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1. Introduction

The mean value calculation and upper bound estimation of exponential sums has always been a
classical problem in analytic number theory. Exponential sum method plays an important role in many
number theory problems. As a special kind of exponential sum, Gauss sum plays an important role
not only in the study of analytic number theory, but also in cryptography. Any substantial progress
in this field will play an important role in promoting the development of analytic number theory and
cryptography. In this paper, we will estimate and calculate the fourth power mean value of one kind
two-term exponential sums.

Let ¢ > 3 be a positive integer. For any integers m and n, the two-term exponential sums
G(m,n, k, h; q) are defined as follows:

q-1 k h

+

G(m,n,k,h;q)=2e(—m“ ”"),
q

a=

where e(y) = e and i = —1, k and h are both positive integers.
As a special form of exponential sums, we define the k-th Gauss sums G(m, k; g) as follows:

q-1 k
G(m,k;q) = Z e(%).

a=0
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In addition, another form of exponential sums

g-1 "
K q) = Z e(ma na)

a=0
(a,9)=1

which are the famous Kloosterman sums, and a denotes the multiplicative inverse of @ mod ¢, that
means aa = 1 mod gq.

The calculations of exponential sums are important in number theory, because they are related to
many classical mathematical problems, such as Waring’s problem. Many scholars have studied the
properties of G(m, n, k, h; g) in different forms, and obtained many interesting results, see [1-4]. For
example, H. Zhang and W. P. Zhang [5] obtained an important result of G(m, n, 3, 1; p) and proved an

identity
pzl (ma + na)
e

a=0

- 2p° —p*, if3fp-1,
2p° = 7p%, if3]p-1,

m=1

where p is an odd prime and ged (n, p) = 1.
Z. Y. Chen and W. P. Zhang [6] studied the hybrid mean value of the 4-th Gauss sums and the
Kloosterman sums, and obtain the following formula:

SEEE

a=0 c=1

p—1

=3p° - 3p° + 2p%a - 3p,

m=1

where p is an odd prime with p = 5 mod 8.
L. Chen and X. Wang [7] studied a kind of two-term exponential sums and obtained the following
formula:

2p%(p - 2), if p=12k+7,
. 2p°, if p= 12k + 11,
2p(p* = 10p —2a%), ifp =24k +1,
2p(p* —4p —2a%), if p =24k +5,
2p(p* —6p —2a%), if p=24k+13,
2p(p* —8p —2a%), if p=24k+17.

p-1

1
£ ma +a
e
a=0

m=1

More relevant to it, W. P. Zhang and D. Han [8] studied a kind of two-term exponential sums and
obtained an important result

— 5p4 _ 8p3 _p2.

6
-1
S (a3 + na)
2,
= p
The above formula gives the calculation formulae of the sixth mean value of exponential sums in

this form when k = 3 and 4 = 1. Inspired by the conclusion, we intended to calculate higher-order
forms, such as the case of k = 4 and 4 = 1 which are more meaningful. But this form of sixth mean
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value is too difficult to calculate, and some formulas have not been obtained yet. But yet, we can get a
result for the fourth mean value in this condition:

g-1 p-1|p- 4
>icmd g ZZ (“ +m")
m=0 m=0 | a=0

The problem in our paper is more complex than the results in [7] by L. Chen and X. Wang. First
of all, these are two completely different sums, and in this case m is multiplied by a instead of a*.
Secondly, their summation over m can get rid of the fourth power part of the expansion. Finally, the
summation over m in this paper can only deal with the first power part in the expansion process, which
means that we have to deal with a higher order trigonometric sum and solve a simultaneous congruence
equation. We not only give the essential relationship between the solution of the sum and the number
of solutions of the system of congruence equations, but also give a concise and good-looking result in
this high-dimensional case, this is also the difficulty of this paper.

Regarding this problem, we shall prove the following conclusions:

Theorem 1.1. Let p be a prime with p = 1 mod 4, then we have the asymptotic formula

~ 4
pzi (a4 + ma)
e
P

a=0

p-1

2,

m=0

=2p° + O(p?).

Theorem 1.2. Let p > 3 be a prime with p = 3 mod 4, then we have the identity

4
p—1
a + ma
e =
a=0

Corollary 1.1. Let p be a prime, we have the asymptotic formula

~ 4
pzi (a4 + ma)
e
P

a=0

p—1

2p° = 3p%, ifp=12k+1,
203 +p%,  ifp=12k+11.

m=0

p-1

2,

m=0

=2p* + 0(pd).

Notes. If p > 3, the corollary is obvious according to the theorems, now we declaration the condition
p <3.
If p = 2, according to Euler’s formula, we have

;e(a +ma)
= 4 1+e(1;m)
1+e(%)

= |1 + cosm + isina* + 16
16 = 2p°.

M_

3
=l
<

4

3
<

4
+ 16

Similarly, if p = 3 we can verify the corollary. So the corollary holds for all the primes.
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2. Several lemmas

In this section, we shall give six lemmas that are necessary in the proof of our theorems. According
to the elementary and analytical methods, we use the properties of Gauss sums and the character sums
to obtain the lemmas as follows:

Lemma 2.1. Let p be a prime with p = 4k + 1, A be a fourth-order character mod p, then we have the
estimation

(1) Ad* +b* —(@+b-1)-1)= 0(p?),
0

Il
(=]
S
Il

a

where T(1) = 25 ;é Ala)e (%) denotes the Gauss sums.
Proof. By using the properties of fourth-order character and complete residue systems, we know that
when a and b are integers, and they pass through a complete residue systems, a — 1, ab, ka, kb, a + b

and 2a + b also pass through a complete residue systems, then we have

p-1l p-1
(1) Ad* +b*—@+b-1)*"-1)
a=0 b=0
p—1 p-1
= 1) Z A4B -1 +6(b - 1> +4(b - 1) —4a(b - 1)} = 6a*(b - 1)* —4a’(b - 1))

i
- O
Sl
I
- O

=
|
<
|

A4 + 6b* + 4b — 4ab® — 6a*b* — 4a’b)

I
A
&

g

a=0 b=0
p-1 p-1
= () Z A(4b® + 6b + 4b — 4ab* — 6a°b* — 4a’b*)
a=0 b=1
p—1 p-1
TN IAT L T2 L AT 2 3
= 71 ADbHA4b +6b +4b —4a — 6a” —4a’).
a=0 b=1

For A be a fourth-order character mod p, then Z(b“) = 1, so we have

<
|
<
|

) A4b +6b +4b — 4a — 64> — 4d%)
a=0 b=1
p-1 p-1 p-1
= () Z A4 + 6b* + 4b — 4a® — 6a% — 4a) — () Z A—4d® — 64 — 4a)
a=0 b=0 a=0
p—-1 p-1
= 7(D)A2) Z A8L® + 120 + 8b — 8a® — 124> — 8a) + O(p)
a=0 b=0
p—-1 p-1
= 1(DAQ2) A(2b)° +3(2b)? + 4(2b) — (2a)’ — 3(2a)* — 4(2a)) + O(p).
a=0 b=0

According to the properties of the reduced residue system mod p, we are aware of that if a and b pass
through a reduced residue system mod p respectively, obviously, 2a and 2b also pass through the same
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reduced residue system mod p. So, in the formula ((2b)* + 3(2b)* + 4(2b) — (2a)® — 3(2a)* — 4(2a))
above, we change 2b into b, 2a into a, that equals (b* + 3b*> + 4b — a® — 3a*> — 4a) mod p. Therefore,
we can conclude that

p-1 p-1
7(D)A(2) A(2b)° +3(2b)* + 4(2b) — (2a)’ — 3(2a)* — 4(2a)) + O(p)

oo

= 7(D)AQ) Z AD® + 3% + 4b — &° — 3d® — 4a) + O(p)
o

= T(m(z)z AL +3* +3b+1+b+1-ad’-3a>-3a-1-a—-1)+O0(p)
oo

= 7(DAQR) Z A+ D>+ + 1) =(a+1) - (@+1)+0(p)
i

= 7(D)AQ) Z AL +b-a® —a) + O(p)
o

= 7(DA?2) Z AD® +30%a+3ba*> +a® + b+ a—a’ —a) + O(p)
-

= 7(DAQ) Z A +3b%a + 3ba* + b) + O(p)
i

= 7(D)AB) Z A +3b(2a + b)* + 4b) + O(p)
o

= 7(DAQ2) AD® + 3ba* + 4b) + O(p). 2.1
a=0 b=0

Let y, = (i), where (i) be the Legendre symbol, directly by using of the conclusions in the
reference [8, Lemma 1], we have

p—-1 p-1 p—1

_ 1 _

AB +3ba +4p) = X > C(1,0,2: pra(3b* + 12696 + 4b)
a=0 b=0 ) =

2 . p-l
= W Z Aa)y(1 — a) Z Y2(3b* + 126 + 4b)

= (-3 Z Aaya(1 - a) Z){z(b2 +4AL* + 4b)

p- p-1
= xa(-3) Z (@xa(1=a) D xa(b + HAD* + HA(b)
a b=
o o
= x2(=3) ) A@ -2d* +a) Z A(b® + 4b), (2.2)
a=1 b=0
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where

2
C(1,0,2: p) = e(%) = 7(r2).

S
—

Q
Il
o

Therefore, we have

p-1 p-1
(1) Ad*+b*—@+b-1*-1)
a=0 b=0
p—-1 p-1
= 7(DA2) AD® + 3bd® + 4b)
a=0 b=0
— p—l — p—l —
= 17(D)AQ)x2(-3) Z Aa)y-(1 - a) Z)cz(b2 +4)AD’ + 4b)
a=1 b=0
p-1

p-1
= 7(DAQW2(-3) ) Ad’ -2a* +a) Z A(D* + 4b).
b=0

Il
—_

a

From Weil’s classical work [9] we know that if y is a g-th-order character to the prime modulo p,
and if polynomial f(x) is not a perfect g-th power modulo p, then we have the estimate

N+H

D7 X)) = O(Vp),

x=N+1

where N and H are any positive integers. So from the estimate we have

p—1 p—1
(DA2)y(=3) Z Ad® - 24> + a) Z AD® + 4b)
b=0

a=1
= 0(pH). (2.3)
Similarly, we also have
p—-1 p-1
(1) Aa* +b*—(@+b-1*-1)
a=0 b=0
p—1 p—1

T(AN2(-3) Y| U@ = 2a* +a) )" AUb* +4b) + O(p)
a=1 b=0

= 0(p?). (2.4)

This proves Lemma 2.1.

Lemma 2.2. If p > 3 is a prime, x> denotes the Legendre symbol, then we have the following results:

p-1 p-1

22(6)p? + O(p), ifp=adk+1,
Y bt - -1 -1)={ A2
\/ﬁz OXZ(a + (a+ ) ) \/EXZ(4a3 +6a2+4a), lfp:4k+3

bS]

S
1l

a=
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Proof. From the properties of reduced residue system mod p and Gauss sums, we have

i
—

S
|

@+t —@+b-1)"-1)

S

i
- o
S5
I
- o

<
|
<
|

¥2(4b° + 6b% + 4b — 4ab® — 6a°b* — 4a’b)

S5
g

i
- o
S
I
- o

<
[
<
|

¥2(4b° + 6b* + 4b — 4ab® — 6a°b* — 4a’b)

S
[
g

a=0 b=1
p—-1 p-1 p-1
= \p X2(4b* + 6D + 4b — 4a® - 62> - 4a) - y2(-1) VP ) x2(4d’> + 6a° + 4a)
a=0 b=0 a=0
p—-1 p-1 p—1
= x> \p X280 + 12 + 8b — 8a® — 12a” — 8a) — y»(=1) \/‘mea +6a’ + 4a)
a=0 b=0 a=0
p—-1 p-1
= 2)Vp x2((2b) +3(2b)? + 4(2b) - (2a)° — 32a)* - 4(2a))
a=0 b=0
p-1
—x2(=D)VP D xa(4a’ + 62> + 4a)
a=0
p—1 p-1 p-l
= 02QVP ) ) xo((B’ +30 +4b - @ = 3d> - 4a) — xa(-1) VP ) xa(4d’ + 6a” + 4a)
a=0 b=0 a=0
p-1 p-1 p-1
= 2@VP ) D xal(b+ 1) + b+ 1) = @+ 1) = (a+ 1) = x2(-1) VP ) xa(4a® + 62> + 4a)
a=0 b=0 a=0
p—1 p—1 p—1
= x22)p X2(b* +b—a’ —a)— y,(-1)\p Z)(z(4a3 + 64’ + 4a). (2.5)
a=0 b=0 =

Let p be a prime with p = 4k + 1, note that y»(—1) = 1, then the formula (2.5) equals to

p-1 p-1
\p @+ = @+b-1)"-1)
a=0 b=0
p-1 p-1 p—1
= x22)+p ZXz(b3 + 3ba* + 4b) — @ZX2(403 + 6a* + 4a)
a=0 b= s
-1
= xQp- x23b) - Z)(z(%) NG Z J(da® + 60 + 4a)
b=1 a=0
b3+4b=0 mod p
p-1 p-1
3
= x22)p?- Z Xx2(6D) — \/I_?Z/\/z(4a3 + 64’ + 4a)
b=1 a=0
b?+1=0 mod p
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p—1

2026)p? = VP ) xa(4a’ +6a” + 4a)
a=0

= 212(6)p* + O(p). (2.6)

On the other hand, let p > 3 be an odd prime with p = 4k+3, y,(—1) = —1, then we have the identity

-1 p-1

2P O +b-d*-a)

B
=

S
- o
S

S|
—_ O

]

Xz(—b3 —b+d +a)

x2(2)\p

[

]

=
<

-1
—x2(2)/p Xz(b3 +b-a - a)

a= =0

= 0. 2.7)

N}
s &

(=]
(Sl

Combining the identities (2.5) and (2.7), for any prime p > 3, if p = 4k + 3, we obtain

NI xo@ +b* —(@a+b-1"-1)= Vpy.(4a® + 6a* + 4a). (2.8)

Combining the identities (2.6) and (2.8), for any prime p > 3, we have the following results:

p—1 p-1 3 )
2x2(6)p? + O(p), if p=4k+1,

Crbt—(a+ b1 -1 = X
\/1_); bZ:OXZ(a (a ) ) \/1—7)(2(4a3 +6a2+4a)’ lfp = 4k + 3.

This proves Lemma 2.2.

Lemma 2.3. Let p > 3 be a prime with p = 4k + 1, A be a fourth-order character mod p and y, denotes
the Legendre symbol, then we have the asymptotic formula

p=1 p=1 p—1 p-1 4o 4 4 4
d b*"—c" -1
E E e( @+ ¢ ))=3p2+0(p§).

a=0 b=0 c¢=0 d=0 p
p

Proof. Note that A is a fourth-order character mod p, and ), denotes the Legendre symbol, so, if
p = 1 mod 4, then from the formulas (2.3) and (2.4) we have

AIMS Mathematics Volume 7, Issue 9, 17045-17060.
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p=l p=1 p=1 p-1 4 4 4
+b*"—c" -1
- ZZZ (1 +/1(d)+)(2(d)+/l(d))e( (a < ))
a=0 b=0 ¢=0 d=0 p
a+b=c+1 mod p
p-1 p—1 p-1 p-1 p—1 p-1 4 4 4
d@d+b*—@+b—-1y-1)
= p PR (Ad) + x2(d) + Ad))e ( )
a=0 b=0 c¢=0 a=0 b=0 d=0 p
a*+b*=c*+1 mod p
a+b=c+1 mod p
-1 p-1 p—1 p-1
- T(/l)zz/l(a + b —(a+b-1 - 1) +1Q) Z/l(a + b —(@a+b-1)*=1)
a=0 b=0 a=0 b=0
p—1 p-1 p—1 p—-1 p-1
VP D @+ b —@+b=1 =D+p > > 31
a=0 b=0 a=0 b=0 ¢=0
a*+b*=c*+1 mod p
a+b=c+1 mod p
p—-1 p—1 p-1
= 20:(6)p® + T(DAR)(-3) Z Ad® - 24* + a) Z AL +4b)+p Y 1
a=1 a=0 b=0 c¢=0
a*+b*=c*+1 mod p
a+b=c+1 mod p
p-1 -1
+T(DA2x(-3) Y A - 2a* + a) Z Ab* +4b) + O(p)
a=1 b=0
p—-1 p-1 p-1
= p 1+ O0(p?), (2.9)
a=0 b=0 c¢=0

a*+b*=c*+1 mod p
a+b=c+1 mod p

where

p-1 44 p-1 42 p-l 42 p-1
Ze(m—)=2(1+)(2(d))e(m_): e(m ) Z(H)(z(d))e( )
P p =0 \P

From L. Chen and X. Wang [7] , for any prime p > 3, if p = 24k + 13 or p = 24k + 1, we have

p-1 p-1 p-1

> 1=3p=5-x(7). (2.10)

a=0 b=0 c¢=0
a*+b*=c*+1 mod p
a+b=c+1 mod p
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For any prime p > 3, if p = 24k + 5 or p = 24k + 17, we have

p—-1 p—1 p-1

1=3p—1-x:(7). @2.11)
a=0 b=0 c=0
a*+b4=c*+1 mod p
a+b=c+1 mod p

Thus, for any prime p > 3, we have the asymptotic formula

p—1 p=1 p-1 p-1 4 4 4

d b*—c" -1
ZZZZe( LBl ))=3p2+0(p3).
a=0 b=0 c=0 d=0
a+b=c+1 mod p

This proves Lemma 2.3.

Lemma 2.4. Let p > 3 be a prime with p = 4k+ 3, A be a fourth-order character mod p and y, denotes
the Legendre symbol, then we have the identity

1”2”2(3((1“((1 +bt—c —1))

-1

<
]

M
£y

a=0 b c=0 d=0
a+b=c+1 mod
p—1
3p% = 5p + xa(T)p + ix/ﬁzxz(4a3 +6a* +4a), ifp=12k+7,
— b=0
- =

397 = p+xa(Np +iNp ) xa(dd’ +6a° + 4a),  if p=12k+ 11,

Proof. Note that 7(y,) = i+/p when p = 3 mod 4, then from the definition of Gauss sums and
identity (2.8), we have

"“’”’Z“’zi (d4(a4+b4—c4—1))
e
a=0 b=0 c¢=0 d=0 p
a+b=c+1 mod p
p=1 p-1 p-1 p-1 4 4 4
dla+b*—-c"-1)
= > Z (1+X2(d))6’( )
a=0 b c=0 d=0
a+Ec 1 mod p
p-1 p-1 p-1 p-1 p-1 p-1 4 4 4
da* +b*—(a+b-1)"-1)
= p PRE, )(z(d)e(
a=0 b=0 c=0 a=0 b=0 d=0 p
a*+b*=c*+1 mod p
a+b=c+1 mod p
p-1 p-1 p-1 p-1 p-1
= iVp Y D oxaa +b —(@+b-1)'-1)+p Z 1
a=0 b=0 a=0 b=0 =0

a*+b*=c*+1 mod p
a+b=c+1 mod p

AIMS Mathematics Volume 7, Issue 9, 17045-17060.
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p—1 p—-1 p-1 p—1

p 1+ivp Y x»(da’ +6a* + 4a),

a=0 b=0 =0 =0
a*+b*=c*+1 mod p
a+b=c+1 mod p

From L. Chen and X. Wang [7] , for any prime p > 3, if p = 12k + 7, we have

-1 p-1 p-1

h
"’3

1 =3p—-5+x(7).
a=0 b=0 c¢=0
a*+b*=c*+1 mod p
a+b=c+1 mod p

If p =12k + 11, we have

-1 p-1 p-1

ﬁ
'3

1 =3p—1+x2(7).
a=0 b=0 c¢=0
a*+b*=c*+1 mod p
a+b=c+1 mod p

So for any prime p > 3, if p = 3 mod 4, combining the formulas (2.12)—(2.14), we have

”’Zi” le(d“(a + b - c4—1))

p—1

<

”M

a=| 0 ¢=0 d=0
a+ bzc 1 mod
p-1
3p> = Sp+ xo(T)p + i\/ﬁzxz(%ﬁ +6a° +4a), ifp=12k+7,
— b=0
= G

397 = p+xa(Tp +iNp ) xa(dd + 62> +4a), if p=12k+11.

This proves Lemma 2.4.

(2.12)

(2.13)

(2.14)

Lemma 2.5. Let p > 3 be a prime with p = 4k+ 1, A be a fourth-order character mod p and y, denotes

the Legendre symbol, then we have the estimation

1 p-1

5S4 om

a=0 b=0 :0
+ECO

Mi

Proof. Note that 7(x,) = +/p when p = 1 mod 4, then from the definition of Gauss sums we have

a=0 b=0 =0
a+b=c mod p
p—1 p-1 p-1 p—1 p-1
a* + b* a*+b*—c*
I DI
a=0 b=0 p a=0 b=0 c=1 p
a+b=0 mod p a+b=c mod
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p-1 p—1 p—1 p-1 4, 4 4 p—1 p-1
3+ 2@ + @) + Aae (%) £y e(M) _ |
a=0 P

T(DAR) + ¥ 2)Vp +TDAR) + D Y (Ae) + xa(€) + Ac)e .
a=0 ¢=0

p-1 p-1

+p Z 1-p.

a=0 b=0
a*+b*=1 mod p
a+b=1 mod p

For any prime p > 3, note that the properties of Gauss sums, we have

]

D A©) + xa(€) + Ac)e

c=

et (c(2a4 — 43 + 6% — 4a))

—_ O

p—1
T(D)AQ2d" - 4a® + 64> — 4a) + Z 1(D)AQ2d* - 4d® + 64> — 4a)
a=0

AT~

(=]

a=

p-1
+ \/172)(2(2a4 —4a® + 64* — 4a)
a=0
p—1

A8)T(D) Z AQa)* — 4(2a)® + 12(2a)* - 16(2a))
a=0

p-1
+A(8)1(1) Z AQa)* - 42a)’ + 12(2a)* - 16(2a))

a=0

p—1
+VPX2) D xa(a)* = 42a)° + 12(2a)” - 16(2a))
a=0

p—1 p-1
A8)T(D) Z Aa* — 4a° + 12d° — 16a) + A8)r(D) Z ANd* - 4d® + 12d* - 16a)

a= a=0

+Vpx2(2) Y xa(a* - 4a® + 12a* - 16a)

0
p—1

=0
1

S

p-1
AB)T() > Aa—-D*+6(a—-172=7) + A8)r(D) Z Ala=D¥+6(a—-17>=7)

a=0

(=]

a=

p—1
+VPXa(2) ) xalla— 1) +6a =17 =7)
a=0

gl (c(2a4 —4a® + 6a* - 4a))

(2.15)
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-1 p—1 p—1

ABYT() )" Aa* +6a> = 7) + AB)T(D) Y Ala* +6a” = 7) + Vpxa(2) D xa(a* +6a” = 7)
=0 a=0

<

a=0
p-1 p-1 p-1

= At Y Aa" +6a> = 7) + Ar(D) Y Aa* +6a> = 7) + Vpx2(2) Y yala' +6a* = 7)
a=0 a=0 a=0

= O(p). (2.16)

Combining the formulas (2.15) and (2.16), we have the estimation

pzlpzlple(a )= o)
b=0

a=0
b

a+b=c mod

This proves Lemma 2.5.
Lemma 2.6. Let p be an odd prime with p = 4k + 3, x, denotes the Legendre symbol. Then we have
the identity

p-1 p-1 p-1

a*+b* -t
Zzze(T)—@ X2(7))P—l\/_§:)(2(4a L6 + 40,
b=0

c=

a=0 b=0 c=0
a+b=c mod p
-1 p-1 -1 p-1 p-1
o s at -ty X at+b* - ¢t
= 2.2 * 2,00
a=0 ¢=0 p a=0 b=1 =0 P
a=c mod p a+b=c mod p
-1 p—1 p—-1
oY (bt -+
= p+ e
a=0 b=1 =0 p
a+1=c mod
-1 p—1 p-1 -1 p-1
“ O s b*a* —c* +1) o s
= p+ e - Z 1
a=0 b=0 c¢=0 p a=0 ¢=0
a+1=c mod p a+1=c mod p
-1 p-1 p-1
el b(a* - c*+1)
= D+ pabe| ———
a=0 b=0 ¢=0 P
a+1=c mod p
p-l p=l p-1
= ivp )(2( ~4a® — 6a* —4a) + p ZZ
a= a=0 ¢=0

a*+1=c* mod p
a+1=c mod p

AIMS Mathematics Volume 7, Issue 9, 17045-17060.
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p—1 p—1
= iVP ) xa(-4a’ - 6a> —4a) + p > 1
a=0 a=0

2a3+3a2+2a=0 mod p

p—1 p—1
= i\/EZ)(z(—4a3—6a2—4a)+p+p Z 1
a=0

a=1
2a%+3a+2=0 mod p

p-1 p-1
= iVp Y xa(-4d-6a —da)+p+p > 1
a=0 a=0

(4a+3)?=-7 mod p

.
= i\/ﬁz x2(=4a’ — 6a* — 4a) + (2 = x>(1)p. (2.17)

So for any prime p > 3, if p = 3 mod 4, we have the identity

L (bt - b
ZZZ ( )—(2—X2<7))p—i\/ﬁz)(z(4a3+6a2+4a).
a=0 b=0 =0 a=0

a+b=c mod p

This proves Lemma 2.6.

3. Proofs of the theorems

In this section, we will complete the proofs of our theorems. Applying several basic lemmas in
Section 2, we can easily deduce our theorems.

p-1|p-1 4 4 p—-1 p—1 p—1 p—-1 p-1 4 4
a” +ma 3 a+bt -t -d*+m@+b-c-d
Z_:‘) _oe( P ) - Z Zze( p )

-1 p=1 p- -1 p=1 p-1 p-1

Ll at+b* -t b eh ek at+b*-ct-dt
= P00 +p 2.

a=0 b=0 c=0 p a=0 b=0 c=0 d=1 p

-1 p—1 p-1 -1 p-1 p-1 p-1
_ PPZZPZIP . a4+ll):—c4 +pp21p21p21pz:e(d4(a4+b4p—c4—l))
a=0 b=0 c=0 a=0 b=0 c=0 d=0
a+b=c mod p a+b=c+1 mod p
-1 p—1 p-1
—p pz 3 ,,Z . (3.1)

a=0 b=0 ¢=0
a+b=c+1 mod p
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For any prime p, if p = 4k + 1, then from Lemma 2.3 we know that

p=l p=1 p-1 p-1 40,4 ph 4
d (a™ + b*—c" — 1) 5
3 Ze( . ): 3p° + 0(ph). (32)
a=0 b=0 c=0 d=0
a+b=c+1 mod p

= 0(pY). (3.3)

p-1

"Zie(a +ma)

a=0

m=0

when p = 4k + 1. This proves Theorem 1.1.
For any prime p > 3, if p = 4k + 3, then from Lemma 2.4 we know that

p-1 p=1 p-1 p-1 4, 4 4 4
Z da+b*—c"-1)
d=0

p

a= 0 ¢=0
a+ bEC +1 mod p

p-1
3p° = 5p2 + a(p? +ip? ) xa(4d® + 6a* +4a), if p=12k+7,
- R (3.4)
3p3 — p* + ya()p? + ip? Z)(z(4a3 +6a% +4a), ifp=12k+11.
h=0
From Lemma 2.6 we know that
LGS [(at+bt - i
p Z Z Z e (T) =02 —)(2(7))p2 —ip? ZX2(4a3 + 64> + 4a). 3.5
a=0 b=0 c=0 a=0

a+b=c mod p

Therefore, from the formulas (3.1), (3.4) and (3.5), for any prime p > 3, we may immediately

deduce
. 4
Z (a + ma) _

p—1

2p = 3p?, ifp=12k+7,
2p* + p?, ifp=12k+ 11,

m=0

when p = 4k + 3. This completes the proof of our main results.
4. Conclusions

This paper mainly proposed two theorems, which are all closely related to the fourth power mean
of the two-term exponential sums. Theorem 1.1 obtained an asymptotic formula of p = 1 mod 4
and an exact formula of p = 3 mod 4. The skill of this paper is to solve a class of quartic congruence
equations in the process of calculation. In general, this work not only calculates a new kind of two-term
exponential sum but also lays a foundation for the follow-up study of related problems.
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