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1. Introduction

In the field of fractional calculus, fractional derivatives play a very important role in explaining
the complex processes in applied sciences and engineering [1, 2]. Anomalous dispersion processes
are widely studied using fractional derivatives in areas like electron transportation [3], turbulence [4]
and dissipation [5]. Such a process reveals the striking properties of long-range interaction that
cannot be well demonstrated by using standard integer-order differential equations. So, the fractional
derivatives are used to describe such anomalous behavior in various processes [6]. Some fractional
derivatives like the Grunwald-Letnikov fractional derivative, Riemann-Liouville (RL) derivative and
Caputo derivative have been studied numerically and theoretically for various fractional differential
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equations. Many researchers have extensively used these operators for solving fractional differential
equations, as broadly explained in [7–10] and references therein. Later, it was shown in [11] that the
solutions of time-fractional differential equations that were analyzed using the RL or Caputo derivative
exhibit weak singularities at the initial time t = 0 that can be resolved, as some authors have shown by
introducing the fractional derivatives involving non-singular kernels. In 2015, a fractional derivative
was introduced, named the Caputo-Fabrizio fractional derivative by Caputo and Fabrizio [12]. This
fractional derivative involves a non-singular kernel which can describe the material heterogeneities
and fluctuations with different scales. Some authors have solved the fractional differential equations
using the Caputo-Fabrizio definition [13–15]. After that, in 2016, we studied a new type of fractional
derivative, called the Atangana-Baleanu Caputo (ABC) derivative that also involves the non-singular
kernel and generalizes the Caputo-Fabrizio definition [16]. Some recent work that has been done
by researchers who have used the ABC derivative to solve fractional differential equations is given
in [17–19].

Recently, Refai and Baleanu [20] introduced a modification of the ABC fractional differential
operator, called the Modified Atangana-Baleanu Caputo (MABC) derivative, which is an extension of
the ABC derivative to a wider space, and demonstrated that there are numerous fractional differential
equations that can be solved by using the MABC derivative that cannot be solved with the ABC
derivative. Therefore, in this article, we present a novel finite difference discrete scheme that modifies
the ABC derivative; the related fractional differential equations can be easily initialized using this
modified operator. This modified fractional operator, also called the MABC-derivative, has the
integrable singularity at the origin [20]. The present numerical method in which the time-fractional
derivative is considered to be an MABC-derivative can be applied to solve various models. Here, we
have considered an example of the time-fractional advection-dispersion equation that is used to model
the transport of passive tracers that are carried by fluid in a heterogeneous medium [21–23].

The paper is organized in the following way. In Section 2, a few definitions of fractional calculus
are presented. The crucial part of the paper is presented in Section 3, which involves a numerical
approximation of the MABC derivative, estimation of the truncation error and evaluation of the
numerical solution of the time fractional advection-dispersion equation. In Section 4, the stability
of the numerical scheme is presented through the use of Fourier analysis. In Section 5, some numerical
examples are tested using the numerical plots and tabulated results to verify the theoretical results. At
last, we conclude the paper in Section 6.

2. Preliminaries

Some basic definitions of fractional calculus are covered in this section, additional information on
the subject can be found in [2, 16, 20, 24, 25].

• The RL fractional derivative (of order α ∈ R) of a function f is defined as

0Dα
t f (t) =

1
Γ(r − α)

dr

dtr

∫ t

0
(t − s)r−α−1 f (s) ds, t > 0, (2.1)

where r is a positive integer and r − 1 < α < r.
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• The Caputo fractional derivative (of order α ∈ R) of a function f is defined as

C
0 Dα

t f (t) =
1

Γ(r − α)

∫ t

0
(t − s)r−α−1 f (r)(s) ds, t > 0, (2.2)

where r is a positive integer and r − 1 ≤ α < r.
• The ABC derivative of order 0 < α < 1 of a function f ∈ H1(0, 1) is defined as

ABC
0 Dα

t f (t) =
N(α)
1 − α

∫ t

0
f ′(s)Eα,1

[
−α

1 − α
(t − s)α

]
ds, (2.3)

where N(α) is a normalization function obeying N(0) = N(1) = 1, and the Mittag-Leffler function
is defined as

Eα,β(z) =

∞∑
r=0

zr

Γ(αr + β)
. (2.4)

• The MABC derivative of order 0 < α < 1 of a function f ∈ L1(0, 1) in the Caputo sense is defined
as

MABC
0 Dα

t f (t) =
N(α)
1 − α

[
f (t) − Eα(−µαtα) f (0) − µα

∫ t

0
(t − s)α−1Eα,α[−µα(t − s)α] f (s) ds

]
, (2.5)

where µα = α
1−α .

The fractional derivatives are widely used to study the memory effect in the complex processes which is
well described by kernels (singular and non-singular). The MABC fractional derivative that modifies
the ABC fractional derivative involves the kernel that has integrable singularity at the origin, which
leads to new solutions of several fractional differential equations and a description of the dynamics of
complex processes that is better than the ABC fractional derivative. For more information, refer to [20].
We now numerically formulate the MABC derivative that helps to solve the fractional differential
equations.

3. Numerical scheme formulation using the MABC derivative

In this article, we formulate the time fractional advection dispersion equation in which the derivative
in time is considered as the MABC derivative.

MABC
0 Dα

t u = ν
∂2u
∂x2 − ρ

∂u
∂x

+ f (x, t), 0 < x < L, 0 < t ≤ T, (3.1a)

with the initial condition
u(x, 0) = φ0(x), 0 ≤ x ≤ L, (3.1b)

and the boundary conditions
u(0, t) = u(L, t) = 0, 0 ≤ t ≤ T. (3.1c)

Here, we consider that ν and ρ are the constants.
To discretize Eq (3.1a), we begin with an equidistant mesh tk = kτ, k = 0, 1, 2, . . . ,Mt and xn =

nh, n = 0, 1, 2, . . . ,Nx, with the step size h = L/Nx in both the temporal and spatial directions, where
τ = T/Mt and Mt, Nx are the number of partitions of the temporal domain [0,T ] and spatial domain
[0, L], respectively.
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3.1. Time discretization using the MABC derivative

Using the definition given by Eq (2.5) and applying the Taylor series expansion to discretize the
function f (t), we get

f (t) = f (tq) + (t − tq) f ′(tq) +
(t − tq)2

2
f ′′(tq) + O((t − tq)3),

= f (tq) + (t − tq)
f (tq+1) − f (tq−1)

2τ
−

f (3)(tq)
3!

(t − tq)τ2 + O((t − tq)2), t ∈ (tq, tq+1). (3.2)

Since,

f ′(tq) =
f (tq+1) − f (tq−1)

2τ
−

f (3)(tq)
3!

τ2 + O(τ4), t ∈ (tq, tq+1),

We have that

MABC
0 Dα

t f (t)|t=tk =
N(α)
1 − α

[
f (tk) − Eα(−µαtαk ) f (0)

− µα

k−1∑
q=0

∫ tq+1

tq
(tk − s)α−1Eα,α[−µα(tk − s)α]

(
f (tq) + (s − tq)

f (tq+1) − f (tq−1)
2τ

)
ds

]
+ Rk

=
N(α)
1 − α

[
f (tk) − Eα(−µαtαk ) f (0)

]
−
N(α)
1 − α

µα

k−1∑
q=0

∫ tq+1

tq
(tk − s)α−1Eα,α[−µα(tk − s)α] f (tq)ds

−
N(α)
1 − α

µα

k−1∑
q=0

∫ tq+1

tq
(tk − s)α−1Eα,α[−µα(tk − s)α](s − tq)

f (tq+1) − f (tq−1)
2τ

ds + Rk.

Now for simplification we consider that

A =

k−1∑
q=0

∫ tq+1

tq
(tk − s)α−1Eα,α[−µα(tk − s)α] f (tq)ds,

B =

k−1∑
q=0

∫ tq+1

tq
(tk − s)α−1Eα,α[−µα(tk − s)α](s − tq)

f (tq+1) − f (tq−1)
2τ

ds.

Now, A and B can be evaluated using the definition of the Mittag-Leffler function, as follows:

A =

k−1∑
q=0

∫ tq+1

tq
(tk − s)α−1Eα,α[−µα(tk − s)α] f (tq)ds

=

k−1∑
q=0

f (tq)[(tk − tq)αEα,α+1(−µα(tk − tq)α) − (tk − tq+1)αEα,α+1(−µα(tk − tq+1)α)], (3.3)

B =

k−1∑
q=0

∫ tq+1

tq
(tk − s)α−1Eα,α[−µα(tk − s)α](s − tq)

f (tq+1) − f (tq−1)
2τ

ds
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=

k−1∑
q=0

( f (tq+1) − f (tq−1)
2τ

)[
− (tk − tq+1)ατEα,α+1(−µα(tk − tq+1)α)

− (tk − tq+1)α+1Eα,α+2(−µα(tk − tq+1)α) + (tk − tq)α+1Eα,α+2(−µα(tk − tq)α)
]
. (3.4)

After simplifying, we obtain

MABC
0 Dα

t f (t)|t=tk =
N(α)
1 − α

[
f (tk) − Eα(−µαtαk ) f (0)

]
−

k−1∑
q=0

[Ck
q f (tq−1) + Dk

q f (tq) + Fk
q f (tq+1)] + Rk, (3.5)

where

Ck
q = −

N(α)
1 − α

µατ
α

2
{−(k − q − 1)α 1Ek

q+1 − (k − q − 1)α+1
2Ek

q+1 + (k − q)α+1
2Ek

q},

Dk
q =
N(α)µατα

(1 − α)
{(k − q)α 1Ek

q − (k − q − 1)α 1Ek
q+1},

Fk
q = −Ck

q, (3.6)

where Eα,α+1[−µα(tk − tq)α] and Eα,α+2[−µα(tk − tq)α] are respectively represented as 1Ek
q and 2Ek

q.
The truncation error Rk is given as

Rk =
N(α)
1 − α

µα

k−1∑
q=0

∫ tq+1

tq

[
−

f (3)(tq)
3!

(s − tq)τ2
]
(tk − s)α−1Eα,α[−µα(tk − s)α] f (s) ds

= −
N(α)
1 − α

µα

k−1∑
q=0

∫ tq+1

tq

[ f (3)(tq)
3!

(s − tq)τ2
]
(tk − s)α−1Eα,α[−µα(tk − s)α] f (s) ds

= −
N(α)
1 − α

µα

k−1∑
q=0

f (3)(tq)
3!

τ2
∫ tq+1

tq
(s − tq)(tk − s)α−1Eα,α[−µα(tk − s)α] f (s) ds

= −
N(α)
1 − α

µα

k−1∑
q=0

f (3)(tq)
3!

τ2
([
− (s − tq)(tk − s)αEα,α+1[−µα(tk − s)α]

]tq+1

tq

−
[
(tk − s)α+1Eα,α+2[−µα(tk − s)α]

]tq+1

tq

)
= −
N(α)
1 − α

µα

k−1∑
q=0

f (3)(tq)
3!

τ2
(
− (tq+1 − tq)(tk − tq+1)αEα,α+1[−µα(tk − tq+1)α]

− (tk − tq+1)α+1Eα,α+2[−µα(tk − tq+1)α] + (tk − tq)α+1Eα,α+2[−µα(tk − tq)α]
)
.

Thus, we obtain the following equation at the k = Mt time step

Rk = −
N(α)
1 − α

µα
f (3)(t0)

3!
τ2

(
− (t1 − t0)(tMt − t1)αEα,α+1[−µα(tMt − t1)α]

− (tMt − t1)α+1Eα,α+2[−µα(tMt − t1)α] + (tMt − t0)α+1Eα,α+2[−µα(tMt − t0)α]
)

+ . . .
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= −
N(α)
1 − α

µα
f (3)(t0)

3!
τ2

(
− (τ)((Mt − 1)τ)αEα,α+1[−µα((Mt − 1)τ)α]

− ((Mt − 1)τ)α+1Eα,α+2[−µα(tMt − t1)α] + (Mtτ)α+1Eα,α+2[−µα(tMt − t0)α]
)

+ . . .

Using the fact that Mtτ = T which is a constant, we obtain the global truncation error

|Rk| ≤ C
N(α)
1 − α

µα max
0≤q≤Mt−1

∣∣∣∣ f (3)(tq)
3!

∣∣∣∣τ2,

where C is a constant.

3.2. Spatial discretization

The first- and second-order spatial derivatives can be approximated using the following finite-
difference formulas:

∂u(xn, tk)
∂x

=
uk

n+1 − uk
n−1

2h
+ O(h2),

∂2u(xn, tk)
∂x2 =

uk
n+1 − 2uk

n + uk
n−1

h2 + O(h2), (3.7)

for 0 ≤ n ≤ Nx and 1 ≤ k ≤ Mt.

3.3. MABC application: Advection-dispersion equation

The fully discretized numerical scheme for Eq (3.1), following the discretization in the temporal
and spatial directions at (xn, tk) is presented in the following way using Eqs (3.5) and (3.7)

N(α)
1 − α

[
uk

n − Eα(−µαtαk )u0
n

]
−

k−1∑
q=0

[Ck
quq−1

n + Dk
quq

n + Fk
quq+1

n ] =
ν

h2 (uk
n−1 − 2uk

n + uk
n+1)

−
ρ

2h
(uk

n+1 − uk
n−1) + f (xn, tk) + O(τ2 + h2),

(3.8)

with the initial and boundary conditions given as

u0
n = φ0(xn), 0 ≤ n ≤ Nx,

uk
0 = uk

Nx
= 0, 0 ≤ k ≤ Mt.

The numerical scheme at different time levels is presented as follows
For k = 1,(
−
ν

h2 −
ρ

2h

)
u1

n−1 +
(N(α)
1 − α

− F1
0 +

2ν
h2

)
u1

n +
(
−
ν

h2 +
ρ

2h

)
u1

n+1 = (C1
0 + D1

0)u0
n

+
N(α)
1 − α

Eα(−µαtα1 )u0
n + f (xn, t1), (3.9)
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for k = 2,(
−
ν

h2 −
ρ

2h

)
u2

n−1 +
(N(α)
1 − α

− F2
1 +

2ν
h2

)
u2

n +
(
−
ν

h2 +
ρ

2h

)
u2

n+1 = (C2
0 + D2

0 + C2
1)u0

n

+ (F2
0 + D2

1)u1
n +
N(α)
1 − α

Eα(−µαtα2 )u0
n + f (xn, t2), (3.10)

for 2 < k ≤ Mt,(
−
ν

h2 −
ρ

2h

)
uk

n−1 +
(N(α)
1 − α

− Fk
k−1 +

2ν
h2

)
uk

n +
(
−
ν

h2 +
ρ

2h

)
uk

n+1 =

k−2∑
q=1

(Ck
quq−1

n + Dk
quq

n + Fk
quq+1

n )

+ Ck
k−1uk−2

n + Dk
k−1uk−1

n + (Ck
0 + Dk

0)u0
n + Fk

0u1
n +
N(α)
1 − α

Eα(−µαtαk )u0
n + f (xn, tk);

(3.11)

although these apply as u−1
n = u0

n − τ
∂u0

n
∂t + τ2

2
∂2u0

n
∂t2 + O(τ3), here, we consider the case where ∂u(x,0)

∂t =
∂2u(x,0)
∂t2 = 0, so u−1

n = u0
n.

Using Eqs (3.9)–(3.11) we can express the numerical scheme in the following matrix form:

PkUk = Qk + Rk + Sk, (3.12)

where,

Pk = tri
[
−
ν

h2 −
ρ

2h
,
N(α)
1 − α

− Fk
k−1 +

2ν
h2 , −

ν

h2 +
ρ

2h

]
, 1 ≤ k ≤ Mt, (3.13)

Qk =


(C1

0 + D1
0 + ϑ1)U0, k = 1,

(C2
0 + D2

0 + C2
1 + ϑ2)U0 + (F2

0 + D2
1)U1, k = 2,∑k−2

q=1(Ck
quq−1

n + Dk
quq

n + Fk
quq+1

n )
+Ck

k−1uk−2
n + Dk

k−1uk−1
n + (Ck

0 + Dk
0 + ϑk)u0

n + Fk
0u1

n, 2 < k ≤ Mt.

ϑk =
N(α)
1 − α

Eα(−µαtαk ),

Uk = [uk
1, . . . , u

k
n, . . . , u

k
Nx−1]T ,

Rk =
[( ν

h2 +
ρ

2h

)
uk

0, . . . ,
( ν
h2 −

ρ

2h

)
uk

Nx

]T
,

Sk = [ f k
1 , . . . , f k

n , . . . , f k
Nx−1]T . (3.14)

4. Stability analysis

Let the solution Uk
n, n = 0, 1, 2, . . . ,Nx, k = 0, 1, 2, . . . ,Mt, be an approximation of the equation

given by (3.9), and the truncation error is defined as εk
n = uk

n − Uk
n. Since Eq (3.9) is satisfied by the

approximate solution, by considering the error equation after substituting εk
n , we obtain the following

for k = 1, 2
a1ε

1
n−1 + b1ε

1
n + c1ε

1
n+1 = (C1

0 + D1
0 + ϑ1)ε0

n , (4.1)
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a2ε
2
n−1 + b2ε

2
n + c2ε

2
n+1 = (C2

0 + D2
0 + C2

1 + ϑ2)ε0
n + (F2

0 + D2
1)ε1

n , (4.2)

and for k > 2

akε
k
n−1 + bkε

k
n + ckε

k
n+1 =

k−2∑
q=1

(Ck
qε

q−1
n + Dk

qε
q
n + Fk

qε
q+1
n ) + Ck

k−1ε
k−2
n + Dk

k−1ε
k−1
n

+ (Ck
0 + Dk

0 + ϑk)ε0
n + Fk

0ε
1
n , (4.3)

where ak = − ν
h2 −

ρ

2h , bk =
N(α)
1−α − Fk

k−1 + 2ν
h2 , and ck = − ν

h2 +
ρ

2h , for all k = 1, 2, . . . ,Mt. Consider the
grid function

εk(x) =


0, 0 ≤ x ≤ x 1

2
,

εk
n , xn− 1

2
≤ x ≤ xn+ 1

2
, 1 ≤ n ≤ Nx − 1,

0, xNx−
1
2
≤ x ≤ xNx ,

which has the following Fourier series expansion

εk(x) =

∞∑
l=−∞

ηk(l)e
i2πlx

L , k = 1, 2, . . . ,Mt,

where

ηk(l) =
1
L

∫ L

0
εk(ζ)e

−i2πlζ
L dζ,

represents the discrete Fourier coefficients. Introducing the Parseval’s identity (for the discrete Fourier
transform) ∫ L

0
|εk(x)|2dx =

∞∑
l=−∞

|ηk(l)|2,

and the norm

‖εk‖2 =

(Nx−1∑
n=1

h|εk
n |

2
) 1

2

=

(∫ L

0
|εk

n |
2dx

) 1
2

,

gives

‖εk‖22 =

∞∑
l=−∞

|ηk(l)|2.

Based on the above analysis, the solution of Eqs (4.1)–(4.3) takes the form εk
n = ηkeiβnh, where β =

2πl/L; after simplifying the equations we obtain the following inequalities at different time levels.
Now, for k = 1, Eq (4.1) yields

(a1e−iβh + b1 + c1eiβh)η1 = (C1
0 + D1

0 + ϑ1)η0.

Taking the modulus on both sides, we obtain

|((a1 + c1) cos(βh) + i(−a1 + c1) sin(βh) + b1)η1| ≤ |(C1
0 + D1

0 + ϑ1)||η0|

AIMS Mathematics Volume 7, Issue 9, 17252–17268.



17260

which implies

|η1| ≤
|(C1

0 + D1
0 + ϑ1)|∣∣∣∣2ν

h2 (1 − cos(βh)) +
N(α)
1−α − F1

0 + iρ sin(βh)
h

∣∣∣∣ |η0|.

As h and τ approach zero, we obtain the condition |η1| ≤ |η0|.
Using the inequality obtained for k = 1 and applying the same procedure we get the following

inequality for k = 2:

|η2| ≤
|(C2

0 + D2
0 + C2

1 + ϑ2) + (F2
0 + D2

1)|∣∣∣∣2ν
h2 (1 − cos(βh)) +

N(α)
1−α − F2

1 + iρ sin(βh)
h

∣∣∣∣ |η0|;

thus, we get that |η2| ≤ |η0| as τ → 0. Now, we assume that the inequality holds for m = 3, . . . , k − 1
that is

|ηm| ≤ |η0|, (4.4)

and we will further prove the same for m = k; from Eqs (4.3) and (4.4) we obtain the

|ηk| ≤
|
∑k−2

q=1(Ck
q + Dk

q + Fk
q) + Ck

k−1 + Dk
k−1 + (Ck

0 + Dk
0 + ϑk) + Fk

0|

|(ak + ck) cos(βh) + i(−ak + ck) sin(βh) + bk|
|η0|

≤
|
∑k−2

q=1 Dk
q + Ck

k−1 + Dk
k−1 + (Dk

0 + ϑk)|∣∣∣∣2ν
h2 (1 − cos(βh)) +

N(α)
1−α − Fk

k−1 + iρ sin(βh)
h

∣∣∣∣ |η0|. [from Eq (3.6)]

It is clear from previous analysis that as h, τ→ 0, |ηk| ≤ |η0|, which implies |εk| ≤ |ε0|,∀ k = 1, 2, . . . ,Mt;
thus, we prove, by following the process of mathematical induction, that the numerical scheme is
unconditionally stable.

5. Numerical illustrations

In this section, to demonstrate the efficiency and viability of the scheme and validate the
computational algorithm and theoretical findings, we consider a test example; the aim was to solve
them using MATLAB R2021b. The L2-norm and relative error measures are defined as

ENx,Mt
2 = ‖U − u‖2 = max

0≤k≤Mt

√√
h

Nx∑
n=0

|U(xn, tk) − uk
n|

2,

and

ENx,Mt
R =

|U(xn, tk) − uk
n|

|uk
n|

,

respectively. Moreover, to show the high precision achieved by the numerical scheme, we compute the
order of convergence, ordNx,Mt , using the formula

ordNx,Mt =
ln(ENx,Mt

2 /E2Nx,2Mt
2 )

ln 2
.
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To prove the proficiency of the proposed numerical scheme, the results have been compiled to
present in the form of tables and graphs. All graphs were drawn by taking Nx = Mt = 64, and
all tables were prepared by taking Nx = Mt. In Example 5.1, we solve the considered problem in
the computational domain [0, 1] with T = 1 for different values of Nx and Mt. The efficiency and
accuracy of the new scheme have been verified using the results provided in Table 1. From the orders
of convergence provided in these tables, the proposed numerical method is shown to be second-order
accurate in both directions. The CPU time is also presented in this table, which reveals that the time
taken to solve the problem using the proposed scheme is much less. Also, the relative error measures
for various values of x and t are shown in Table 2.

To explore the behavior of the solution to the problem, a surface plot of the approximate solution
was constructed and is provided in Figure 1(a). In addition, the approximation of the solution at
different time levels is provided in Figure 1(b). A comparison between the numerical and the exact
solution is presented in Figure 2 accompanied by the corresponding error measures; this shows that the
approximate solution is quite near to the actual solution.

Table 1. Errors in L2-norm and orders of convergence, with CPU time in seconds, for
Example 5.1.

Number of nodal points
α 16 32 64 128 256
0.1 2.09E − 03 5.22E − 04 1.31E − 04 3.26E − 05 8.16E − 06

2.0014 1.9945 2.0066 1.9982
0.3 2.04E − 03 5.09E − 04 1.28E − 04 3.19E − 05 7.99E − 06

2.0028 1.9915 2.0045 1.9973
0.5 1.96E − 03 4.93E − 04 1.24E − 04 3.10E − 05 7.76E − 06

1.9912 1.9912 2.0000 1.9981
0.7 2.36E − 03 6.11E − 04 1.56E − 04 3.92E − 05 9.86E − 06

1.9495 1.9696 1.9926 1.9912
0.9 2.24E − 01 7.84E − 02 2.22E − 02 5.85E − 03 1.50E − 03

1.5146 1.8203 1.9241 1.9635
CPU-time 0.0291 0.0483 0.0996 0.6540 1.1752

Table 2. Relative errors at different values of x and t, α = 0.3 and M = N = 64 for Example
5.1.

t
x 0.2 0.4 0.6 0.8
0.1 8.9306E − 05 1.7975E − 04 2.0089E − 04 2.0906E − 04
0.2 6.2970E − 05 1.6102E − 04 1.8394E − 04 1.9278E − 04
0.4 3.6918E − 05 1.4247E − 04 1.6713E − 04 1.7664E − 04
0.6 1.0185E − 05 1.2342E − 04 1.4987E − 04 1.6006E − 04
0.8 1.8108E − 05 1.0327E − 04 1.3161E − 04 1.4253E − 04
0.9 5.4037E − 05 7.7708E − 05 1.0845E − 04 1.2030E − 04
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Figure 1. Numerical solution for Example 5.1 for α = 0.4.
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Figure 2. Comparison of the exact and numerical solutions for Example 5.1 at t = 0.5 and
given α = 0.4.

Example 5.1. Consider the problem described by Eq (3.1) with ν = ρ = 1. In addition, the initial and
boundary conditions and the source term are calculated using the exact solution of the model given by
u = sin(πx)t2.

Example 5.2. Consider the problem described by Eq (3.1) with ν = 2 and ρ = 3. In addition, the initial
and boundary conditions and the source term are calculated using the exact solution of the model given
by u = x2(x3 − 5

2 x2 + 2x − 1
2 )t4.

Let us look at another example to support the accuracy of the above-mentioned findings and
observations. In this case, we also considered an example for which the exact answer is known solely
to ensure the algorithm’s accuracy. Tables and graphs are used to illustrate the numerical results. In this

AIMS Mathematics Volume 7, Issue 9, 17252–17268.



17263

context, Figure 3(a) is the graphical representation of the approximate solution for α = 0.8. However,
Figure 3(b) represents the variation in the behavior of the numerical solution with varying t, and for
a fixed α = 0.8. In addition, Figure 4 shows a comparison of the approximate and actual solutions
at t = 0.5 given α = 0.8 and the corresponding error measures; moreover, the figure presents the
accuracy of the numerical algorithm graphically. Next, Table 3 summarizes the error that occurred
while computing the solution to Example 5.2 numerically for various values of α. The orders of
convergence for each value of α, along with the CPU time taken to calculate the solution, are also
given. Table 4 contains the relative error measures for different values of x and t. These tabulated results
indicate that the proposed scheme is accurate and can be used to solve fractional Partial Differential
Equations (PDEs) arising in different areas efficiently.
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Figure 3. Numerical solution for Example 5.2 for α = 0.8.
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Figure 4. Comparison of the exact and numerical solutions to Example 5.2 at t = 0.5, and
for α = 0.8.

AIMS Mathematics Volume 7, Issue 9, 17252–17268.



17264

Table 3. Errors in L2-norm and orders of convergence, with CPU time in seconds, for
Example 5.2.

Number of nodal points
α 16 32 64 128 256
0.1 2.31E − 04 5.79E − 05 1.45E − 05 3.62E − 06 9.06E − 07

1.9963 1.9975 2.0020 1.9984
0.3 2.30E − 04 5.78E − 05 1.45E − 05 3.61E − 06 9.04E − 07

1.9925 1.9950 2.0060 1.9976
0.5 2.29E − 04 5.75E − 05 1.44E − 05 3.60E − 06 8.99E − 07

1.9937 1.9975 2.0000 2.0016
0.7 2.27E − 04 5.68E − 05 1.42E − 05 3.56E − 06 8.90E − 07

1.9987 2.0000 1.9959 2.0000
0.9 1.90E − 04 5.10E − 05 1.32E − 05 3.37E − 06 8.51E − 07

1.8974 1.9500 1.9697 1.9855
CPU-time 0.0331 0.0483 0.0986 0.3990 1.0162

Table 4. Relative errors at different values of x and t, α = 0.5 and M = N = 64 for Example
5.2.

t
x 0.2 0.4 0.6 0.8
0.1 3.2653E − 02 3.2896E − 02 3.2955E − 02 3.2979E − 02
0.2 3.0812E − 03 3.1257E − 03 3.1365E − 03 3.1408E − 03
0.4 2.5169E − 03 2.5758E − 03 2.5903E − 03 2.5964E − 03
0.6 8.0655E − 04 8.1806E − 04 8.1993E − 04 8.2025E − 04
0.8 1.6893E − 03 1.7200E − 03 1.7267E − 03 1.7291E − 03
0.9 1.7331E − 02 1.7562E − 02 1.7613E − 02 1.7632E − 02

In the next example, we include a reaction term in the advection dispersion equation; thus, the
equation is termed as a time-fractional advection-dispersion-reaction equation, which has been widely
studied for the solute transport processes [26]. The equation is given by

MABC
0 Dα

t u = ν
∂2u
∂x2 − ρ

∂u
∂x

+ κu + f (x, t), 0 < x < 1, 0 < t ≤ 1. (5.1)

Example 5.3. Consider the problem described by Eq (5.1) with ν = 1, ρ = 3 and κ = 2. In addition,
the initial and boundary conditions and the source term are calculated using the exact solution of the
model given by u = x(x − 1)t2.

This example also shows the viability of the scheme, as can be confirmed by the numerical results
that we have illustrated in Tables 5 and 6. Figure 5(a) presents the graph of the approximate solution
and Figure 5(b) displays the numerical solution at distinct time levels for α = 0.8. In addition
Figure 6 shows a comparison of the approximate and actual solutions at t = 0.5 given α = 0.4 and the
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corresponding error measures; moreover, the figure presents the accuracy of the numerical algorithm
graphically. The orders of convergence for each value of α along with the CPU time taken to calculate
the solution are also given. The plots and tabulated results show the efficiency of the scheme, which
can be applied to a variety of time-fractional PDEs.
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Figure 5. Numerical solution for Example 5.3 for α = 0.8.
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Figure 6. Comparison of the exact and numerical solutions to Example 5.3 at t = 0.5, and
for α = 0.4.
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Table 5. Errors in L2-norm and orders of convergence, with CPU time in seconds, for
Example 5.3.

Number of nodal points
α 16 32 64 128 256
0.1 6.13E − 06 1.47E − 06 3.55E − 07 8.59E − 08 2.08E − 08

2.0601 2.0499 2.0471 2.0461
0.3 1.73E − 05 4.04E − 06 9.49E − 07 2.25E − 07 5.36E − 08

2.0983 2.0899 2.0765 2.0696
0.5 2.90E − 05 6.61E − 06 1.54E − 06 3.65E − 07 8.76E − 08

2.1333 2.1017 2.0770 2.0589
0.7 1.47E − 04 4.03E − 05 1.09E − 05 2.81E − 06 7.16E − 07

1.8670 1.8865 1.9557 1.9725
0.9 8.35E − 02 2.22E − 02 6.26E − 03 1.65E − 03 4.23E − 04

1.9112 1.8263 1.9237 1.9637
CPU-time 0.0401 0.0642 0.0992 0.42901 1.1769

Table 6. Relative errors at different values of x and t, α = 0.4 and M = N = 64 for Example
5.3.

t
x 0.2 0.4 0.6 0.8
0.1 5.8680E − 05 1.7008E − 05 1.1440E − 07 4.9160E − 06
0.2 8.4919E − 05 2.4622E − 05 1.1749E − 05 7.1190E − 06
0.4 1.1261E − 04 3.2670E − 05 1.5595E − 05 9.4510E − 06
0.6 1.3892E − 04 4.0327E − 05 1.9257E − 05 1.1672E − 05
0.8 1.6122E − 04 4.6819E − 05 2.2362E − 05 1.3556E − 05
0.9 1.8057E − 04 5.2448E − 05 2.5053E − 05 1.5189E − 05

6. Conclusions

In this paper, we have developed a novel approximation method for the MABC derivative of the
fractional-order α of a function f (t) ∈ L1(0, 1). Further, the numerical estimation of the MABC
derivative has been used to solve a time-fractional advection-dispersion equation. The proposed
numerical scheme is proficient and gives the second-order of accuracy in both the temporal and spatial
directions. Moreover, using Fourier analysis it has been proved that the scheme is unconditionally
stable. Furthermore, two test problems were solved to validate the theoretical findings. The tabulated
results and numerical plots show that the solution obtained by using the proposed numerical technique
is completely concordant with the exact solution. Regarding the application, one can apply the present
numerical approach to a wide range of problems defined in terms of MABC derivatives encountered in
science and technology.
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