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1. Introduction

The theory of fixed points has worldwide applications in distinct fields of science and
Engineering [1-3]. M. Frechet is a principal researcher in this theory who defined the notion of metric
space in 1906. Metric space methods have been employed for decades in numerous applications, for
example in internet search engines, protein classification and image classification. The best applied
fixed point result is the Banach contraction principle that has been extended by either changing the
contractive condition or by functioning on a further generalized metric spaces [4-8]. In current years,
some novel types of generalized metric spaces were presented and numerous spaces established as
hybrids of the foregoing varieties were examined such as rectangular metric space, b-metric space,
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bvs-metric space, extended b-metric space. The key in creating these spaces is to generalize or extend
the third axiom of metric space that is, its triangle property. In 1993, Czerwik [9] introduced the
notion of b-metric space which extends the metric space by enhancing the triangle equality metric
axiom by placing a constant s > 1 multiplied to the right-hand side, is one of the great applied
extensions for metric spaces. Later on, Kamran et al. [10] gave a new kind of extended H-metric
spaces by putting a function o(£,0) on the place of constant s and this function depends on the
parameters used on left-hand side of the triangle inequality. Recently, Mlaiki et al. [11] replaced the
constant s by a function o(&,0) which act separately on each term in the right-hand side of the
triangle inequality and defined controlled metric space. They established Banach contraction principle
in the background of this newly introduced space. Subsequently, Lateef [18] obtained Fisher type
fixed point result and generalized the leading result of Mlaiki et al. [11]. For more characteristics, we
assign the researchers to [12-33]. In this article, we utilize the notion of controlled metric space to
establish common fixed point theorems for rational contractive mappings dealing with some precise
control functions of two variables in the background of controlled metric space. As an outcome of our
pioneering theorems, we derive common fixed point and fixed point theorems for contractive
mappings including control functions of one variable and constants. In this way, we generalize the
main result of Lateef [18] as well as the leading theorem of Mlaiki et al. [11]. We also discuss
controlled metric spaces equipped with a graph and obtain some common fixed point results in this
newly introduced space.

2. Preliminaries

In 1993, Czerwik [9] introduced the concept of b-metric space (b-MS) in this way.

Definition 1. ( [9] )Let U be a non empty set and s > 1. A function £ : U X U — [0, co) is said to be
b-metric if following conditions hold:

(€1) €(£,0) = 0 and €(¢,0) = 0 if and only if € = o;

(€2) £(€, 0) = L(0,£);

(€£3) (&, w) < s[U(E,0) + Lo, w)];

for all ¢, 0, w € . The pair (2, £) is said to be a b-metric space (b-MS).

In 2017, Kamran et al. [10] gave the notion of extended b-metric space (EbPMS) as follows:

Definition 2. ( [10]) Let 2l be a non empty set and o : U X U — [1, 00). A function € : U X U — [0, 00)
is said to be extended b-metric if following conditions hold:

(1) €(&,0) > 0 and €(£,0) = 0 if and only if ¢ = o;
(1) €(&, 0) = L(, &);
(iii) £, 0) < 0(£, 0)U(E, w) + (o, W)];

for all £, 0, w € U, then (2, ¢) is called an extended b-metric space (EDMS).
In 2018, a contemporary extended b-metric space was initiated by Mlaiki et al. [11] which is known
as controlled metric space as follows:
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Definition 3. ( [11]) Let U be a non empty set and o : U X U — [1, 00). A function £ : U X U — [0, c0)
is said to be controlled metric if following conditions hold:

(1) €(¢,0) = 0 if and only if ¢ = ;
(i1) £, 0) = (o, 9);

(ii1) (£, 0) < o(§, w)(E, w) + 0 (0, W)l(o, W);
for all £,0,w € U, then (U, £, 0) is said to be a controlled metric space (CMS).

Example 1. Let U = {0, 1, 2}. Define the mapping £ : 2 X 2l — [0, ) by
£0,0)=¢(1,1)=€(2,2) =0

and
£0,1)=¢(1,0) =1,

£(0,2) = £(2,0) =

2

£(1,2) = £2,1) =

1
2
2
5
Define the symmetric control function o : U X U — [1, o) by

0(0,0)=0(1,1) =0(2,2) =0(0,2) =1,

5 11
o(1,2) = T o(0,1) = 1o
Then (U, £, o) is CMS.

Theorem 1. ( [11]) Let (U, o, €) be a complete CMS and ¢ : W — WU such that

Up&, po) < 1(L(£,0))

forall&,0 € U, where T € [0, 1). For & € U, take &, = p'&y. Assume that

i j i+1>Sm 1
sup hm 0 (&1, Ei2)0 (€1, En) <_
mz1 10 o (i &iv1) T

In addition, assume that lim,_,,, 07(§,,§) and lim_,,, 0(§, &) exist and are finite, then there exists a
unique point & € U such that p&* = &*.
Lateef [12] obtained the following result in a complete CMS as follows:

Theorem 2. ( [12]) Let (U, o, ) be a complete CMS and ¢ : W — W be such that

UpE, po) < T(L(E, p&) + (0, o))

forall ¢, 0 € U, where T € (0, %). For & € U, take &, = p'&y. Suppose that
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sup lim 0 (&iv15 )0 (i1, Em) < 1
mz1 2% (&, Eiv1) T
In addition, assume that lim,_,,, 07(§,, &) and lim,_,,, 0°(§, &) exist and are finite, then there exists a
unique point & € U such that p&* = &*.
Later on, Lateef [18] established Fisher type fixed point result in this way.

Theorem 3. Let (U, 0,0) be a complete CMS, ¢ : W — W and there exist T1,7, € [0,1) with T =

T + 175 < 1 such that
(&, 9160, 920)

1+ €&, 0)

5(805, XOQ) < T]f(f, Q) + 72

forall é,0 € W. For & € U, take &, = p’/&,. Suppose that

i+1>6i i+1sSm 1
sup lim 0 (&iv1, )0 (i1, Em) <2
mz1 i o (&is &iv1) T
Moreover, suppose that lim,_, .., 0(¢;,§) and lim,_, ., 07(§,&)) exist and are finite, then there exists a
unique point £ € U such that p&* = &,

3. Main results

We give our leading result in this way.

Theorem 4. Let (U, 0, ) be a complete CMS, 91,9, : W — U and there exist the mappings 11,7, :
U X U— [0, 1) such that

(1) T1(92901€,0) < 71(€, 0) and 71(€, P1920) < T1(£,0);

(i) T2(p291€,0) < 72(&,0) and T2(€, P1920) < 72(€,0);

(i) 71(§,0) + 12(€,0) < 15

(iv)
L&, 9160, 920)

1+ 4, 0)
for all £, 0 € U. For & € U, a sequence {£,} 50 1s defined as &1 = 91&, and &0 = 92&,,41 for each
J > 0. Assume that

U(9:1€, 920) < T1(£,0)0(£, 0) + T2(£, 0) ; (3.1

sup lim 0(iv1,&i2)0(Eiv1,En) < 1’ 3.2)

m>1 7% o (&, i) T

where % = 7. In addition, suppose that lim,_,,, 0(£,,€) and lim,_, ., 0°(£, £,) exist and are finite,

then there exists a unique point & € U such that p,&" N P& = &°.

Proof. Let & € U. We construct {£,} in U by &1 = 91&, and &0 = 926,41 for each j > 0. From
assumption and (3.1) we get

U&ryr1,60502) = Upi&ays 9260541)
= Tl(é:ZJ’§2j+1)€(§2]’§2j+1)

A

AIMS Mathematics Volume 8, Issue 1, 529-549.



533

This implies that

Similarly,

€(§21+2a §2j+3)
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(&, L(Ey ot R
o

T1(920162,-2,E2,41)0(&2), E241)

&y & (Er i1, En s
+12(P29162;-2:£2)+1) (fzjlfijfl(?fz(fgz 1 jzj .
J»S2)+

T1(E2j-2, E2,01)0(E2 ) Er 1) + T2(Erj2, E2j1 )0(Enju1s €2j02)

Ti(920182)-4, E2,01)0(E2), E2p01) + T2(92901E2 -4, E2j01)C(E2 415 E2)42)
T1(&E2jmts E2j01)0(E ) Er 1) + To(Erjmsy E0y11)0(Enji15 E2j42)

T1(&o, &2+ DU(E2)s E2j11) + T2, E2)0 1062 )11, E2)42)
71 (€0, 919282,-10(E2), E2j01) + T2(&0, 919262,-1)E(E2 1, E2)42)
T1(€0, E2)-1)E(E2)s E2p41) + T2(E0, E2)-1)E(E 11, E2)42)

T1(€o, EDN(Er ) E2 1) + T2(E0, EE(E2 41, E2j40)-

71(60,€1)

m)f(fzpfzﬁl)-

5(52]+1’§21+2) < (

U9262,41, 9162,42) = (918242, 9262,41)

T1(E2,425 §2,0 (€212, E2511)

U(&Erpar, 91620000 E2ph1, 91E2,41)
1+ (&0, E241)

T1(E2,42, 919262,-1)( €212, E2511)

&2, E2)03)0(Epis 0
+72(E2/425 P19262,-1) (fZlef?(;z) 262]2 1521 2
J+25 52+

T1(E2j425 E2)-1)(E2j12, E2j11) + T2(E)42, E2 - 1) E(E2 42, E2y43)
T1(&242, 919262,-3)(E242,E2541) + T2(E2y42, 919262,-3)0(62)42, &243)
T1(&2j425 §2)-3)(E2y42, E2j01) + T2(E2)42,€2,-3)C(E2 42, E243)

+72(&242,€2)41)

T1(&2,42, £0) (€242, E2p41) + T2(E2)12, E0) (€242, €2)43)
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T1(9201€2,, €0)(E2j12, E25401) + To(9291E2;, E0)0(E2)42, E2143)
T1(&2), E0)(E2y42, E2j11) + T2(&2, E0)U(E2 42, E2)43)

IAN

T1(&1,E0)(E2j12, E2p41) + T2(€1, E0)0(E2 12, €2)43)
= 110, E1)(Erjr2, Enpu1) + T2(0, EDU(E2 )12, E2)43).

IA

This implies that

71(60,&1)

U&2p2,62543) < (T{"of])

)5(52J+1, &rp40) = Tl(Er 41, E2)40)-
By pursuing in this direction, we get

f(fj’§j+l) Tf(é:j—l’ g])
Tzf(é:j—Z’ é:j—l)

e ST, &).

INIA A

Thus
&), Em1) < T, &). (3.3)

Now for all j,m € N with j < m, we get

0> &m) 0 (&), £l &) + 0(E 1, En)U(E 41, Em)

(&), E)UE ) E1) + 0(E 141, E)T(E 1, §12)E(E 15 E42)
+0 (€15 Em)T(E 12, Em)U(E 142, Em)

(&), E)lEp &) + 011, Em)T(E jr1, € 142)U(E 415 € 12)
+0 (€15 Em)O(E 12, Em)T(E 112, §143)0(E 142, € 43)

+0 (€15 Em)0 (€2, Em)T(E i3, Em)U(E 143, Em)

INIA

IA

IA

IA

m-2 i
T & lEpEr) + ) [ﬂ a(fk,fno] L GRIMUGRRY

i=j+1 \k=y+1

m—1
¥ ]_[ T(En ENEnry En)

i=j+1
which further implies that

m-2 i
UEpén) < TELENELE M+ ) [ﬂ a(fk,fm)]a(fi,§i+1>£<§i,§i+1)

i=j+1 \k=y+1

m—1
* [ [ ] §m>] T(En-1s En)En1,En)

i=j+1
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IA

m=2 i
(&), &) Tl E) + ) { [ a(fk,fn»] (& €T D, £1)

i=+1 \k=j+1

m—1
' [ [ §m>] T Enor E)T" 0G0, E1)

i=j+1

m—1 i
= 0pE)TEn E) + ) {]—[ a(fk,§m>] (& £)T 0, £1).

i=j+1 \k=+1

Thus

m—1 i

UEpén) < o€p€Tlénén + D ] ] a(fk,§m>] (€ i)l £1). (3.4)

i=j+1 \k=j+1

Let

1o
¥, = Z (l—[ (&, En) |0 (& En)T(ED, E1).

i=0 \ k=0
From (3.4), we get
UE)s &) < U0, EDIT (&), Epv1) + (W — )1 (3.5)

Since o (£, 0) > 1, and by employing the ratio test, lim,_, ., ¥, exists. Thus {¥,} is Cauchy sequence.
Lastly, letting j,m — +o0in (3.5), we get that

lim ¢(¢,,&,) = 0. (3.6)

J;m—+00

Hence, {¢,} is a Cauchy sequence in (U, £,0). As (U, £, o) is complete, so there exists £ € U such that
lim €(¢,,€%) =0, (3.7
J—+oo

thatis &, — & as j — +oo. Now, by (3.1) and assumption (iii), we have

U 918

IA

(&%, &2,42)0(E", E2)42) + T(E2jr2, P1EN(Er 12, 91€7)

= 0(&, &) UE  Erpn) + 0(Erpin, 1EN(92E0,41, P1ET)

= 0(&, &) UE  Erpn) + T (Erpin, PIENPIET, 9262,41)

TIE" E2)e DUE E2j11) }

" UE 91E)0(Eyr1,62)+2)
+T2(§: ,52]+1) 1+[(€:*’§:2]j+1) :

Tl(é‘:*,§2]+l)€(§*’§2]+l) :i

< UE 918U v1.625+2)
+T2(§ ’§2j+l) 1+€(§*,fzjj+1) .

= 0, &Ep)lE", Ey12) + T (6202, 91E7)

= 0, Ep)lE, Ey12) + T(6rp02, 91ET)

Taking j — +oo and utilizing (3.7), we get a contradiction to the fact that £(¢*, ") > 0. Thus
(&, 91E) = 0. It implies that & = p,&*. Likewise, we can prove that &* = ,&". Thus, £ is a common
fixed point of p; and g,. In due course, we prove that £&* is unique. Suppose that there exists another
point & € U such that & = & = p,&/. Tt follows from
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(&, 9160, 92€7)

(€, 928) < 1€ EHE D) + ol €)= pn

(€, ENEE, €.

Since 7,(£%,&') € [0, 1), so we have £(&*,&) = 0. Thus, we get & = &, which shows that & is
unique. O

oeg L&

Example 2. Let 2l =[0, 1]. Now we define £ : U X U — [0, c0) by

(€, 0) = € +0),
where 0 (£,0) =2 + & + o, for all £, 0 € U. Now we define ¢4, ¢, : I — U by

P1€ = g and p,& = :2;,

for £ € R. Choose 71,7, : U X U — [0, 1) by

16 +&+0 15+&+0
,0)= ——— < and ,0) = ——————
71(¢,0) a4 and 7,(£,0) a4
Then evidently,
71(£,0) + 12(6,0) < 1.
Now { ¢ 16+ ¢
Y +&+o0
= — < =
T1(9201€,0) ot T TS 1ma 71(£,0)s
and . ¢ 16+ ¢
Y t+&+o0
= — < =
T1(€, 91§20) ot T T TS 1 71(£,0)s
also, s 5
& o _15+&+0
= — < =
TZ(WZKJI‘f,Q) 46 + 1726 + 144 = 144 Tl(f’ Q)a
and 5 ¢ 154¢
Y t+&+0
= — < = .
71(£, 91920) 26 + 144 + 1726 = 144 71(£, 91920)
Take & = 0, so (3.2) is satisfied. Let &, 0 € U. Then
(4¢ +30)* _ (4& + 40)
4 , = <
(91€, $20) T i
56\2 (602
16+§+g(§+ )2+ I5+&+p0 (z) (IQ)
= T 144 o 144 1+(+0)

U, 9160, 920)
1+0&0

Thus all the assumption of Theorem 4 are satisfied and there exists £&* = 0 € U such that 9" N &* =
&

71(£, 0)U(£, §) + 12(£,0)
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By setting ¢; = ¢, = ¢ in Theorem 4, we derive the following result.

Corollary 1. Let (N, 0,¢) be a complete CMS, ¢ : U — W and there exist the mappings 7,7, :
U X U—- [0, 1) such that

@) 11(p€, 0) < 71(£,0) and 71(£, po) < T1(£,0);

(i1) T2(9¢, 0) < T2(&, 0) and 72(¢, po) < 72(£,0);

(iii) 71(&,0) + 12(&,0) < 1;

(iv)

L&, p&)t(o, po)
1+4¢&0

for all £, 0 € U. For &, € U, a sequence {£,} 50 1s generated as &,,; = &, for each j > 0. Assume that

0(&ir1, Ei2)0 (i1, Em) < 1

Upg, po) < 11(€,0)l(&, 0) + T2(£, 0)

sup lim ,
m>1 1% (&, Eiv1) T
where % = 7. Additionally, suppose that lim,_, .. 0(£,,&) and lim,_,, 0(§, &) exist and are

finite, then there exists a unique point &* € U such that p&* = £,
4. Deduced results

Theorem 5. Let (U, 0, ) be a complete CMS, 91,9, : U — W and there exist the mappings 51,3 :
U— [0, 1) such that

1) Bi(p18) < B1(§) and Ba(916) < Ba(E);

(i) B1(928) < B1(&) and Br(9:26) < Ba(&);

(1) (B1 + B2)(&) < 1;

(iv)
{(&, 9180, 920)

1+0¢0
for all £, 0 € U. For &, € U, a sequence {£,} 0 is generated as &1 = 91&2, and &40 = 926,41 for each
J = 0. Suppose that

Upi&, 920) < BUOE, 0) + B2(&)

sup lim 0 (&iv1, &) (Eiv1, Em) < 1,
mx1 2% o (&, &iv1) B

= . In addition, suppose that lim,_,,., 0°(§,, &) and lim,_,,, 0°(§, &) exist and are finite,

B1(£0)
1-B2(%0)

then there exists a unique point &* € U such that p&* N P &* = &°.

where

Proof. Define 71,7, : U X U —[0, 1) by

71(§,0) =B1(§) and 72(£,0) = B2(6),

for all ¢£,0 € U. Then for all £,0 € 1, O
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(1) T1(9291€,0) = Bi(92018) < Bi(918) < B1(E) = 71(&,0) and 71(£, 1920) = B1(§) = Bi(€, 0);
(i) T2(9291€,0) = Ba(92918) < Ba(916) < Ba(§) = T2(€,0) and T2(E, P1920) = B2(E) = B2(&. 0);
(ii1) 71(&,0) + 12(&, 0) = B1(§) + B2(§) < I
(iv)
{(&, 9160, 920)

1+, 0)

f(f’ Solé‘:)f(Q’ WQQ)
L+0E&0

IA

Upi&,920) < B, 0) + Ba(6)

71(£, 0)0(£,0) + 12(£,0)

By Theorem 4, 9, and g, have a unique common fixed point.

Corollary 2. Let (U, 0,{) be a complete CMS, ¢ : U — U and there exist the mappings 1,3, :
U— [0, 1) such that
@) B1(p&) < Bi1(§) and Br(p) < Ba(§);
(i1) (B1 + B2)(&) < 1;
(iii)
U, p&)t(o, o)

UpE, po) < BiEE, 0) + (&) 1+ {Eo0) 4.1

for all £, 0 € W. For & € U, we set B _ B. Assume that

1-B2(&o)
sup lim O-(fi+1a§i+2)o-(§i+l,§m) <l
i oEnEi) B

where &, = p&, for each j > 0. Furthermore, suppose that lim,_, ., 07(¢,,£) and lim ., 0°(¢, &) exist

and are finite, then there exists a unique point £ € U such that p&* = &*.
Proof. Taking ¢, = ¢, = ¢ in the Theorem 5. |

Theorem 6. Let (U, 0, ) be a complete CMS and ¢ : W — . Let there exist 51,3, : U— [0, 1) such
that

@ B1(9’6) < B1(§) and Ba(p’8) < Ba(£);
(ii) (B + B2)(é) < 1

(iii)
L&, plE)(o, 9’
(0.'0) < PO ) + oty L L,
for all £, 0 € U and for some j € N. For &, € U, we set % = 3. Suppose that
sup lim T (Eir1 Ee2) T i1 Em) _ 1’
mz] i (&, &iv1) B

where &, = pé&, for each j > 0. In addition, suppose that lim,_,,, 0(§,, &) and lim,_, ., 0°(§, &) exist

and are finite, then there exists a unique point & € U such that p&* = &*.
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Proof. By result 2, we get that g’ £ = £*. Now, as

0/ (9" = p(p’e") = p&”,
s0, p&* 1s a fixed point of /. Thus p&* = £*. Since the fixed point of g’ is unique, so £* is also a fixed
point of p. m|

Corollary 3. Let U, 0,¢) be a complete CMS, 91,9, : W — U and there exist y,,y, € [0, 1) with
v1 + ¥, < 1 such that

U, 919)(0, 920)
1+ 4, 0)

for all £, 0 € U. For & € U, a sequence {£,} 50 1s generated as &,,1 = 91&2, and &40 = 262,41 for each
J = 0. Assume that

Upi€, 920) S 71l(E,0) + 72

O (&ir1,€i42)0 (Ein1,Em) 1
sup lim <,
mz] i (&> &iv1) Y

where & = v. In addition, assume that lim,_, .., 0(¢,, §) and lim_, ., 0°(£, £,) exist and are finite, then

there exists a unique point £&* € U such that & N g &* = &°.
Proof. Taking y,(-) = y; and y,(-) = ¥, in Theorem 5. |
Corollary 4. Let (U, o, £) be a complete CMS, ¢ : U — Wand there exist yy,y, € [0, 1) withy;+y, < 1

such that
{(¢&, p&)l(o, po)
L+0¢& 0

UpE, po) < vil(€,0) + 72

forall é,0 € W. For & € U, we set % = v. Suppose that

0(iv1,€ir2)0(Eiv1,Em) 1

sup lim < —,
mzll) i—00 o (&, Eiv1) Y
where &, = @&, for all j > 0. Furthermore, assume that lim,_,, 0°(§,,€) and lim_,,, 0(§,€)) are

finite and exist, then there exists a unique point &* € U such that p&* = £*.
Proof. Taking ¢, = ¢, = ¢ in Theorem 3. |
Corollary 5. Let (U, 0, £) be a complete CMS, ¢ : W — W and there exist yy,y, € [0, 1) withy;+y, < 1

such that
(&, 9’6o, 9’o)
1+0¢&0

Up'E, p'0) < yit(€,0) + 72

orall ¢,0 € W. For & € U, with-X- = vy, suppose that
I-y2

.0, Ei2)o (€1, En) 1
sup lim <-,
mx1 2 o (&, &iv1) Y
where £, = p&,, for each j > 0. Furthermore, assume that, lim,_,, 0(§,,€) and lim .., 0°(§, ;) exist

and are finite, then there exists a unique point & € U such that p&* = &*.
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Proof. Setting y;(-) = y; and y,(-) = v, in Theorem 6. |

Corollary 6. Let (1, 0, €) be a complete CMS, o : W — W and there exists y, € [0, 1) such that

Upé, po) < 71U, 0),

forall €0 € W. For & € U, with % = vy, suppose that

sup lim (st §is2)0(Eiv15 Em) < 1’
mx] 17 o (&, &) Y

where &, = @&, for each j > 0. Moreover, assume that, lim,_, ., 0(¢,, &) and lim ., 0(&, €)) exist
and are finitet, then there exists a unique point &* € U such that p&* = &*.

5. Applications in graphs

Let (U, o, £) be a CMS and G be a directed graph. Let us represent by G~!, the graph achieved from
G by changing the direction of E(G). Hence,

EG™) = {(£,0) € UXU: (0,€) € E(G)} .

Definition 4. An element ¢ € U is claimed to be common fixed point of (¢, 9,), if (&) =p.(£)=£.
We shall represent by CFix (g1, ¢»), the set of all common fixed points of (91, ¢»), i.e.

CFix(p1,92) = {§ € W) = 9,(5) =&}

Definition 5. Suppose that ¢, 9, : 2 — U are two mappings on complete CMS (21, o, £) equipped
with a directed graph G. Then (g, ¢») is said to be a G-orbital cyclic pair, if for any & € U

& 91€) € E(G) = (p1&, p2(9,6)) € E(G),

(&, 928) € E(G) = (926, 91(929)) € E(G).

Let us consider the following sets

U = {£ell: (£,¢18) € EG)},
U = {£ell: (£ ¢:¢) € E(G)}.

Remark 1. If the pair (¢, ¢,) be a G-orbital-cyclic pair, then U # () & U2 # (.

Proof. Let & € U7 Then (£, 91£0) € E(G) = (910, 92(9,£0)) € E(G). If we represent by & = 91,
then we get that (&1, 92(&1)) € E(G), thus U?? = (). O

Theorem 7. Let (1, o, ) be a complete CMS equipped with a directed graph G and 9,9, : W — U is
G-orbital cyclic pair. Assume that there exists Ty € [0, 1) such that
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(1) uvr £ 0;
(i1) for all £ € U¥! and p € U2,

Up1€, 920) < 11 max {l(&, 0), €&, 91€), €(0, 920)} (5.1)
(i11) for all (£)),en C U, one has (£,,¢,41) € E(G),

sup lim 0 (&ivt, i) (€1, Em) < 1
m>1 20 o (i &iv1) T

: (5.2)

where 7 = IT‘ ;
-

(iv) @1 and g, are continuous, or for all (£)) ey C U, with &, — §as j — +oo, and (£),€,11) € E(G)

for j € N, we have & € U?' N U2, In these conditions, CFix(p¢,) # 0;

(v) forall ¢ € U, we have lim,_, ., 07(§,,&) and lim _, ., 0(¢, &) exist and finite;

(vi) if (&%,&) eCFix(py,p,) implies & € WP and & € U™, then the pair (¢, 9,) has a unique
common fixed point.
Proof. Let & € UY'. Thus (&,9:&) € E(G). As the pair (p,,9,) is G-orbital cyclic, we get
(910, 929160) € E(G). Construct & by & = ¢1&, we have (§1,9:§1) € E(G) and from here
(9261, 19261) € E(G). Denoting by & = ¢,&1, we have (&, 91&) € E(G). Continuing along these
lines, we generate a sequence (£)) e With &, = 9,6, and &, 41 = 91&,,, such that (52 ) j+1) € E(G).
We assume that &, # £,,. If, there exists jp € N, such that &,) = &, 1, then in the view of the fact that
A C EG), (f./o,scml) € E(G) and thus & = ¢, is a fixed point of p;. Now to manifest that
& eCFix(pq, 92), we shall discuss these two cases for jy. If jo is even, then j, = 2;. Then,
&, = &y = 9i&y, and thus, &) is a fixed point of ¢;. Assume that &, = &, = 91&, but
U91&2), 9262,41) > 0, and let £ = &, € UY and ¢ = &4 € U2, So

0 (€201, E212) = 1€y 9262,41)
< Timax (€&, &), Uy, 9162)), UEnyit, 26201

= 1imax (€&, &), Uy £2y11), UEryirs 62700
= 110(&41,E2)42)

A

that is contradiction because 7; < 1. Hence &, is a fixed point of ¢, too. Likewise if j is odd number,
then there exists & € U such that p&* N P,&* = £*. So we assume that &, # &, for all ;j € N. Now we
shall show that (£)) e 18 Cauchy sequence. We have these two possible cases to discuss:

Case 1. £ =&, e U and o = &4y € U,

(6241, 62512) = (9162, 9262)41)

ymax (€&, £2,1), UErp 9162)), UEayur 9262,01))
71 max {{(&, &2,01), U Erp) Ui, €210

0

A

IA
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that is

which implies

Ty max {{&), €201), CErpons €2,10))
1|0 Eap) + €E2yi1, E2,02)

IA

(I =721, E2j12) < T1l(E2), E2)11)s

oy 600) S T U ). (5.3)

Case2. £ =&, e W and o = &, € U,

that is

which implies

71

0 <

(&)1, 62)) = U(1Er)n 9260,-1)

< mimax (€&, &), Uéry, 9162), Uyt 9262y 1)
= Timax{l&; &2,1), Uays E201), EE2y 1, E2)))

= mimax{l&;1,6), UEry E201))

< 11 |UE 1, E) + Uy E201))

(I = 1)lErp1,62) < T1l(&E2), E2)m1)s

T

Since T = ——, so we have

1-7¢°

Thus, we have

(&2, 62p41) < s U(&y-1,62)). (5.4)
0L E ) S TlE1L,E). (5.5)
f(é‘:j’ §j+1) Tf(é:j—b 'f/)

<
< 72[({;‘]_2, g]—l)
<

IA

(&0, &1).

For all j,m € N(j < m), we have

0> Em)

AIMS Mathematics

<
<

IA

(&), Ee)lEp &) + 0 (E 1, EmU(E 41, Em)

(&), Ee)UE ) E 1) + 0(€ 141, E)T(E 11, §112)E(E j15 § 42)
+0 (&1, Em)T(E 2, Em)U(E 42, &)

(&), E)UE ) E1) + 0(E 141, E)T(E 11, §12)E(E 15 E42)
+0 (€15 Em)T(E 12, Em)T (& 112, §143)0(E 142, € 43)
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+O—(§]+l 5 é:m)o-(é:j+2, é:m)o-(é:]{’n 6m)£(§]+3v é‘:m)

IA

IA

m-2 i
T € lEn ) + []_[ a(fk,fn»] L GRIRU G

i=j+1 \k=j+1

m—1
+ n O'(é:i’ é‘:m)g(fm—laé:m)’

i=j+1

which further implies that

IA

m-2 i
UEpEn) < TEpENIELEMD+ ), [H a(fk,fm)] (& En)En Eint)

i=j+1 \k=y+1

m—1
+ [ [ ] §m>] T(En-1s En)En1,En)

i=j+1

IA

m-2 i
() €T EE0 E) + D { [] a(fk,§m>] (€ Ein))TUE0, €1)

i=j+1 \k=y+1

m—1
' [ [ e §m>] TEnr, &) T (G0, E1)

i=j+1

m—1 i
= o€ E)TlELEN + ) []_[ a(fk,fm>] (€& )TUE0, £1).

i=j+1 \k=y+1

Let
1 i
W= (]—[ o (e, §m>) (€ &)U, £1).
i=0 \ k=0

From (5.6), we get
U(E)s En) < U0, EDIT (), Epv1) + (W — )1

(5.6)

(5.7)

Now as o(¢,0) > 1, and by utilizing ratio test, lim,_, .., ¥, exists. Clearly, if we let j,m — +ooin (5.7),

we get that
lim €(¢,,¢&,) = 0.

J,m—>+0c0

Hence, {£,} is a Cauchy sequence in (U, £). So there exists £* € U such that
lim €(¢,,€%) = 0.
J—+oo
thatis & — & as j — +oo. It is obvious that
lim 62] = lim 62]+1 = f*
J—+0oo J—+oo

As ¢ and g, are continuous, so we have

& = lim &, = lim 91(&) = 9169,
J—+ J—+

(5.8)

(5.9)

(5.10)
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& = lim &) = lim 9y(&)41) = 92(E0).
J—+0o0 J—+0o0
Now letting £ = &* € UP! and o = &,4» € U™, we have

0

A

5(@15*’§2J+2) = U(pi&, 92(£2,41))
T max (U, &,01), UE" 918", Uyt 02(E2y1)]

T max {6 &2, (€ 916, Leayor. £2,:2)]

IA

Letting j — +o00 and using (5.10), we can simply conclude that £(¢*, 9,;£*) = 0. This yields that
& = & Similarly, suppose that § = &, € U and o = §* € U2, we have

0

A

U(&2j12, 92E7) = U(P1(E2)), 92£7)
i max (€&, ), €2y, 91(62)), LE", 926)
71 max {{(&), ), Uy €201, UE", 9267

IA

Letting j — +o00 and using (5.10), we can simply conclude that £(¢*, 9,£*) = 0. This yields that
& = pé. 0

Corollary 7. Let (U, 0, {) be a complete CMS euipped with a directed graph G and ¢ : 1 — Uis a
G-orbital-cyclic. Suppose that there exists T, € [0, 1) such that

(1) U? # 0;
(i1) for all &, 0 € U¥, we have
f(sf’f, QQ) < 71 max {f(f, Q)’ f(f, 80§)9 K(Q’ SOQ)} >

(ii1) for all (£,),er C U one has (£,,&,41) € E(G),

b

. 0(&ir15 &) (Eiv1, €)1
ilg) lll’r‘g o &iv1) < T

where 7 = IT‘ ;
-

(iv) @ 1s continuous, or for each (§)),en C U, with &, — £ as j — +oo, and (¢,,&,41) € E(G) for

J € N, we have £ € U¥;

(v) for all £ € U, we have lim,_, .., 0°(¢,, &) and lim ., 0(¢, &) exist and finite, then p has a unique
fixed point.

Example 3. Let 21 ={0, 1,2, 3,4}. Define £ : U X U — [0, +00) by

0¢,0) = I - ol

and € : U X U — [1, +00) by
oo =1+&+0
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for all £, 0 € U. Then (U, o, ) is complete CMS. Now define ¢ : 2 — U by
p& =0, for& € {0, 1},
and
p&é =1, for & € {2,3}.
Also define G = {(0,1),(0,2),(2,3),(0,0),(1,1),(2,2),(3,3)}, then G is directed graph. Then all

assumptions of Corollary 3 are satisfied with 7; = % and &* = 0 is the unique fixed point of .
6. Applications in integral equations

In this section, we investigate the solution of Fredholm-type integral equation

1

&) = f K (1, 5,0)) ds, 6.1)

0

for all + € [0,1], where K (¢, s,&(¢)) is a continuous function from [0, 1] X [0, 1] into R. Let Xl =
C ([0, 1], (=00, +00)). Now we define £ : U x U— [1,00) by

(If(t)l + |Q(l)|)'

t(&,0) = sup >

r€[0,1]
Then (U, o, £) is a complete CMS with o (¢, 0) = 2.
Theorem 8. Assume that

(@) |K (@, s, ) +IK (2, 5,0(0))] < T3 (SUPte[o,u €O + IQ(t)I) (€@DI + lo(@))) for some 71 — U— [0, 1);

1
(b) K (t, s, [K (1, 5,&@1)) dS) < K(1,5,&01);

0
for all ¢, s € [0, 1]. Then the integral equation (6.1) has a unique solution.

Proof. Define p : U—1U by
1

Kt’f(f):fK(t, s, &(1)) ds.
0
Then

(I@f(t)l + |SOQ(I)|).

t(pé, po) = sup >

t€[0,1]

Now
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[pE@] + lpo()]
2

1
[K(t,5,&@0)ds
0

L (p&(1), po(n))

1
fK (t, s,0())ds
0

+
- 2
1 1
[IK @, s,&@)ds + [|K (1, 5,00)| ds
< 0 0
2
1
UK @, 5, €0 + K (1, 5, 0(t)) ds
0
B 2
1
J (71 (sup,ero 1y 1ED] + o)1) (D] + lo(D)D) ds
< 0
2
<7 ( S{l;]?] €@ + IQ(I)I) (&), 0(0)) .
te(0,
Also we observe that .
o¢.0 = :
71 (Sup,o, O] + 1o
Thus all the conditions of result 6 are satisfied. Hence Eq (6.1) has a unique solution. O

7. Conclusions

In the current work, we have utilized the notion of controlled metric space and proved common
fixed point results of self mappings for generalized contractions involving control functions of two
variables. We also established common fixed point results in controlled metric space equipped with
a graph. We have derived common fixed point and fixed point results for contractions with control
functions of one variable as consequences of our leading result. We also supply a non trivial example
to support the obtained results As as application of our prime result, we have investigated the solution
of Fredholm type integral equation.

Some related generalizations of such contractions for the multivalued mappings ¢ : U — CB(U)
and for fuzzy mappings ¢ : U — F(U) would be a special field for future work. A distinct way of
future study would be to employ our results in the solution of fractional differential inclusions.

Acknowledgments
First author acknowledges with thanks Natural Science Foundation of Hebei Province (Grant No.
A2019404009) and The Major Project of Education Department of Hebei Province (No. ZD2021039)

for financial support.

AIMS Mathematics Volume 8, Issue 1, 529-549.



547

Contflict of interest

The authors declare no conflicts of interests.

References

1. E. Karapinar, T. Abdeljawad, F. Jarad, Applying new fixed point theorems on
fractional and ordinary differential equations, Adv. Differ. Equ., 2019 (2019), 1-25.
https://doi.org/10.1186/s13662-019-2354-3

2. A. A. Kilbas, M. H. Srivastava, J. J. Trujillo, Theory and application of fractional differential
equations, Elsevier, 2006. https://doi.org/10.1016/S0304-0208(06)80001-0

3. M. A. Khamsi, W. A. Kirk, An introduction to metric spaces and fixed point theory, John Willey
Sons, 2001. https://doi.org/10.1002/9781118033074

4. S. G. Matthews, Partial metric topology, Ann. New York. Acad. Sci., 728 (1994), 183-197.
https://doi.org/10.1111/j.1749-6632.1994.tb44 144 x

5. A. Branciari, A fixed point theorem of Banach-caccioppoli type on a class of generalized metric
spaces, Publ. Math., 57 (2000), 31-37.

6. Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex A., 7
(2006), 289-297.

7. A. Azam, B. Fisher, M. Khan, Common fixed point theorems in complex valued metric spaces,
Numer. Funct. Anal. Optim., 32 (2011), 243-253. https://doi.org/10.1080/01630563.2011.533046

8. Z. D. Mitrovi¢, S. Radenovi¢, The Banach and Reich contractions in b,(s)-metric spaces, J. Fix.
Point Theory Appl., 19 (2017), 3087-3095. https://doi.org/10.1007/s11784-017-0469-2

9. S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostra. 1 (1993),
5-11.

10. T. Kamran, M. Samreen, Q. U. Ain, A generalization of b-metric space and some fixed point
theorems, Math., 5 (2017), 19. https://doi.org/10.3390/math5020019

11. N. Mlaiki, H. Aydi, N. Souayah, T. Abdeljawad, Controlled metric type spaces and the related
contraction principle, Mathematics, 6 (2018), 194. https://doi.org/10.3390/math6100194

12. D. Lateef, Kannan fixed point theorem in c-metric spaces, J. Math. Anal., 10 (2019), 34-40.

13. J. Ahmad, A. E. Al-Mazrooei, H. Aydi, M. D. 1. Sen, On fixed point results in controlled metric
spaces, J. Funct. Space., 2020 (2020), 1-7. https://doi.org/10.1155/2020/2108167

14. M. Abuloha, D. Rizk, K. Abodayeh, N. Mlaiki, T. Abdeljawad, New results in controlled metric
type spaces, J. Math., 2021 (2021), 1-6. https://doi.org/10.1155/2021/5575512

AIMS Mathematics Volume 8, Issue 1, 529-549.


http://dx.doi.org/https://doi.org/10.1186/s13662-019-2354-3
http://dx.doi.org/https://doi.org/10.1016/S0304-0208(06)80001-0
http://dx.doi.org/https://doi.org/10.1002/9781118033074
http://dx.doi.org/https://doi.org/10.1111/j.1749-6632.1994.tb44144.x
http://dx.doi.org/https://doi.org/10.1080/01630563.2011.533046
http://dx.doi.org/https://doi.org/10.1007/s11784-017-0469-2
http://dx.doi.org/https://doi.org/10.3390/math5020019
http://dx.doi.org/https://doi.org/10.3390/math6100194
http://dx.doi.org/https://doi.org/10.1155/2020/2108167
http://dx.doi.org/https://doi.org/10.1155/2021/5575512

548

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

N. Alamgir, Q. Kiran, H. Isik, H. Aydi, Fixed point results via a Hausdorff controlled type metric,
Adv. Differ. Equ., 2020 (2020), 1-20. https://doi.org/10.1186/s13662-020-2491-8

T. Abdeljawad, N. Mlaiki, H. Aydi, N. Souayah, Double controlled metric type spaces and some
fixed point results, Mathematics, 6 (2018), 320. https://doi.org/10.3390/math6120320

R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968), 71-76.
https://doi.org/10.4064/FM-74-3-181-187

D. Lateef, Fisher type fixed point results in controlled metric spaces, J. Math. Comput. Sci., 20
(2020), 234-240. https://doi.org/10.22436/jmcs.020.03.06

S. Hussain, Fixed point theorems for nonlinear contraction in controlled metric type space, Appl.
Math. E-Notes, 21 (2021), 2145-2165.

N. Mlaiki, N. Souayah, T. Abdeljawad, H. Aydi, A new extension to the controlled metric type
spaces endowed with a graph, Adv. Differ. Equ., 2021 (2021), 94. https://doi.org/10.1186/s13662-
021-03252-9

W. Shatanawi, N. Mlaiki, N. Rizk, E. Onunwor, Fredholm-type integral equation in controlled
metric-like spaces, Adv. Differ. Equ., 2021 (2021), 358. https://doi.org/10.1186/s13662-021-03516-
4

M. S. Sezen, Controlled fuzzy metric spaces and some related fixed point results, Numer. Meth.
Fart. Differ. Eq., 37 (2020) 583-593. https://doi.org/10.1002/num.22541

S. Tasneem, K. Gopalani, T. Abdeljawad, A different approach to fixed point theorems on triple
controlled metric type spaces with a numerical experiment, Dynam. Syst. Appl., 30 (2021), 111-
130. https://doi.org/10.46719/dsa20213018

A. Asif, N. Hussain, H. Al-Sulami, M. Arshad, Some fixed point results in function weighted
metric spaces, J. Math., 2021 (2021). https://doi.org/10.1155/2021/6636504

S. Furgan, H. Isik, N. Saleem, Fuzzy triple controlled metric spaces and related fixed point results,
J. Funct. Space., 2021 (2021), 8. https://doi.org/10.1155/2021/9936992

N. Hussain, J. R. Roshan, V. Parvaneh, A. Latif, A unification of G-metric, partial metric, and
b-metric spaces, Abstr. Appl. Anal., 2014 (2014), 1-14. https://doi.org/10.1155/2014/180698

M. A. Khamsi, N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal., 73 (2010),
3123-3129. https://doi.org/10.1016/j.na.2010.06.084

N. Saleem, H. Isik, S. Furqan, C. Park, Fuzzy double controlled metric spaces and related results,
J. Intell. Fuzzy Syst., 40 (2021), 9977-9985. https://doi.org/10.3233/JIFS-202594

Z. Mustafa, J. R. Roshan, V. Parvaneh, Z. Kadelburg, Fixed point theorems for weakly 7-
Chatterjea and weakly 7-Kannan contractions in b-metric spaces, J. Intell. Appl., 46 (2014), 1-14.
https://doi.org/10.1186/1029-242X-2014-46

AIMS Mathematics Volume 8, Issue 1, 529-549.


http://dx.doi.org/https://doi.org/10.1186/s13662-020-2491-8
http://dx.doi.org/https://doi.org/10.3390/math6120320
http://dx.doi.org/https://doi.org/10.4064/FM-74-3-181-187
http://dx.doi.org/https://doi.org/10.22436/jmcs.020.03.06
http://dx.doi.org/https://doi.org/10.1186/s13662-021-03252-9
http://dx.doi.org/https://doi.org/10.1186/s13662-021-03252-9
http://dx.doi.org/https://doi.org/10.1186/s13662-021-03516-4
http://dx.doi.org/https://doi.org/10.1186/s13662-021-03516-4
http://dx.doi.org/https://doi.org/10.1002/num.22541
http://dx.doi.org/https://doi.org/10.46719/dsa20213018
http://dx.doi.org/https://doi.org/10.1155/2021/6636504
http://dx.doi.org/https://doi.org/10.1155/2021/9936992
http://dx.doi.org/https://doi.org/10.1155/2014/180698
http://dx.doi.org/https://doi.org/10.1016/j.na.2010.06.084
http://dx.doi.org/https://doi.org/10.3233/JIFS-202594
http://dx.doi.org/https://doi.org/10.1186/1029-242X-2014-46

549

30. J. R. Roshan, N. Shobkolaei, S. Sedghi, V. Parvaneh, S. Radenovi¢, Common fixed point theorems
for three maps in discontinuous G, metric spaces, Acta Math. Sci., 34 (2014), 1643—-1654.
https://doi.org/10.1016/S0252-9602(14)60110-7

31. Z. Mustafa, V. Parvaneh, J. R. Roshan, Z. Kadelburg, b,-Metric spaces and some fixed point
theorems, Fixed Point Theory A., 2014 (2014), 23. https://doi.org/10.1186/1687-1812-2014-144

32.Z. Mustafa, V. Parvaneh, M. M. Jaradat, Z. Kadelburg, Extended rectangular b-metric

spaces and some fixed point theorems for contractive mappings, Symmetry, 11 (2019), 594.
https://doi.org/10.3390/sym11040594

33. V. Parvaneh, N. Hussain, Z. Kadelburg, Generalized wardowski type fixed point theorems
via a-admissible FG-contractions in b-metric spaces, Acta Math. Sci., 36 (2016), 1445-1456.
https://doi.org/10.1016/S0252-9602(16)30080-7

@ AIMS Press

AIMS Mathematics

©2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Volume 8, Issue 1, 529-549.


http://dx.doi.org/https://doi.org/10.1016/S0252-9602(14)60110-7
http://dx.doi.org/https://doi.org/10.1186/1687-1812-2014-144
http://dx.doi.org/https://doi.org/10.3390/sym11040594
http://dx.doi.org/https://doi.org/10.1016/S0252-9602(16)30080-7
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Main results
	Deduced results
	 Applications in graphs
	Applications in integral equations
	Conclusions

