approximation that leads to Fi( s
ωi

) = ( s
ωi

) as γ → 1. In other words,

Fi

( s
ωi

)
=

a0( s
ωi

)2 + a0( s
ωi

)

a0( s
ωi

) + a0
=

( s
ωi

)
. (4.8)

Similarly, Code C2 in Appendix A simulates the approximation given by (4.6).

4.2. Oustaloup’s approximation

This approximation is the most widespread one among several approximations that are employed
to generate approximate finite-order rational transfer functions for the operators s±γ, where 0 < γ < 1.
The bandwidth could be defined to offer a proper adaptation to such operators by predetermining the

AIMS Mathematics Volume 8, Issue 1, 657–675.



663

frequency band. Typically, in order to obtain a finite-order approximation of sγ over the frequency
range (ωb, ωh), the following rational transfer function is implemented [36]:

sγ � K
N∏

k=−N

s + ω
′

k

s + ωk
, (4.9)

where the gain, zeros and poles can be calculated from the following states:

ωk = ωb

(ωh

ωb

) k+N+0.5(1+γ)
2N+1 (4.10a)

ω
′

k = ωb

(ωh

ωb

) k+N+0.5(1−γ)
2N+1 (4.10b)

K =
(ωh

ωb

) −γ
2

N∏
k=−N

ωk

ω
′

k

. (4.10c)

It should be pointed out that the following equation allows one to compute the unity-gain geometric
frequency ωu [36]:

ωu =
√
ωb · ωh. (4.11)

Having the form of the transfer function given in (4.9) in mind, one could observe that such a
function will be always of odd order (n = 2N + 1). Anyhow, Code C3, given in Appendix A, illustrates
suitable MATLAB code for calculating a finite-order rational transfer function corresponding to s±γ

using Oustaloup’s approximation, where 0 < γ < 1.

4.3. The CFE approximation

This scheme is regarded as the principal mathematical method for offering approximate rational
transfer functions for s±γ , where 0 < γ < 1. This approximation was set as follows [21]:

(1 + z)γ =
1

1 − γz
1+

(1+γ)z

2+
(1−γ)z

3− (2+γ)z

2+
(2−γ)z

5+
...+(n+γ)z

2+
(n−γ)z

2n+1+...

, (4.12)

where 0 < γ < 1, and n ∈ N. For the sake of simplification, (4.12) can be rewritten in the following
form [21]:

(1 + z)γ =
1

1−
γz
1+

(1 + γ)z
2+

(1 − γ)z
3+

(2 + γ)z
2+

(2 − γ)z
5+

(n + γ)z
2+

(n − γ)z
2n + 1+

. (4.13)

In order to find a proper finite-order approximation for sγ using (4.12), one may replace z = (sγ − 1)
in (4.12) or (4.13). This replacement step permits the nth-order approximation of such operator to be
found, about the center frequency ω0 = 1 rad/sec, in the following form [26]:

sγ �
γ0sn + γ1sn−1 + . . . + γn−1s + γn

γnsn + γn−1sn−1 + . . . + γ1s + γ0
, (4.14)

where γi ∈ (0, 1), which can be found in [37] for i = 0, 1, ..., 5. Two more observations should be
made at the end of this part. The first one is associated with the operator s−γ, which could be easily
achieved by inverting upside down the formula given in (4.14). The second one is related to computing
the finite-order rational transfer function corresponding to s±γ using the CFE approximation, which
can be illustrated by tracking the MATLAB Code C4 given in Appendix A.
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5. Optimum design for VCAV System

It is common knowledge in the biomedical engineering field that the 1st-order lumped parameter
model is the most streamlined model for the mechanics of the breathing system. In this model, the
pressure in the upper airways is typically assumed to equal zero throughout spontaneous ventilation.
The diaphragm, if it is active, may add subatmospheric pressure [38, 39]. In general, there are
commonly two actuators within many breathing systems of ventilators employed in ICU or
anesthesia. These actuators are responsible for exhaling and inhaling processes. Since the AV system
is just one of those breathing systems, its major components consist of these two actuators. In many
circumstances, the exhaling actuator is actuated by a Positive End Expiratory Pressure (PEEP) valve,
whereas the inhalator actuator, on the other hand, can be actuated by a piston drive mechanism. Also,
the inhalator actuator system is linked with piston driven and lung mechanisms [38, 39]. The overall
system could be modeled by a 3rd-order differential equation by taking into account the linear friction
and the electrical time constant of the motor (see [38, 39]). Through such system, the two input
variables Tl and Va, which respectively indicate the load torque and the applied motor voltage, are fed
back to the subsystem of the lung mechanics. In particular, in view of possible estimations for all
required parameters of the VCAV system, an open-loop transfer function of this system has been
recently reported in [38] as follows:

G(s) =
Y(s)
Vi(s)

=
14.471

s3 + 76.43s2 + 109.76s + 0.129
, (5.1)

where Y(s) = L {y(t)} and Vi(s) = L {vi(t)} are respectively the Laplace transforms of the output
variable, y(t), which indicates the piston position, and the input variable of the system, vi(t), which
indicates the voltage source of the motor.

The key target of this work is to enhance the dynamic behavior of the VCAV system by considering
the transfer function given in (5.1). However, to show the efficiency of all feedback tuning schemes
of PIρDµ-controllers, the objective function given in (3.3) is minimized by running the BFO and PSO
algorithms, which take into account the four approximations of s±γ in Section 3. The maximum value
of iterations and the population size in both algorithms have been taken as 100 and 20, respectively.
The optimum parameters of the PIρDµ-controllers for β = 0.5 and β = 0.9, which are used to generate
the corresponding approximation schemes, are given in Tables 1 and 2, respectively.

Table 1. Tuning results of the PIρDµ-controllers using the PSO and the BFO algorithms for
β = 0.5.

Algorithm Type of approximation κp κi κd ρ µ

PSO

1st-order El-Khazali 31.4119 0.54000 25.4162 0.31300 0.90600
2nd-order El-Khazali 41.0000 15.4404 45.0000 0.09000 0.91100
Oustaloup 59.0000 0.76000 61.0000 0.82100 0.92503
CFE 0.16000 45.5900 51.0000 0.17700 0.86700

BFO
1st-order El-Khazali 2.71690 2.50680 7.71930 0.91510 0.57810
2nd-order El-Khazali 20.8839 12.9392 21.7497 0.86760 0.90610
Oustaloup 25.4065 18.5733 32.2031 0.54090 0.15850
CFE 2.56650 10.0268 15.2471 0.18520 0.33260

AIMS Mathematics Volume 8, Issue 1, 657–675.



665

Table 2. Tuning results of the PIρDµ-controllers using the PSO and the BFO algorithms for
β = 0.9.

Algorithm Type of approximation κp κi κd ρ µ

PSO

1st-order El-Khazali 31.6262 0.5400 25.5702 0.9030 0.9060
2nd-order El-Khazali 41.000 0.3200 45.000 0.7990 0.8557
Oustaloup 59.000 24.5393 61.0000 0.1650 0.9760
CFE 41.5691 0.3100 51.000 0.1770 0.8670

BFO
1st-order El-Khazali 4.5230 4.3728 6.7855 0.8750 0.2870
2nd-order El-Khazali 13.7804 2.0452 16.5894 0.2662 0.9468
Oustaloup 17.5025 11.2505 21.6484 0.8129 0.2091
CFE 2.2440 2.1768 8.1292 0.9151 0.5781

Remark 1. The scaling factor β is chosen to define a trade-off between the overshoot and the steady-
state error (Mp + ess) and the time difference between the settling and the rise times (Ts − Tr). For
example, for β > 0.7 more emphasis will be given to (Mp + ess) than (Ts − Tr). The impact of β
is highlighted by several numerical results of the proposed system model for β = 0.5 and β = 0.9,
reported below for completeness.

Clearly, Figures 3 and 4 show the performances of the closed-loop controlled system using both
the PSO and BFO optimization algorithms by utilizing the four different approximations of the
fractional-order operator repeated many times, coupled with assuming β = 0.5. In addition, we also
plot in Figures 5 and 6 the performances of the closed-loop controlled system using both algorithms
by assuming β = 0.9.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

 

 

PSO−PI
λ
D

δ
 via Several Approaches

Time (seconds)

A
m

p
li
tu

d
e

PSO via 1
st

−El−Khazali

PSO via 2
nd

−El−Khazali

PSO via CFE

PSO via Oustaloup

Figure 3. Step responses of the controlled system using the PSO algorithm for β = 0.5.
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Figure 4. Step responses of the controlled system using the BFO algorithm for β = 0.5.

Figure 5. Step responses of the controlled system using the PSO algorithm for β = 0.9.

Figure 6. Step responses of the controlled system using the BFO algorithm for β = 0.9.

In both optimization techniques, the size of the controllers when using El-Khazali approximation
is much less than that of the other two ones, as depicted in Tables 3 and 4. Moreover, there is a
significant improvement in the step responses when using the PSO algorithm over that of the BFO
algorithm. More precisely, one could notice that the minimum overshoot of the closed-loop VCAV
system has been achieved when the PIρDµ-controller was applying the PSO algorithm.

AIMS Mathematics Volume 8, Issue 1, 657–675.



667

Table 3. The transfer functions of the PIρDµ-controllers for β = 0.5.

Algorithm Type of approximation Controller transfer function, C(s)

PSO

1st-order El-Khazali approximation C{1st−Kh}(s) = 626.9s2+1135s+462.3
1.67s2+23.58s+13.52

2nd-order El-Khazali approximation C{2nd−Kh}(s) = 344.4s4+1705s3+2852s2+1810s+371
0.1917s4+8.814s3+28.9s2+25.83s+6.079

Oustaloup approximation COus(s) =

1.92e05s10 + 8.374e06s9 + 1.191e08s8 + 6.29e08s7 + 1.468e09s6 + 1.569e09s5

+ 7.846e08s4 + 1.793e08s3 + 1.675e07s2 + 6.184e05s + 6599
43.85s10 + 5837s9 + 1.847e05s8 + 2.14e06s7 + 9.029e06s6 + 1.54e07s5

+ 9.936e06s4 + 2.592e06s3 + 2.463e05s2 + 8567s + 70.81

The CFE approximation CCFE(s) =

1.637e04s10 + 5.268e05s9 + 5.684e06s8 + 2.671e07s7 + 6.385e07s6 + 8.343e07s5

+ 6.143e07s4 + 2.489e07s3 + 5.182e06s2 + 4.744e05s + 1.467e04
2.254s10 + 543.4s9 + 1.462e04s8 + 1.312e05s7 + 5.014e05s6 + 9.102e05s5

+ 8.165e05s4 + 3.595e05s3 + 7.334e04s2 + 6038s + 142

BFO

1st-order El-Khazali approximation C{1st−Kh}(s) = 379.1s2+303.8s+124.7
14.97s2+44.52s+2.907

2nd-order El-Khazali approximation C
{2nd−Kh}(s) = 301.3s4+1018s3+1314s2+772.4s+186.4

0.3702s4+15.65s3+31.49s2+16.57s+0.555

Oustaloup approximation COus(s) =

1132s10 + 8.422e04s9 + 1.968e06s8 + 1.638e07s7 + 5.564e07s6 + 7.554e07s5

+ 4.426e07s4 + 1.068e07s3 + 1.106e06s2 + 4.292e04s + 550.1
12.07s10 + 1008s9 + 2.53e04s8 + 2.234e05s7 + 7.698e05s6 + 1.02e06s5

+ 5.413e05s4 + 1.104e05s3 + 8797s2 + 246.4s + 2.075

The CFE approximation CCFE(s) =

184.2s10 + 7443s9 + 1.039e05s8 + 5.885e05s7 + 1.588e06s6 + 2.15e06s5

+ 1.499e06s4 + 5.243e05s3 + 8.724e04s2 + 5874s + 137.9
2.342s10 + 141.1s9 + 2552s8 + 1.726e04s7 + 5.29e04s6 + 7.875e04s5

+ 5.864e04s4 + 2.135e04s3 + 3575s2 + 232.4s + 4.71

Table 4. The transfer functions of the PIρDµ-controllers for β = 0.9.

Algorithm Type of approximation Controller transfer function, C(s)

PSO

1st-order El-Khazali approximation C{1st−Kh}(s) = 4944s2+6329s+548.8
13.1s2+178.1s+13.52

2nd-order El-Khazali approximation C{2nd−Kh}(s) = 577.3s4+2012s3+2207s2+778.2s+40.67
0.5624s4+15.49s3+31.31s2+16.83s+0.8531

Oustaloup approximation COus(s) =

1.529e06s10 + 7.401e08s9 + 9.569e10s8 + 1.819e12s7 + 1.058e13s6 + 1.81e13s5

+ 1.14e13s4 + 1.881e12s3 + 8.537e10s2 + 5.842e08s + 1.088e06
3.126s10 + 3.135e04s9 + 1.393e07s8 + 1.702e09s7 + 2.953e10s6 + 1.378e11s5

+ 1.149e11s4 + 1.94e10s3 + 7.952e08s2 + 4.859e06s + 8017

The CFE approximation CCFE(s) =

9.315e04s10 + 2.947e06s9 + 3.076e07s8 + 1.401e08s7 + 3.212e08s6 + 3.971e08s5

+ 2.709e08s4 + 9.988e07s3 + 1.848e07s2 + 1.468e06s + 3.426e04
2.254s10 + 2084s9 + 6.151e04s8 + 5.866e05s7 + 2.343e06s6 + 4.418e06s5

+ 4.103e06s4 + 1.87e06s3 + 3.946e05s2 + 3.376e04s + 809.4

BFO

1st-order El-Khazali approximation C{1st−Kh}(s) = 134.8s2+187.8s+66.78
10.15s2+13.45s+1.226

2nd-order El-Khazali approximation C
{2nd−Kh}(s) = 144.4s4+613.8s3+875.3s2+475.1s+80.65

0.1251s4+9.486s3+29.32s2+24.11s+4.499

Oustaloup approximation COus(s) =

4.56e04s10 + 6.061e07s9 + 6.876e09s8 + 1.95e11s7 + 1.091e12s6 + 1.394e12s5

+ 6.238e11s4 + 7.936e10s3 + 2.854e09s2 + 2.559e07s + 2.134e04
274.6s10 + 6.801e05s9 + 9.577e07s8 + 3.703e09s7 + 2.237e10s6 + 3.132e10s5

+ 9.348e09s4 + 4.765e08s3 + 6.737e06s2 + 1.324e04s + 6.861

The CFE approximation CCFE(s) =

3.669e04s10 + 9.368e05s9 + 8.288e06s8 + 3.18e07s7 + 6.075e07s6 + 6.215e07s5

+ 3.635e07s4 + 1.26e07s3 + 2.545e06s2 + 2.556e05s + 9712
262.6s10 + 2.016e04s9 + 3.028e05s8 + 1.752e06s7 + 4.556e06s6 + 5.762e06s5

+ 3.585e06s4 + 1.068e06s3 + 1.365e05s2 + 6128s + 16.91

Tables 5 and 6, however, list the performance results of the unit-step responses of the controlled
system using the four approximations for β = 0.5 and β = 0.9, respectively. It can be seen from Table 5
that the three approximations, i.e., Oustaloup, CFE, and the 2nd-order El-Khazali approximations, gave
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the same performance. However, the 2nd-order El-Khazali approximation yields a 4th-order PIρDµ,
while the other two yield 10th-order controllers. This is a significant reduction in the size of controller.
A closer look at the rise time, settling time and the maximum overshoot justifies the use of the El-
Khazali 2nd-order approximation. Similarly, when using the BFO optimization algorithm, the 2nd-order
El-Khazali approximation was superior to the other three approximations. Therefore, both remarks
satisfy the use of the biquadratic approximation described by Eqs (4.3) to (4.8).

Table 5. Performance of the controlled system step response using the PSO and the BFO
algorithms for β = 0.5.

Step Response HPS O
{1st−Kh}

HPS O
{2nd−Kh}

HPS O
CFE HPS O

Ous HBFO
{1st−Kh}

HBFO
{2nd−Kh}

HBFO
CFE HBFO

Ous

Rise Time 0.2829 0.1858 0.2333 0.1516 1.3512 0.4828 0.5938 0.3225

Settling Time 0.4526 0.3260 0.3783 0.2514 14.6911 5.2044 3.3122 4.7305

Settling Min. 0.9001 0.9010 0.9012 0.9008 0.9017 0.9000 0.9079 0.7189

Settling Max. 0.9997 0.9998 0.9999 0.9994 1.1660 1.0741 1.2092 1.5552

Overshoot 5.2705e-04 0.0000 0.0000 0.0000 16.6236 7.4173 20.9616 55.5270

Peak 0.9997 0.9998 0.9999 0.9994 1.1660 1.0741 1.2092 1.5552

Peak Time 0.5622 0.5414 0.5430 0.3460 4.9523 2.2783 1.3415 0.8683

Table 6. Performance of the controlled system step response using the PSO and the BFO
algorithms for β = 0.9.

Step Response HPS O
{1st−Kh}

HPS O
{2nd−Kh}

HPS O
CFE HPS O

Ous HBFO
{1st−Kh}

HBFO
{2nd−Kh}

HBFO
CFE HBFO

Ous

Rise Time 0.2817 0.1854 0.2200 0.1387 0.9100 0.9252 1.6685 0.4199

Settling Time 0.4506 0.3016 0.3499 0.2433 5.4000 2.5069 18.9348 3.9376

Settling Min. 0.9018 0.9005 0.9022 0.9014 0.9075 0.8997 0.9006 0.8633

Settling Max. 0.9998 0.9998 0.9996 0.9997 1.2930 0.9982 1.1533 1.4392

Overshoot 2.4138e-004 0.0000 0.0000 0.0000 29.3215 0.0000 15.3356 43.9248

Peak 0.9998 0.9998 0.9996 0.9997 1.2930 0.9982 1.1533 1.4392

Peak Time 0.5620 0.3872 0.4728 0.3791 2.3246 4.3336 6.2231 1.1085

Figures 7 and 8 shows the control signals of the controlled system using the PSO and the BFO
optimization algorithms for β = 0.5, while Figures 9 and 10 show the control signals for β = 0.9. In
addition, Table 7 shows the values of the objective function (3.3) using the two optimization algorithms
for β = 0.5 and β = 0.9. One concludes that the PSO algorithm yields a better result than that of the
BFO algorithm. Even though the initial magnitude of the control signal of the PSO algorithm is larger
than that of the BFO algorithm, the value of the objective function J described by (3.3) is smaller
when using the PSO algorithm. This is also verified by the step responses of the controlled systems,
as shown by Figures 5 and 6. It is clear that the 2nd-order El-Khazali approximation yields a smaller
controller signal than the other approximations and provides a competitive steady-state error compared
to its other counterparts in both algorithms and for both β = 0.5 and β = 0.9.
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Figure 7. PIρDµ-control signal using PSO algorithm for β = 0.5.

Figure 8. PIρDµ-control signal using BFO algorithm for β = 0.5.

Figure 9. PIρDµ-control signal using PSO algorithm for β = 0.9.
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Figure 10. PIρDµ-control signal using BFO algorithm for β = 0.9.

Table 7. The value of the objective function (3.3) using PSO and BFO algorithms for β = 0.5
and β = 0.9.

Algorithm Type of approximation When β = 0.5 When β = 0.9

PSO

1st-order El-Khazali approximation 0.2190 0.2199

2nd-order El-Khazali approximation 0.1247 0.1662

Oustaloup approximation 0.1131 0.0949

The CFE approximation 0.1336 0.1732

BFO

1st-order El-Khazali approximation 0.8197 1.403

2nd-order El-Khazali approximation 0.3074 0.4393

Oustaloup approximation 0.7388 0.8126

The CFE approximation 0.6341 0.9395

6. Conclusions

A new PIρDµ-controller is developed to control and improve the behavior of the
Volume-Controlled Artificial Ventilation (VCAV) system. Two optimization algorithms, Bacteria
Foraging Optimization (BFO) and Particle Swarm Optimization (PSO), are successfully used in
conjunction with the use of four different approximations of the fractional-order integro-differential
Laplacian operators, s±γ, where 0 < γ < 1. These approximations are the 1st- and the 2nd-order
El-Khazali approximations, Oustaloup’s approximation and the Continued Fractional
Expansion (CFE) approximation. The PSO algorithm yields a better performance compared to that of
the BFO algorithm, especially when using the 2nd-order El-Khazali approximations. It provided a
significant improvement in terms of a smaller controller size, i.e., a 4th-order one, and in terms of the
overall performance of the controlled system step response.
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Appendix A

Code C1: MATLAB code for calculating the 1st-order El-Khazali approximation for s±γ, where
0 < γ < 1.

1 % This program is written to find the first-order El-Khazali's approximation for
2 %fractional-order integrators and differentiators.
3 clear all
4 gamma=input ('Enter the fractional-order value= ')
5 Wcn= input ('Enter the center frequency (in rad/s)= ')
6 tau = tan(gamma*pi/2)+sec(gamma*pi/2);
7 N= [tau Wcn]; D=[1 tau*Wcn];
8 G1 diff = tf(N,D) % Differentiator
9 G1 Int = 1/G1 diff % Integrator

Code C2: MATLAB code for calculating the 2nd-order El-Khazali approximation for s±γ, where
0 < γ < 1.

1 % This program is written to find the second-order El-Khazali's approximation for
2 % fractional-order integrators and differentiators.
3 clear all
4 gamma=input ('Enter the fractional-order value= ')
5 Wcn= input ('Enter the center frequency (in rad/s)= ')
6 co=gammaˆgamma+2*gamma+1;
7 c2=gammaˆgamma-2*gamma+1;
8 c1=(co-c2)*tan((2-gamma)*pi/4);
9 N2=[co c1*Wcn c2*Wcnˆ2];D2 =[c2 c1*Wcn co*Wcnˆ2 ];

10 G2 diff =tf(N2,D2) % Differentiator
11 G2 int = 1/G2 diff % Integrator

Code C3: MATLAB code for calculating the Oustaloup approximation for s±γ, where 0 < γ < 1.

1 % This program is written to find the Oustaloup's approximation for fractional-order
2 %integrators and differentiators.
3 clear all
4 close all
5 gamma=input ('Enter the fractional-order value= ')
6 N=input ('Enter the value of N= ')
7 w L=1e-1;
8 w H=1e1;
9 w L=w L*0.1;w H=w H*10;

10 mu=w H/w L;
11 w u=sqrt(w H*w L);
12 alpha=(mu)ˆ(gamma/(2*N+1));
13 eta=(mu)ˆ((1-gamma)/(2*N+1));
14 k=-N:N;
15 w kp=(mu).ˆ((k+N+0.5-0.5*gamma)/(2*N+1))*w L;
16 w k=(mu).ˆ((k+N+0.5+0.5*gamma)/(2*N+1))*w L;
17 D N K=(w u/w H)ˆgamma*prod(w k)/prod(w kp);
18 D N P=-w k;D N Z=-w kp;
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19 [num,den]=zp2tf(D N Z',D N P',D N K);
20 G3 diff=tf(num,den) % Differentiator
21 G3 Int = 1/G3 diff % Integrator

Code C4: MATLAB code for calculating the CFE approximation for s±γ, where 0 < γ < 1.

1 % This program is written to find the CFE approximation for fractional-order integrators
2 %and differentiators.
3 clear all
4 close all
5 gamma=input ('Enter the fractional-order value= ')
6 err=10;
7 w=logspace(-3,3,300);
8 % Continued Fraction Expansion 5th-order approximation
9 a5=(-(gammaˆ5)-15*(gammaˆ4)-85*(gammaˆ3)-225*(gammaˆ2)-274*gamma-120);

10 a4=(5*(gammaˆ5)+45*(gammaˆ4)+5*(gammaˆ3)-1005*(gammaˆ2)-3250*gamma-3000);
11 a3=(-10*(gammaˆ5)-30*(gammaˆ4)+410*(gammaˆ3)+1230*(gammaˆ2)-4000*gamma-12000);
12 a2=(10*(gammaˆ5)-30*(gammaˆ4)-410*(gammaˆ3)+1230*(gammaˆ2)+4000*gamma-12000);
13 a1=(-5*(gammaˆ5)+45*(gammaˆ4)-5*(gammaˆ3)-1005*(gammaˆ2)+3250*gamma-3000);
14 ao=((gammaˆ5)-15*(gammaˆ4)+85*(gammaˆ3)-225*(gammaˆ2)+274*gamma-120);
15 b5=((gammaˆ5)-15*(gammaˆ4)+85*(gammaˆ3)-225*(gammaˆ2)+274*gamma-120);
16 b4=(-5*(gammaˆ5)+45*(gammaˆ4)-5*(gammaˆ3)-1005*(gammaˆ2)+3250*gamma-3000);
17 b3=(10*(gammaˆ5)-30*(gammaˆ4)-410*(gammaˆ3)+1230*(gammaˆ2)+4000*gamma-12000);
18 b2=(-10*(gammaˆ5)-30*(gammaˆ4)+410*(gammaˆ3)+1230*(gammaˆ2)-4000*gamma-12000);
19 b1=(5*(gammaˆ5)+45*(gammaˆ4)+5*(gammaˆ3)-1005*(gammaˆ2)-3250*gamma-3000);
20 bo=(-(gammaˆ5)-15*(gammaˆ4)-85*(gammaˆ3)-225*(gammaˆ2)-274*gamma-120);
21 num 5=[a5/b5 a4/b5 a3/b5 a2/b5 a1/b5 ao/b5];
22 den 5=[1 b4/b5 b3/b5 b2/b5 b1/b5 bo/b5];
23 G4 diff=tf(num 5, den 5) % Differentiator
24 G4 Int = 1/G4 diff % Integrator
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