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Abstract: In this paper, we study the regularity and energy conservation of the weak solutions for
compressible ideal Hall-magnetohydrodynamic (Hall-MHD) system, where (¢, x) € (0, T)xT¢(d > 1).
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1. Introduction

In this work, we consider the energy conservation for weak solutions of the compressible ideal
Hall-magnetohydrodynamic (Hall-MHD) equations

0,(pu) + diviou ® u) + Vp — jx b =0,
i X b

a,b+d,Vx(%)—V><(uxb):o,

0,0 + div(pu) =0,

divb =0,

(1.1)

where p > 0 is the fluid density, u is the velocity field, p is the pressure and b is the magnetic field. p
and p are scalars, d; represents the Hall coefficient and j = V X b.

The energy conservation of weak solutions of the Euler equations and the MHD equations is a hot
topic in recent decades. For the 3D Euler equations, Onsager [22] put forward famous Onsager’s
conjecture in 1949, that is, the weak solution with Holder continuity of exponent § > % can guarantee
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the conservation of energy, but the weak solution of 6 < % is not necessary. In 1994, Eyink [12]
proved the first part of this conjecture by means of Fourier series expansion. Constantin et al. [7]
considered the conservation of energy when u € B ,a > % in the periodic domain. In 2008,
Cheskidov et al. [6] improved the previous results by using Littlewood-Paley decomposition.
Concerning the second part of conjecture, the first proof of the existence of a square summable weak
solution that does not preserve the energy is due to Scheffer in his pioneering paper [24]. A different
proof was later given by Shnirelman in [23]. Recently, non-conservation solutions for the 3D
incompressible Euler equations have been constructed up to the critical % regularity in [5, 17]. For the
compressible and incompressible Euler equations and Navier-Stokes equations, we can refer to
Feireisl [14], Chen and Yu [9] and Akramov et al. [1] etc. The energy conservation for the
incompressible Euler equations in bounded domains can be referred to [2,3,11,21].

Concerning the energy conservation for the MHD equations, there have been a few results.
Recently, Gao et al. [16] considered the local energy equation of weak solutions for the
incompressible MHD equations. Guo and Tan [15] studied the energy conservation equation of
the 3D incompressible MHD equations from the longitudinal and transverse terms on the basis of the
energy dissipation method. Wu and Tan [27] showed that the regularity of weak solutions of the
nonhomogeneous incompressible MHD equations in Besov space is sufficient to ensure the total
energy conservation. Wang and Liu [25] obtained the energy conservation for weak solutions of the
compressible non-resistive magnetohydrodynamic flows in a bounded domain Q c R?. For the ideal
MHD equations, Caflisch et al. [8] proved the energy conservation in a periodic domain with no
boundary effect. Kang and Lee [18] obtained the energy and cross-helicity conservation to the ideal
MHD equations in the whole space. Later on, Yu [28] improved the pervious results by using the
special structure of the nonlinear terms in the ideal MHD equations. Wang and Zuo [26] and
Zhang [29] proved the energy conservation of weak solutions to the 3D case in a bounded domain.
Bie et al. [4] studied the energy conservation of the compressible ideal MHD equations in periodic
domain by using commutator estimation.

The energy conservation for the Hall-MHD equations has also attracted the attention of many
researchers. Dumas and Sueur [10] studied the energy identity and magneto-helicity identity for the
incompressible Hall-MHD equations in the whole space R®. Kang et al. [19] obtained the energy
conservation for the nonhomogeneous incompressible ideal Hall-MHD equations in the periodic
domain T¢. Recently, Kang et al. [20] further considered the energy conservation of impressible
Hall-MHD equations in a bounded domain.

A natural question then is when the energy conservation holds true for the compressible ideal Hall-
MHD Eq (1.1). Compared with the compressible Euler equations, the ideal Hall-MHD equations have
higher nonlinearity in view of the coupling of the velocity field # and the magnetic field b. Moreover,

X b
the handling of the Hall term 4,V X (J—) brings us some difficulties. Specifically, we need to deal
Je

T
f f o(u X b)* - j*dxdt
0o Jrd

(see (3.8) below for details). In this paper, by using the commutator estimation similar to that used in [7]
and the regularization method used in [14], we obtain sufficient conditions for energy conservation of
system (1.1). Our result establishes local energy conservation for weak solutions to system (1.1) under

with the following item
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the additional assumption that the velocity field u satisfies the condition divu € L'.
Before giving the result of this paper, we define the pressure potential as

0
P(p) =p f1 %dh (1.2)

The main result of this paper is stated as follows.

Theorem 1.1. Let the space dimension d > 1 and (p, u, p, b) be a solution of system (1.1) in the sense
of distributions. Assume

u,b € BY((0,T)x T, p,pu, je By*((0,T) x T),
O<p<p<p ae in©0T)xT

for some constants p, p such that
1
B> rnax{l - 2a, 5(1 - cx)} .
Assume further that

divu € L'((0,T) x T%),  p € Clp,pl. (1.3)

Then the energy is locally conserved, that is

1 1 T1
5ol + SIbF + Peo)) + d1v[§p|u|2 + P(p) + p(p))]

_ div[(ux b) X b] + div[d,(j ; b b)] ~0 (1.4)

in the sense of distributions on (0, T) x T,
2. Preliminaries

In this section, we firstly recall some properties of the Besov space B, *(€2), where a € (0, 1) and
Q = (0,T) x T¢. The said Besov space comprises those functions w for which the norm

lw(- + &) — wllzr@n@-¢)
”wHBg’“’(Q) = ||lwllzr) + sup " 2.1)
£eQ) |§|

is finite (here Q — & ={x - & : x € Q}).
Let J € CX(RY) for N = d or N = d + 1 (according to the choice of Q) be a standard mollifying
kernel and set

1
I = I C),

with the notation w* = J¢ * w.
Next, we introduce two lemmas about the properties of mollifiers.
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Lemma 2.1. ([13])If1 < p<ooand f € L' (R* X Q), then we get

loc

ff—>f inl’

loc

(R" x Q).
Lemma 2.2. ([27]) Let w € By (Q) with 1 < p < oo, and & > 0. Then we have
llw® — W) < CGQHWHBZ’”(Q) (2.2)

and
-1
IVwlr@) < Ce” ||0)||Bg'°°(Q)- (2.3)

Finally, let us recall the following two commonly used formulas for curl, that is,

VX(AXB)=(B-V)A-(A-V)B+(V-BA—(V-BA, (2.4)
div(Ax B) = B- (Vx A) — A - (V X B). (2.5)

3. Proof of Theorem 1.1

We mollify the momentum Eq (1.1); in time and space, and the corresponding symbols are
described in Section 2,

0, (pu)* + div(pu @ u)* + Vp(p) — (j X b)* = 0. (3.1

Take a sequence ps € C [8 p] which converges uniformly to p € C[Q, o], that is, for each 6 > 0,

lp = psllze < 0.

According to the definition of P in (1.2), we give the definition of Py as follows,

Ps=p f "0, (3.2)
1

r

It follows from (3.1) that

Bi(pu)* + divipu ® u)* + V(pi(p)) — (j X b)° = V[pi(o) - p(p)].

Letp € C57((0,T) X T%) be a test function. Multiplying with ¢u¢ and integrating in time and space give

T T T
f f 0:(ou) - pudxdt + f f div(ou @ u)® - pudxdt — f f (j X b)¢ - pudxdt
0 JTd 0 Jrd 0o Jrd

T T
+ f f V(e - pudid = f f VIpE(o) — p )] - oucdxdr (3.3)
0 Td 0 Td

Take >0 small enough so that supp ¢ € (¢, T — €) X T¢. We use an appropriate commutator, as

T T
f f B,(pu) - pu‘dxdt + f f div((ou)* ® u) - pu‘dxdi
0 Td 0 Td
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T T
+f f¢(uxb)6~jedxdt+f fV(p(;(pf))-gpudedt
0o Jr 0o Jr
def

=+ L5+ 5+ 15+ 15, (3.4)

where

T
I = f f 0,(p“uc — (pu)°) - pudxdt,
0 Jrd

T
I5 = f f div((pu) ® u — (ou ® u)®) - pudxdt,
d
oT T
I = f f [(FXb) - u+ (uxb) - jledxdt,
0 Jrd

T
= f f VIps(p®) — p5p)] - pu‘dxdt,
0 Td
T
15 :f f Vips(p) — p<(p)] - pudxdt.
0 Td

In what follows, we handle each item in (3.4). For the first integral term of the left hand side of (3.4),

it follows that
T T 1
f f B,(puc) - udxdr = f f (gppf|u5|2+—gop‘ﬁt(|u6|2))dxdt. (3.5)
0 Td 0 Td 2

For the second term, we mollify the continuity Eq (1.1); as
0,0 + div(pu)© = 0, (3.6)

and compute

T
f div((pu) ® u®) - pudxdt
0o Jm

T
= —f f ((ou) ® u°) : V(pu)dxdt
0o Jre

T T
= - f f e((pu)* @ u) : V(u)dxdt — f f ((ow)* ® u®) : (Vo ® u)dxdt
0 J1¢ 0 J1d

T T
—=5 [ [ stowr - vautrasde~ [ [ Gowr Vo
2Jo Jm 0 JT¢

r T
= lf f le((,D(pu)f)luEFdxdt _ f f ((pu)f . V90)|u€|2dxdt
2 0 Td 0 Td

g T
= l f f (VQD . (pu)E + ¢diV(pu)E)|uE|2dxdt _ f f ((pu)g ) Vg0)|u€|2dxdt
2 0 Td 0 -

1 (7 I
=—= f f oot luPdxdt — - f f (Vo - (ow)*)|u|*dxdt. (3.7)
2 0 Td 2 0 Td
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For the third integral of the left hand side of (3.4), we first mollify the Eq (1.1), and multiply b€ as
1 i X b\
SO +dy ¥ x (2] b= v x ux ) b =0,
p

Then using (2.5), we get

T
f fgo(uxb)f-jfdxdt
0 Td
T T
= f f oV X (u X b) - bdxdt — f f @div((u x b)¢ x b)dxdt
0 Td 0 Td
T T
:f fgon(uxb)E-bdedt+f fch'((qu)EXbE)dxdt
0 Td 0 Td
1T r i X b\
- - f f 00,(1bP)dxdt + f f wd,Vx(L) - bdxd
2Jo Jm 0 Jr¢ P
T
+f ngo-[(qu)ebe]dxdt
d
10 TT T
=—= f f ©,|b|*dxdt + f f Vo - [(u X b)* X b)dxdt
2 0 Td 0 Td
T i X b\€ T i X b\¢
; f f od; div((’>< ) xbf)]dde f f ¢d,(fx ) . Fdxdt
0 Jr P 0 Jr1¢ P
1 T T
=—= f f @b P dxdt + f f Vo - [(u X b)¢ X b)dxdt
2 0 Td 0 Td
T . b € T . b €
_f fd,((]x ) be)-Vgodxdt+f f(pd,(]x ) - jedxdt. (3.8)
0 Jr¢ P 0 Jr¢ P

For the fourth integral, due to the chain rule and the mollified mass Eq (3.6), we observe that

0,Ps(p%) + u°VPs(p°) + Ps(p)pdivu = Py(p°)div(p“u — (pu)°).
By the definition of Ps in (3.2), we have
P P5(p%) = Ps(p°) + ps(0°),

After these preparations, we can compute the fourth integral as

T
f f ou® - Vps(o)dxdt
0o Jr¢

T T
Vgo~u€p5(pe)dxdt—f fgop(;(pe)divuedxdt
0o Jr

J
J

_ fT d
T T
=— f Vo - ufps(p)dxdt — f f ¢ [0°P5(0°) — Ps(p®)] divu‘dxdt
0 Td 0 Td
T T
= - f f Vo - ups(p©)dxdt + f f @ [0;Ps(0°) + u® - VPs(p) + Ps(p)divu®| dxdt
0 Jm 0 J
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T
f @P(p)div(pu® — (ou))dxdt
0

T T T
f f Vo - ups(p®)dxdt — f f @ Ps(0)dxdt — f f Vo - Ps(p°)udxdt
0 0o Jr 0 Jrd
- f f @P(p)div(pu® — (pu))dxdt. (3.9
0o Jm

Thus, combining (3.4), (3.5) and (3.7)—(3.9) yields

T 1 1
f f got(—/oflufl2 + P+ P(g(pf))dxdt
0 Td 2 2

T
1
t [ [ T30t + oot + Patpanas
0

Td

T T
—f f V¢-[(uxb)fxbf]dxdz+f f V¢-d,[(]
0 Jrd 0 Jrd
5 T T jx b\
= - I - ©P (o u® — (pu)*)dxdt + wd; - jodxdt. .
< $(0°)div(pu® ) )dxd d “dxd (3.10)
P 0 Jr 0 Jr P

To prove Theorem 1.1, we need to show that the left side of (3.10) converges to the left side of (1.4)
as first € and then ¢ tend to zero. In fact, for each fixed 6 > 0, when € — 0, using the standard properties
of mollification, we have the following limit:

T 1 1
f f ¢t(5pf|uf|2+—|bf|2+P5<pf>)dxdt

T
w [ [ ver | gtomt + pato + Patpou ]dxdt

b) x bf]dxdz

T
f f Vo - [(u x b)* x b]dxdr + f f Vo d, ) xb‘]dxdt
d
P
- f f o ol + S0P + Pop) Jdxdr
0 Td
T
+f fch [ p|u| +p5(p)+P5(p)]udxdt
Td
ffV(,o (uxb)xbdxdt+f fV(,o d; )xbdxdt. G.11)

Here, we only give the proof of the following limit :

T T
f f Vo - Ps(0®)u‘dxdt — f f Vo - Ps(o)udxdt (3.12)
0 Jrd 0 Jrd

as € — 0. To prove (3.12), by the definition of P;s in (3.2), we set

g/(r) — p5(2r).
r
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By ps(p) € C™[p, pl, we can obtain

g'(r) € C(0,p], g(r) € C(0,p]
and

Ps(p) = p(g(p) — g(1)),

Ps(p°) = p“(g(p°) — g(1)).
So,

Ps(p)u® — Ps(pu

= (Ps(p) = Ps(p))u’ + Ps(p)(u’ — u)

= [p°(8(0°) — &(1) — p(g(p) — g()]u* + Ps(p)(u® — u)

= [p*(g(p°) = 8(P)) + g(P)(p° = p) + g(D)(p — p)]u® + Ps(p)(u — u)

= [8'@)p° — P + 8(P)p = p) + g(1)(p — p)]u‘ + Ps(p)(u — w), (3.13)

we use the differential mean value theorem in the last equation, where £ is a function between p and
p¢. According to (3.13), we get

T T
V(p-P(;(pE)uédxdt—f ngD-P(;(p)udxdt
Td 0 Jrd

T
< fo f Ve(Ps(p° ) — Py(oy)ldxdi
Td

< C(p.p. T. THlgller (o = pllzallo Nz lullzs + 1o = pllzallueclz
+ 10" = pllpa s + llu® — ull»)
<C,p,T, Td)||<P||cl(Eﬁllpllzﬁ,wllullgg,m + eﬁ||p||B€_w||u||B(;,m
- 3 - 3 3
+ lloll o llullg= + €Ml

-0

as € — 0, which completes the proof of (3.12).
Next, we will show that the right hand side of (3.11) converges to

T
f f‘ﬁr( plul’ +—|b| + P(p) dXdl+f thp plul? +p(p)+P(p)]udxdt

f f Vo - [(ux b) x bldxdt + f f Vo - d, )x b]dxdt 3.14)
Td
aso — 0.
From the choice of ps, we have
T
‘f fd Vo - (ps(p) — plp))udxdt| < Cllgllct|lps — pllz=llulls < Clp, u)o. (3.15)
0 Jr
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For the terms containing Ps(p), notice that

|Ps(p) = P(p)| < pflp Im(r)r—;p(r)ldr < |lps = plle=p flp %dr < (1 +p)é.
Hence we can estimate
y @i(Ps(p) = P(p))dxdt| < Cligllcr (1 + [lpll)é < C(@)d, (3.16)
y Vo - (Ps(p) = P(P))udxdt‘ < Cliglic |11 + pllzllulls6 < Clep, u)é. (3.17)

Combining with (3.15)-(3.17), when 6 — 0, we obtain the right side of (3.11) converges to (3.14).
Thus, according to (3.10), we need to show that

T
I =1,2,3,4,5), f f @P}(0)div(pu’ — (ou)°)dxdt
0 Td

T . b €
f f god,(] X ) Fdxdt
0 Jrd P

converge to zero as first € and then ¢ tend to zero.
First it is easy to check

T . b
f f ¢d,(JX Fdxdt — f f wd2
0 JTd 1Y%

as € — 0. For I7, we observe that

and

) jdxdi =0 (3.13)

= (o = = p)u - - | fT o, SO T
—p(t, ) (u(t —1,x — &) — u(t, x))dédr

def ¢ €
= I +1,. (3.19)

T T
I = f f 0.5, - pudxdt + f f 0,15, - pu‘dxdt. (3.20)
0o Jr o Jrd

Applying (2.2), (2.3), integration by parts and Holder inequality, we get

T
f@,]fl -gouedxdt‘
0 Jr
T

ALL(p° — P — u)] - soufdxdr\
Td

0
T T
< f f 60 — ) — ) - uldxdt + f f (0" — Pt — 1) - Oyuldxd
0 Td 0 Td
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< Mlellelle® = pllsw) - 1 = ullz@) - 1l @)
+ [lllcollp® _p||L3(Q) Nu® — M||L3(Q) : ||VME||L3(Q)
2 -1 2
< C||€0||clfﬁfa”P”BQWHU”Bg-w + Cllgllcoe’e”e” ol o=l [goe — 0 (3.21)

as € — O forany 2a + 8 > 1.
For the second integral of the right hand side of (3.20), using Fubini theorem, (2.2) and (2.3), Holder
inequality and integration by parts, we estimate

T
f f 0,15, - pudxdt
0 J1¢
T '3
f f ) f f F )l - .3~ &)
0 Td —e JTINB(0,€)

—p(t, X)) (u(t — 7, x — &) — u(t, x))dédr| - gouedxdt‘

T €
[ [ [ rween-ra-g
0 J1¢ J—e JTnB0.6)

—p(t, x))(u(t — 7, x = &) — u(t, x)) - 9,(¢(t, x)u(t, x))dédrd xdt

€ T
f f f f U ol — T, x — £)
—€ TdﬂB(O,E) 0 Td

—p(t, X)) (u(t — 7, x — &) — u(t, x)) - (t, x)u(t, x)|dxdtdédr

€ T
+f f f (7, E)(p(t = 7, x = &)
—e JTNB(0,e) JO Td

—p(t, X)) (u(t — 7, x — &) — u(t, x)) - o(t, x)0u(t, x)|dxdtdédr
C €

e [ et = rx= 0 = pt )l
€ J-e JTnB(0,¢)

X [lu(t — 7, x = &) — ult, Ol w)llu(, Ollpsodédr

C €
tldloss [ [ - nr-8 - p 0l
€ J—e JTnB0,¢)

X lu(t =7, x = &) — ult, Dl 10 (2, Ol dédt
< C||<P||c'GﬁE“IIPIIBgmllullﬁg,m + CIIQDIICOSﬁE“E“_lIIPIIngIIuIIég,m -0 (3.22)

IA

IA

as € - Oforany 2a+ B > 1, where V. =Q N (Q + (1,¢)),|(1,&)| < €.
The estimate for /5 is similar,

(ou) ® u — (pu @ u)*
= ((ou) — (pu)) ® (u° — u) — f f JTE(pu)(t — 7, x = &)
—e JTINB(0,€)
— (pu)(t, x)) @ (u(t — 7, x — &) — u(t, x))dédr

def ¢ €

AIMS Mathematics Volume 7, Issue 9, 17150-17165.



17160

Thus,

T T
5= f f div(Z5,) - pudxdt + f f div(Z5,) - pudxdt.
0 JT1¢ 0 JT¢

Thanks to (2.2), (2.3), integration by parts and Holder inequality, we get

T
f f div(13,) - pudxdt
0o Jrd

T
f f div[((ou)® — pu) ® (u —u)] - gouedxdt‘
0 Jrd

T
< f I((ou)€ — pu) @ (u€ — u)u® - Voldxdt
0o Jrd

T
+ f f lo((pu)€ — pu) ® (u€ — u) : Vuldxdt
0o Jmw
< Clleller fﬁfa”pu”]}g*‘””u”é‘:vw + C||Q0||c0€ﬁ606a_1IIpullBg,wIIullég,w -0

as € — 0 forany 2a + 8 > 1.
For the second integral of the right hand side of (3.23), we have

T
‘ f f diV(I§2)-g0udedt‘
0 Td
T €
f f ai| f f J(n (Ut = 7, x — £) — (pu)(t, 1)
0 Td —€ TdﬂB(O,e)

Q@ u(t—1,x—§&) — u(t, x))dng] - oudxdt

2 -1 2
< C||90||c1éﬂE"IlpullBgmllullBg,m + Cllgllcoe’e”e” lloull o= llull o — O

as € — O forany 2a + 5 > 1.
Next we deal with I5. Denote

g1 =(xXb) -u" = (jxDb°)-u,
g = WXDb) - j —(u xb)- j.

T T
I = f f g 1dxdt + f f pgrdxdt = 5, + I5,.
0 Jrd 0 Jr )

Thus, one writes

Let us calculate I3, first, and I5, the same way. Similar to the estimate of /T and I3, we derive

X b= (X b
= (= )X (b —b) - f f F &)t -1 x — &)
—€ TdﬂB(O,E)
— j(t, x)) X (b(t — T, x — &) — b(t, x))dédt

dﬁf € €
= R| + R;.

(3.23)

(3.24)

(3.25)
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T T
I, = —f f R} - pu‘dxdt — f f RS - pu‘dxdt. (3.26)
0o Jm 0o Jr

Using (2.2) and Holder inequality, we get

T T
f f R - cpufdxdt‘ = ‘ f f [(j¢ = J) X (b* — b)] - pu‘dxdt
0 Jr 0o Jr

< CIIQDIICOEﬂG"IIJ'IIngIIbllBg’mllullBg»m -0 (3.27)

So,

ase — 0.
For the second integral of the right hand side of (3.26), we use (2.2), Holder inequality and Fubini
theorem to get that

T T €
f f R; - Wedxdl‘ = ‘ f f f f SO -1, x =& — j(1, X))
0 T 0 T4 J—e JTINB(0,e)

X (b(t — 1, x — &) — b(t, x))dédTt - pudxdt

< Cllwllcoeﬁé’lljllggmIIbIIBngIIMIIBng -0 (3.28)

ase — 0.
For I}, we observe that if p; € C*[p, p], then

|Ps(h) = ps(ho) = ps(ho)(h = ho)l < C(h — ho)?

for any h, hy € [p, p]. Note that the constant C can be chosen independently of £, /. Therefore

P (2, X)) = ps(p(t, X)) = ps(p(t, X)) (2, X) = p(t, )| < C(p (1, x) = p(t, X))?, (3.29)

and similarly,

IPs(o(t, 1) = ps(o(t, x)) = P, ))(p(t,y) = pt, )] < C(p(t,y) = p(t, x))*. (3.30)

Applying convolution with respect to y to (3.30) we get, after invoking Jensen’s inequality:

P5(o(t, %)) = ps(p(t, X)) = PiGo(t, )2, X) = p(t, )| < Cp(t, y) = p(t, x))* #, J°, (3.31)

where |x — y| < €. According to (3.29) and (3.31), one gets

|Ps(0 (2, X)) = ps(p(t, x| < C(p(t, x) = p(t, ))* + Clp(t, y) = p(t, X))* *, J<. (3.32)

We estimate

|14 =

T
[ [ 9ot - piton - gucaa
0 Td

T T
< f f leLps(0%) — pE(o)divucldids + f f Lps(0%) — PO - Veeldxds
0 Td 0 Td
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< Cllgllcoe® e lipllpllull gz + Cliglict€¥ € loll g ol gz — 0 (3.33)
3 3

as € — 0 for any 2 + @ > 1. Next, we show that /5 converges to zero as first € and then ¢ tend to zero,

15| <

T
[ [ vts0 - proneucard
0 Td

T T
< j(: ﬁd |[p§(,0) — pS(o)]edivuc|dxdt + ﬁ ﬁd |[p§(p) — (o) |V pulldxdt

< Cllgllcoll(ps — p)“lle=lidivec]lr + Cligllcil(ps — p)*Ilzes el
< Cligllcollps = plic=lidiva e + Cllgllerllps = pllzellullz
<2C6—-0 (3.34)

as 0 — 0. Finally, let us estimate

T
f fgoPg(pe)diV(pEuf—(pu)e)dxdt. (3.35)
0 Jr

We use (3.19) to split (3.35) into two parts, so we can estimate the first part as

T T
f f goPg(pE)diVIfldxdt’ = ’ f f @P5(p)div[(p® — p) (W — u)]dxdt
0 Td 0 Td

T
< fo fT V" — ) — Pyl

T
+ f oo = O = uYP (p°) Ve
0 T

< C”‘pHCOEﬁEQ“p”B?“’||M||B‘3”°°
+ Cliglicr e eIl o llull gz — O (3.36)
/ :

when € — 0 for any 28+« > 1. The second part is estimated similarly. Thus, combining (3.18)—(3.28)
and (3.33)—(3.36), we have

fOT fT Q01(%p|u|z - %Ibl2+P(p))dxdt+ fo ! fT w.[(%plulz +p(o) + P(p))u] Jeds

T T .
—f ngo-[(uxb)xb]dxdt+f fvgo-d,((ﬂ)xb)dxdz
0 Td 0 Td P
-0

as € — 0, which completes the proof of Theorem 1.1.
4. Conclusions

In this paper, we study the regularity and energy conservation of the weak solutions for
compressible ideal Hall-MHD equations, where (t,x) € (0,T) x T¢d > 1). Compared with the

AIMS Mathematics Volume 7, Issue 9, 17150-17165.
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compressible Euler equations, the ideal Hall-MHD equations have higher nonlinearity in view of the
coupling of the velocity field u and the magnetic field b. Then, by exploring the special structure of
the nonlinear terms in the model, we obtain the sufficient conditions for energy conservation under the
additional assumption that the velocity field u satisfies the condition divu € L'. Our main strategy
relies on commutator estimates.
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