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Abstract: The current research work is related to present the numerical solutions of three-species food 

chain model (TS-FCM) by exploiting the strength of Meyer wavelet neural networks (MWNNs) along 

with the global and local search competencies. The particle swarm optimization technique works as a 

global operator, while the sequential quadratic programming scheme is applied as a local operator for 

the TS-FCM. The nonlinear TS-FCM is dependent upon three categories, called consistent of prey 

populations, specialist predator and top predator. The optimization of an error-based fitness function 

is presented by using the hybrid computing efficiency of the global and local search schemes, which 

is designed through the differential form of the designed ordinary differential model and its initial 

conditions. The proposed results of the TS-FCM are calculated through the stochastic numerical 

techniques and further comparison is performed by the Adams method to check the exactness of the 
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scheme. The absolute error in good ranges is performed, which shows the competency of the proposed 

solver. Moreover, different statistical procedures have also been used to check the reliability of the 

proposed stochastic procedure along with forty numbers of independent trials and 10 numbers of 

neurons. 

Keywords: Meyer wavelet neural networks; food chain system; Adam scheme; sequential quadratic 

programming; statistical soundings; particle swarm optimization 

Mathematics Subject Classification: 65K10, 92B20 

 

1. Introduction 

The two and three kinds of trophic-level study of the systems of the food chain are considered 

huge significant in recent years. This study is related to present the numerical solutions of three-species 

food chain model (TS-FCM) by introducing the Meyer wavelet neural networks (MWNNs) along with 

the competencies of the global and local search algorithms. The particle swarm optimization (PSO) 

technique works as a global operator, while the sequential quadratic programming (SQP) scheme is 

applied as a local operator for the TS-FCM. This nonlinear model depends upon the logistic prey P, 

Lotka–Volterra special predator V as well as top-predator T [1–8]. The generic form of the TS-FCM is 

given as [9]: 

{
 
 

 
 
𝒅𝑷(𝒙)

𝒅𝒙
= 𝜶𝟎𝑷(𝒙) − 𝜷𝟎𝑷

𝟐(𝒙) −
𝝀𝟎𝑷(𝒙)𝑽(𝒙)

𝑷(𝒙)+𝜹𝟎
, 𝑷𝟎 = 𝑰𝟏,

𝒅𝑽(𝒙)

𝒅𝒙
= −𝜶𝟏𝑽(𝒙) +

𝝀𝟏𝑷(𝒙)𝑽(𝒙)

𝜹𝟏+𝑷(𝒙)
−
𝝀𝟐𝑽(𝒙)𝑻(𝒙)

𝑽(𝒙)+𝜹𝟐
,          𝑽𝟎 = 𝑰𝟐,

𝒅𝑻(𝒙)

𝒅𝒙
= 𝜸𝟑𝑻

𝟐(𝒙) −
𝝀𝟑𝑻

𝟐(𝒙)

𝑽(𝒙)+𝜹𝟑
,            𝑻𝟎 = 𝑰𝟑.

    (1) 

where P0, V0 and T0 are initial population of P, V, and T, respectively. The nonlinear system (1) 

indicates the TS-FCM, which has been solved by using the numerical and analytical schemes based 

on the prey population P, that is applied as a single form of the food predator V and the top-predator 

T. The prey P features with the V species represents the Volterra approach modelling, which is used to 

reduce the population of predator exponentially when the prey is missed. The T species association 

along with with the V prey is achieved based on the Leslie–Gower scheme to reduce the population of 

the predator [10,11]. The descriptions of the TS-FCM is given in the Table 1. A good source of the 

information for the interested reader related with food chain model can be seen in [12,13]. 

The aim of this work is to design a stochastic framework based on the MWNNs for presenting 

the numerical solutions of the TS-FCM. The PSO technique works as a global operator, while the SQP 

scheme is applied as a local operator to solve the TS-FCM. The numerical stochastic algorithms have 

been accomplished to solve various stiff models. To mention some of the applications that have been 

tackled through the stochastic solvers are smoke differential systems [14], fractional models based on 

the singular differential equations [15,16], dengue virus model [17], singular higher kind of systems 

[18–20] and periodic boundary value problems [21–23]. 
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Table 1. Detail of the parameter based TS-FCM. 

Parameters Description 

𝜶𝟎 Specific growth rate of P 

𝜸𝟑 Rate of progression of T 

𝜹𝟐 Rate of exclusion of V per capita 0.5𝜆2 

𝜹𝟑 Surplus cost in the T species to severe inadequacy of the food V 

𝜶𝟏 V rate that is used to decrease the P omission 

𝜹𝟎, 𝜹𝟏 Parameters for production conservation of P 

𝜷𝟎 Power of competition using the individuals of species P 

𝝀𝟎, 𝝀𝟏, 𝝀𝟐, 𝝀𝟑 Achieved maximum performances/capita by lessoning the P 

The aim of research work is to present the numerical solutions of three-species food chain model 

(TS-FCM) by exploiting the strength of Meyer wavelet neural networks (MWNNs) along with the 

global and local search competencies. The particle swarm optimization (PSO) technique works as a 

global operator, while the sequential quadratic programming (SQP) scheme is applied as a local 

operator. As the stochastic algorithms have been used to solve many stiff nature models, but none has 

applied the MWNNs using the optimization based PSO-SQP. The contributions, novelty and 

advantages of the designed MWNNs optimized with PSO-SQP are presented briefly as follows: 

• The stochastic numerical procedure based on the MWNN models is designed first time to solve 

the TS-FCM numerically. 

• The numerical results of the TS-FCM are provided by using modeling knacks of proposed 

MWNNs together with the competency of hybrid optimization procedures based on PSO-SQP 

for training/learning of networks. 

• The correctness of the approach MWNNs trained with PSO-SQP is observed with very small 

values of absolute error (AE) from reference numerical outcomes for solving governing 

relations of TS-FCM 

• The authorization, consistency and reliability of the scheme are acknowledged for larger 

number of runs based different statistical performances to solve the TS-FCM.  

The organization of the paper is presented as: The computational procedures of MWNNs using 

the optimization procedures of PSO-SQP are given in Section 2. Discussions based on the results are 

described in Section 3. The final remarks are listed in the last Section. 

2. Designed MWNNs procedure 

In this section, the stochastic MWNNs using the optimization procedures of PSO-SQP is provided 

to solve the TS-FCM. An objective function is structured based on some necessary steps of PSO-SQP 

hybridization of GA-ASA is provided also in this section. 

2.1. Proposed process 

The mathematical representations of TS-FCM with its first order derivatives are presented as: 

[�̂�(𝑥), �̂�(𝑥), �̂�(𝑥)] = [
∑ 𝑦𝑃,𝑠𝑄(𝑤𝑃,𝑠𝑥 + 𝑧𝑃,𝑠),
𝑞
𝑠=1 ∑ 𝑦𝑉,𝑠𝑄(𝑤𝑉,𝑠𝑥 + 𝑧𝑉,𝑠),

𝑞
𝑠=1

∑ 𝑦𝑇,𝑠𝑄(𝑤𝑇,𝑠𝑥 + 𝑧𝑇,𝑠)
𝑞
𝑠=1

],   (2) 
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[
𝑑�̂�

𝑑𝑥
,
𝑑�̂�

𝑑𝑥
,
𝑑�̂�

𝑑𝑥
] =

[
 
 
 
 
 
∑𝑦𝑃,𝑠

𝑑

𝑑𝑥
𝑄(𝑤𝑃,𝑠𝑥 + 𝑧𝑋,𝑠),

𝑞

𝑠=1

∑𝑦𝑉,𝑠
𝑑

𝑑𝑥
𝑄(𝑤𝑉,𝑠𝑥 + 𝑧𝑉,𝑠),

𝑞

𝑠=1

∑𝑦𝑇,𝑠
𝑑

𝑑𝑥
𝑄(𝑤𝑇,𝑠𝑥 + 𝑧𝑇,𝑠)

𝑞

𝑠=1 ]
 
 
 
 
 

. 

An unidentified vector W is defined as: 

𝑊 = [𝑊𝑃,𝑊𝑉 ,𝑊𝑇], for 𝑊𝑃 = [𝑦𝑃, 𝜔𝑃, 𝑧𝑃], 𝑊𝑉 = [𝑦𝑉 , 𝜔𝑉 , 𝑧𝑉], and 𝑊𝑇 = [𝑦𝑇, 𝜔𝑇 , 𝑧𝑇], 

where 

𝑦𝑃 = [𝑦𝑃,1, 𝑦𝑃,2, 𝑦𝑃,3, … , 𝑦𝑃,𝑞] , 𝑦𝑉 = [𝑦𝑉,1, 𝑦𝑉,2, 𝑦𝑉,3, … , 𝑦𝑉,𝑞] , 𝑦𝑇 = [𝑦𝑇,1, 𝑦𝑇,2, 𝑦𝑇,3, … , 𝑦𝑇,𝑞] , 

𝑤𝑃 = [𝑤𝑃,1, 𝑤𝑃,2, 𝑤𝑃,3, … , 𝑤𝑃,𝑞] , 𝑤𝑉 = [𝑤𝑉,1, 𝑤𝑉,2, 𝑤𝑉,3, … , 𝑤𝑉,𝑞] , 𝑤𝑇 = [𝑤𝑇,1, 𝑤𝑇,2, 𝑤𝑇,3, … , 𝑤𝑇,𝑞] , 

𝑧𝑃 = [𝑧𝑃,1, 𝑧𝑃,2, 𝑧𝑃,3, … , 𝑧𝑃,𝑞] , 𝑧𝑉 = [𝑧𝑉,1, 𝑧𝑉,2, 𝑧𝑉,3, … , 𝑧𝑉,𝑞] , 𝑧𝑇 = [𝑧𝑇,1, 𝑧𝑇,2, 𝑧𝑇,3, … , 𝑧𝑇,𝑞]. 

An activation kernel using the Meyer wavelet function Q(x) as reported in [24,25] is given as: 

𝑄(𝑥) = 35𝑥4 − 84𝑥5 + 70𝑥6 − 20𝑥7.      (3) 

The updated form of the Eq (2) using the above Eq (3) is given as: 

[�̂�(𝑥), �̂�(𝑥), �̂�(𝑥)] =

[
 
 
 
 
 
 ∑ 𝑦𝑃,𝑠 (

35(𝑤𝑃,𝑠𝑥 + 𝑧𝑃,𝑠)
4 − 84(𝑤𝑃,𝑠𝑥 + 𝑧𝑃,𝑠)

5 +

70(𝑤𝑃,𝑠𝑥 + 𝑧𝑃,𝑠)
6 − 20(𝑤𝑃,𝑠𝑥 + 𝑧𝑃,𝑠)

7 ) ,
𝑞
𝑠=1

∑ 𝑦𝑉,𝑠 (
35(𝑤𝑉,𝑠𝑥 + 𝑧𝑉,𝑠)

4 − 84(𝑤𝑉,𝑠𝑥 + 𝑧𝑉,𝑠)
5

+70(𝑤𝑉,𝑠𝑥 + 𝑧𝑉,𝑠)
6 − 20(𝑤𝑉,𝑠𝑥 + 𝑧𝑉,𝑠)

7) ,
𝑞
𝑠=1

∑ 𝑦𝑇,𝑠 (
35(𝑤𝑇,𝑠𝑥 + 𝑧𝑇,𝑠)

4 − 84(𝑤𝑇,𝑠𝑥 + 𝑧𝑇,𝑠)
5

+70(𝑤𝑇,𝑠𝑥 + 𝑧𝑇,𝑠)
6 − 20(𝑤𝑇,𝑠𝑥 + 𝑧𝑇,𝑠)

7)
𝑞
𝑠=1

]
 
 
 
 
 
 

.  (4) 

A fitness function formulation is given as: 

𝐸𝐹𝑖𝑡 = 𝐸𝐹𝑖𝑡−1 + 𝐸𝐹𝑖𝑡−2 + 𝐸𝐹𝑖𝑡−3 + 𝐸𝐹𝑖𝑡−4,       (5) 

𝐸𝐹𝑖𝑡−1 =
1

𝑁
∑ [

𝑑�̂�

𝑑𝑥
+ 𝛼0�̂�𝑘 + 𝛽0�̂�𝑘

2 +
𝜆0�̂�𝑘�̂�𝑘

𝛿0+�̂�𝑘
]
2

,𝑁
𝑘=1      (6) 

𝐸𝐹𝑖𝑡−2 =
1

𝑁
∑ [

𝑑�̂�

𝑑𝑥
+ 𝛼1�̂�𝑘 −

𝜆1�̂�𝑘�̂�𝑘

𝛿1+�̂�𝑘
+
𝜆2�̂�𝑘�̂�𝑘

𝛿2+�̂�𝑘
]
2

,𝑁
𝑘=1      (7) 

𝐸𝐹𝑖𝑡−3 =
1

𝑁
∑ [

𝑑�̂�

𝑑𝑥
− 𝛾3�̂�𝑘

2 +
𝜆3�̂�𝑘

2

𝛿3+�̂�𝑘
]
2

,𝑁
𝑘=1       (8) 

𝐸𝐹𝑖𝑡−4 =
1

3
[(�̂�0 − 𝐼1)

2
+ (�̂�0 − 𝐼2)

2
+ (�̂�0 − 𝐼3)

2
],     (9) 

here �̂�𝑘 = 𝑃(𝑥𝑘), �̂�𝑘 = 𝑉(𝑥𝑘), �̂�𝑗 = 𝑇(𝑥𝑘), 𝑁ℎ = 1, and 𝑥𝑘 = 𝑘ℎ. �̂�𝑘, �̂�𝑘 and �̂�𝑘 are the proposed 
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solutions. The Eqs (5)–(9) are the error functions based on the TS-FCM and the ICs. Figure 1 shows the 

design of the MWNNs-PSO-SQP for the TS-FCM. 

 

Figure 1. Design of the MWNNs-PSO-SQP for the TS-FCM. 

2.2. Network optimization 

In this section, the procedures of PSO and SQP are provided. 

Particle swarm optimization scheme is one of the global search methods that is used to solve the 

optimization model and work as an alternate of genetic algorithm (GA). PSO is introduced in the last 

century as a natural metaheuristic approach because of enormous optimization aptitudes in larger spans 

of search. PSO performs more efficiently as GA because it has a small memory. In PSO, the prime 

swarm intensifies in the extensive domain. To improve the parameters of PSO, the system produces 
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optimal results iteratively that are 𝑃𝐿𝐵
ℎ−1 for the position of swarm and 𝑃𝐺𝐵

ℎ−1
 for the velocity of swarm, 

shown as: 

𝜒𝑙
ℎ = 𝜒𝑙

ℎ−1 + 𝑉𝑙
ℎ−1,         (10) 

𝑉𝑙
ℎ = 𝑅𝑉𝑙

ℎ−1 − ℎ1(𝜒𝑙
ℎ−1 − 𝑃𝐿𝐵

ℎ−1)𝑟1 − ℎ2(𝜒𝑙
ℎ−1 − 𝑃𝐺𝐵

ℎ−1)𝑟2,    (11) 

where R, Xl and Vl indicate the weight vector of inertia, position, and velocity, respectively. Whereas 

acceleration constants are ℎ1 and ℎ2. Some prominent submissions of the PSO are classify imbalanced 

statics [26], features combination to detect the brain tumor [27], diagnosis of breast cancer [28], quality 

prediction in parts production processes [29], production enhancing based on the biodiesel through 

Microalga [30] and multilevel thresholding with the subdivision of the health image [31]. 

PSO converges more reliably with the hybridization of the local SQP, which is applied to assess 

the adjustment of the results. SQP has been applied in various submissions, some are economic 

dispatch with non-smooth fuel cost function [32], economic dispatch with valve-point effect [33], power 

system valve-point economic dispatch problems [34], dynamic dispatch with valve-point effect [35], 

trajectory optimization [36], kinetic parameters of hydrogenation reactions [37], non-convex short term 

hydrothermal scheduling problem [38] and equality constrained optimization on Hilbert manifolds [39]. 

3. Statistical performances 

This section narrates the statistical performances using the Theil’s inequality coefficient (TIC), 

semi-interquartile range (SIR) and variance account for (VAF) along with the global depictions for the 

TS-FCM is given as: 

[TIC𝑃,TIC𝑉,TIC𝑇] =

[
 
 
 
 
 
 √

1

𝑛
∑ (𝑃𝑗−�̂�𝑗)

2𝑛
𝐽=1

(√
1

𝑛
∑ 𝑃𝑗

2𝑛
𝐽=1 +√

1

𝑛
∑ �̂�𝑗

2𝑛
𝐽=1 )

,
√
1

𝑛
∑ (𝑉𝑗−�̂�𝑗)

2𝑛
𝐽=1

(√
1

𝑛
∑ 𝑉𝑗

2𝑛
𝐽=1 +√

1

𝑛
∑ �̂�𝑗

2𝑛
𝐽=1 )

,

√
1

𝑛
∑ (𝑇𝑗−�̂�𝑗)
𝑛
𝐽=1

2

(√
1

𝑛
∑ 𝑇𝑗

2𝑛
𝐽=1 +√

1

𝑛
∑ �̂�𝑗

2𝑛
𝐽=1 ) ]

 
 
 
 
 
 

,    (12) 

SIR = −0.5(1stQuartile − 3rdQuartile),       (13) 

{
 
 

 
 
[VAF𝑃,VAF𝑉 ,VAF𝑇] = [

(1 −
𝑣𝑎𝑟(𝑃𝑗−�̂�𝑗)

𝑣𝑎𝑟(𝑃𝑗)
) ∗ 100, (1 −

𝑣𝑎𝑟(𝑉𝑗−�̂�𝑗)

𝑣𝑎𝑟(𝑉𝑗)
) ∗ 100,

(1 −
𝑣𝑎𝑟(𝑇𝑗−�̂�𝑗)

𝑣𝑎𝑟(𝑇𝑗)
) ∗ 100,

]

[EVAF𝑃,EVAF𝑉 ,EVAF𝑇] = [|100 − VAF𝑃, 100 − VAF𝑉 , 100 − VAF𝑇|].

   (14) 

where �̂�, �̂� and �̂� are the proposed solutions. 

4. Results and discussions of the TS-FCM 

In this section, the detailed results, and discussions of the TS-FCM based on the stochastic 

MWNNs-PSO-SQP procedure. The achieved numerical results based TS-FCM have been compared 
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with the reference solutions to find the correctness of the designed MWNNs-PSO-SQP scheme. The 

AE plots, the performance of the scheme and convergence routines using VAF, SIR and, TIC operators 

have been illustrated. The simplified TS-FCM form using the appropriate parameter measures is 

written as: 

{
 
 

 
 
𝑑𝑃(𝑥)

𝑑𝑥
= 1.5𝑃(𝑥) − 0.06𝑃2(𝑥) −

𝑃(𝑥)𝑉(𝑥)

𝑃(𝑥)+10
, 𝑃0 = 1.2,

𝑑𝑉(𝑥)

𝑑𝑥
= −𝑉(𝑥) +

2𝑃(𝑥)𝑉(𝑥)

10+𝑃(𝑥)
−
0.405𝑉(𝑥)𝑇(𝑥)

𝑉(𝑥)+10
,          𝑉0 = 1.2,

𝑑𝑇(𝑥)

𝑑𝑥
= 1.5𝑇2(𝑥) −

𝜆3𝑇
2(𝑥)

𝑉(𝑥)+20
,                    𝑇0 = 1.2.

    (15) 

A fitness function using the TS-FCM is given as: 

𝐸𝐹𝑖𝑡 =
1

𝑁
∑

(

 
 
[
𝑑�̂�

𝑑𝑥
+ 1.5�̂�𝑘 + 0.06�̂�𝑘

2 +
�̂�𝑘�̂�𝑘

10 + �̂�𝑘
]

2

+ [
𝑑�̂�

𝑑𝑥
+ �̂�𝑘 −

2�̂�𝑘�̂�𝑘

10 + �̂�𝑘
+
0.0405�̂�𝑘�̂�𝑘

10 + �̂�𝑘
]

2

+[
𝑑�̂�

𝑑𝑥
− 1.5�̂�𝑘

2 +
�̂�𝑘
2

20 + �̂�𝑘
]

2

)

 
 

𝑁

𝑞=1

 

+
1

3
[(�̂�0 − 1.2)

2
+ (�̂�0 − 1.2)

2
+ (�̂�0 − 1.2)

2
].                 (16) 

The optimization of the fitness function given in the Eq (16) based on the TS-FCM is performed 

using the using the proposed MWNNs under the optimization of PSO-SQP procedures. The neurons 

throughout this work are taken as 10 and the best weight vectors for each class of the TS-FCM is 

presented in the below equations. The mathematical form of these best weight vectors for each class 

of the TS-FCM is given as: 

�̂�(𝑥) = −3.44(35(−1.7359𝑥 + 3.150)4 − 84(−1.7359𝑥 + 3.150)5 + 70(−1.7359𝑥 + 3.150)6 −

               20(−1.7359𝑥 + 3.150)7) − 1.084(35(−0.2881𝑥 + 0.139)4 − 84(−0.2881𝑥 + 0.139)5 +

              70(−0.2881𝑥 + 0.139)6 − 20(−0.2881𝑥 + 0.139)7) − 0.928(35(−0.518𝑥 + 0.0176)4 −

              84(−0.518𝑥 + 0.0176)5 + 70(−0.518𝑥 + 0.0176)620(−0.518𝑥0.0176)7) + ⋯+

              1.8520(35(0.0016𝑥 + 1.9229)4 − 84(0.0016𝑥 + 1.9229)5 + 70(0.0016𝑥 + 1.9229)6 −

               20(0.0016𝑥 + 1.9229)7),                 (17) 

�̂�(𝑥) = 1.4861(35(−1.900𝑥 − 2.2698)4 − 84(−1.900𝑥 − 2.2698)5 + 70(−1.900𝑥 − 2.2698)6 −

                20(−1.900𝑥 − 2.2698)7) − 0.4707(35(−0.4707𝑥 − 1.331)4 − 84(−0.4707𝑥 − 1.331)5 +

                70(−0.4707𝑥 − 1.331)6 − 20(−0.4707𝑥 − 1.331)7) − 0.1584(35(0.3672𝑥 + 0.6896)4 −

                84(0.3672𝑥 + 0.6896)5 + 70(0.3672𝑥 + 0.6896)6 − 20(0.3672𝑥 + 0.6896)7) + ⋯+

                0.2417(35(0.4986𝑥 + 0.6398)4 − 84(0.4986𝑥 + 0.6398)5 + 70(0.4986𝑥 + 0.6398)6 −

                20(0.4986𝑥 + 0.6398)7),                 (18) 

�̂�(𝑥) = −2.205(35(4.7785𝑥 + 2.0850)4 − 84(4.7785𝑥 + 2.0850)5 + 70(4.7785𝑥 + 2.0850)6 −

              20(4.7785𝑥 + 2.0850)7) − 0.4081(35(0.2606𝑥 + 0.4083)4 − 84(0.2606𝑥 + 0.4083)5 +

              70(0.2606𝑥 + 0.4083)6 − 20(0.2606𝑥 + 0.4083)7) + 1.6674(35(4.0804𝑥 + 1.4421)4 −

              84(4.0804𝑥 + 1.4421)5 + 70(4.0804𝑥 + 1.4421)6 − 20(4.0804𝑥 + 1.4421)7) + ⋯−

              2.5064(35(2.9104𝑥 + 1.7957)4 − 84(2.9104𝑥 + 1.7957)5 + 70(2.9104𝑥 + 1.7957)6 −

              20(2.9104𝑥 + 1.7957)7),                      (19) 

The best values of the weights, comparison performances of the solutions and AE is illustrated in 
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Figures 1–3 for the TS-FCM using the stochastic numerical schemes. The neurons have been taken 

as 10 with 30 numbers of variables for solving the TS-FCM. The calculated outcomes using the 

MWNNs under the optimization of PSO-SQP procedures are drawn in Figures 2(a)–(c) based on the 

Eqs (17)–(19) for TS-FCM. The comparison performances of the worst, best and mean outcomes is 

authenticated in Figures 2(d-f) for the TS-FCM. The overlapping of the results indicates that the 

proposed stochastic scheme for solving the model. The AE plots drawn in Figures 3(a)–(c) for each 

category of the TS-FCM. These plots indicate best performances based on the mean/best results. It is 

indicated that the best AE measures for 𝑃(𝑥), 𝑉(𝑥) and 𝑇(𝑥) found as 10-06-10-08, 10-05-10-07 and 

10-05-10-06, while the mean AE for 𝑃(𝑥), 𝑉(𝑥) and 𝑇(𝑥) found as 10-04-10-06, 10-05-10-06 and 10-04-

10-06. The performances of the operators EVAF and TIC for TS-FCM are provided in the last portion 

of Figure 3. For 𝑃(𝑥), the EVAF, RMSE and TIC best values found as 10-12-10-14, 10-06-10-08 and 10-

10-10-12. For 𝑉(𝑥), these measures lie as 10-10-10-12, 10-06-10-08 and 10-10-10-11. Likewise, for 𝑇(𝑥), 

these gages found as 10-10-10-12, 10-05-10-06 and 10-10-10-11. The EVAF and TIC gages together with 

the plots of histogram based MWNNs under the optimization of PSO-SQP procedures are drawn in 

Figures 4 and 5. It is seen that most of the independent runs obtained a level of accuracy for the TIC 

and EVAF gages for solving the TS-FCM. 

 

Figure 2. Weights for each class of the TS-FCM (a)–(c) and comparison of the results (d)–(f). 

    

(a) Weights for 𝑃(𝑥)      (d) Comparison of 𝑃(𝑥) class 

   

(b) Weights for 𝑉(𝑥)      (e) Comparison of 𝑉(𝑥) class 

    

(c) Weights for 𝑇(𝑥)      (f) Comparison of 𝑇(𝑥) class 



69 

AIMS Mathematics  Volume 8, Issue 1, 61–75. 

 

Figure 3. AE and performances of the TIC and EVAF operators for TS-FCM. 

 

Figure 4. Performances of TIC gages together with histogram based MWNNs-PSO-SQP procedures. 

Tables 2 to 4 shows the statistical operator values for each category of the TS-FCM. The statistical 

values based on the minimum, median, SIR, mean, maximum and standard deviation (S.D) have also 

been used to analyze the statistical performances of the TS-FCM by using the proposed MWNNs-

PSO-SQP approach. The maximum values represent the worst runs and it is observed that the worst 

runs also found around 10-04 to 10-05. While the Minimum performances indicate the good trials, and 

it is observed that the best runs are calculated as 10-07 to 10-09. Moreover, the median, SIR, mean, and 

S.D values also lie around in good measures that are around 10-05 to 10-07 for each class of the TS-

FCM. 

 

TIC gage performances for the TS-FCM 

   
(a) Histogram for 𝑃(𝑥)  (b) Histogram for 𝑉(𝑥)   (c) Histogram for 𝑇(𝑥) 
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Figure 5. Performances of EVAF gages together with histogram based MWNNs under the 

optimization of PSO-SQP procedures. 

Table 2. Statistical operators for the TS-FCM based 𝑃(𝑥) category. 

𝑥 𝑃(𝑥) 

 Maximum Minimum Median SIR Mean S.D 

0 1.560E-05 1.306E-09 1.650E-07 2.803E-07 9.229E-07 2.631E-06 

0.1 2.770E-05 1.509E-07 4.559E-06 3.795E-06 7.108E-06 6.992E-06 

0.2 9.269E-05 5.038E-07 1.259E-05 7.821E-06 1.738E-05 1.969E-05 

0.3 1.150E-04 3.931E-07 1.013E-05 9.751E-06 1.849E-05 2.335E-05 

0.4 7.951E-05 3.019E-08 8.277E-06 6.633E-06 1.359E-05 1.580E-05 

0.5 4.894E-05 4.518E-08 7.653E-06 5.003E-06 9.726E-06 1.013E-05 

0.6 5.524E-05 9.898E-09 8.524E-06 6.815E-06 1.236E-05 1.263E-05 

0.7 1.175E-04 1.538E-07 1.341E-05 7.795E-06 2.022E-05 2.307E-05 

0.8 1.748E-04 3.748E-08 1.608E-05 1.123E-05 2.653E-05 3.456E-05 

0.9 1.547E-04 5.977E-08 1.512E-05 1.106E-05 2.473E-05 2.980E-05 

1 1.172E-04 9.026E-07 1.593E-05 1.057E-05 2.258E-05 2.325E-05 

 

 

 

 

 

 

 

 

 

 

EVAF gage performances for the TS-FCM 

   
(a) Histogram for 𝑃(𝑥)  (b) Histogram for 𝑉(𝑥)   (c) Histogram for 𝑇(𝑥) 
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Table 3. Statistical operators for the TS-FCM based 𝑉(𝑥) category. 

𝑥 𝑉(𝑥) 

 Maximum Minimum Median SIR Mean S.D 

0 1.091E-04 5.175E-09 2.212E-07 2.803E-07 3.738E-06 1.725E-05 

0.1 1.170E-04 7.323E-08 8.129E-06 3.795E-06 1.059E-05 1.781E-05 

0.2 4.539E-05 1.594E-06 9.562E-06 7.821E-06 1.291E-05 9.621E-06 

0.3 4.880E-05 3.712E-07 4.250E-06 9.751E-06 9.037E-06 1.217E-05 

0.4 8.413E-05 9.092E-09 2.378E-06 6.633E-06 6.147E-06 1.379E-05 

0.5 7.417E-05 2.679E-08 2.149E-06 5.003E-06 4.553E-06 1.158E-05 

0.6 3.275E-05 1.422E-07 5.479E-06 6.815E-06 7.681E-06 7.202E-06 

0.7 2.674E-05 8.017E-08 8.815E-06 7.795E-06 9.818E-06 6.380E-06 

0.8 6.019E-05 1.700E-07 6.708E-06 1.123E-05 8.661E-06 9.564E-06 

0.9 6.621E-05 2.207E-07 2.778E-06 1.106E-05 7.858E-06 1.241E-05 

1 2.633E-05 4.242E-08 2.952E-06 1.057E-05 6.118E-06 7.030E-06 

 

Table 4. Statistical operators for the TS-FCM based 𝑇(𝑥) category. 

𝑥 𝑇(𝑥) 

 Maximum Minimum Median SIR Mean S.D 

0 1.482E-05 1.405E-09 1.954E-07 2.803E-07 1.062E-06 2.705E-06 

0.1 8.653E-05 2.383E-06 2.613E-05 3.795E-06 2.933E-05 2.024E-05 

0.2 5.367E-05 1.118E-06 8.362E-06 7.821E-06 1.434E-05 1.227E-05 

0.3 4.237E-05 1.899E-08 2.918E-06 9.751E-06 5.597E-06 8.230E-06 

0.4 5.365E-05 5.482E-08 7.215E-06 6.633E-06 8.984E-06 9.045E-06 

0.5 3.816E-05 1.107E-06 1.267E-05 5.003E-06 1.347E-05 8.201E-06 

0.6 5.675E-05 8.576E-07 7.775E-06 6.815E-06 1.407E-05 1.487E-05 

0.7 5.195E-05 5.877E-07 3.459E-06 7.795E-06 1.060E-05 1.396E-05 

0.8 2.496E-05 7.648E-08 3.311E-06 1.123E-05 5.428E-06 5.716E-06 

0.9 4.198E-05 1.746E-08 4.990E-06 1.106E-05 8.954E-06 1.038E-05 

1 3.761E-05 2.332E-07 6.006E-06 1.057E-05 8.896E-06 8.509E-06 

The obtained good global RMSE, EVAF and TIC operator performances for the TS-FCM are 

described in Table 5 using forty numbers of independent executions based on the MWNNs under the 

PSO-SQP optimization procedures. The global Median operator are found as 10−05-10−06, 10−09-10−10, 

and 10−10-10−11 for RMSE, TIC and EVAF. While the global SIR is calculated as 10−06-10−07, 10−09-

10−10 and 10−10-10−11 for the TS-FCM. The optimal close measures via global presentations validate 

the precision and precision of the MWNNs under the optimization of PSO-SQP procedures. 

Table 5. Global representations for the TS-FCM. 

Index G. RMSE G. TIC G. EVAF 

Median SIR Median SIR Median SIR 

𝑃(𝑥) 1.3218E-05 8.0860E-06 5.3079E-10 3.1485E-10 4.6702E-11 6.0644E-11 

𝑉(𝑥) 6.5471E-06 2.6698E-07 2.5025E-09 1.0578E-09 4.6200E-10 4.8615E-10 

𝑇(𝑥) 1.1708E-05 5.5292E-06 4.3169E-10 2.2095E-10 9.9967E-10 9.1617E-10 
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5. Conclusions 

The current investigations are related to examine the numerical simulations of nonlinear three-

species food chain system by exploiting the strength of Meyer wavelet neural networks along with the 

global and local search competencies. Few concluding remarks are presented as: 

• The stochastic numerical procedure using the MWNNs is presented first time for the TS-FCM 

numerically. 

• The correctness of the MWNNs-PSO-SQP is authenticated via the overlapping of the proposed 

and reference results. 

• The AE measures is calculated in good performances for each class of the TS-FCM, i.e., 10-

06-10-08. 

• The reliability of the stochastic MWNNs-PSO-SQP approach is approved by taking a large 

number of trials for the TS-FCM. 

• The statistical TIC and EVAF operators have been used to check the convergence of the 

MWNNs-PSO-SQP approach. 

• The minimum, median, SIR, mean, maximum and standard deviation have also been used to 

analyze the statistical performances of the TS-FCM by using the proposed MWNNs-PSO-

SQP approach. 

• The global representations are presented based on the median and SIR operators for solving 

the TS-FCM. 

In future, the designed MWNNs trained/learned with PSO-SQP scheme should be implemented 

to solve patchy model [40], stage-structured models [41], and longer food chain systems [42] as well 

as other stiff nonlinear systems. 
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