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1. Introduction

The fixed point theory is rapidly growing because it has several applications in different branches
of science (for details see [9, 10, 13, 15, 37, 38, 45–47, 49]). In 1922, Polish mathematician Banach
stated and proved the famous “Banach contraction principle” [9] which is one of the leading results in
fixed point theory. This famous theorem has been generalized by several authors in different spaces
with various conditions (see [34–36, 39, 40]). Khamsi et al. [20, 22, 23] generalized this result in
a modular space. This work has been extended by several author’s in different directions. On the
other hand, Kuaket and Kumam [25], Mongkolkeha and Kumam [31–33] presented some fixed points
on this space with operators satisfying generalized contraction or nonexpansive mappings on convex
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modular spaces [26]. Later on, Khamsi et al. [4, 21] explored new fixed point results for nonexpansive
mappings and an asymptotic point-wise nonexpansive mapping on modular spaces. Further, on the
basis of this result in [2], a likeness of DeMarr’s that is mean common fixed point of two symmetric
Banach mappings on modular spaces is obtained. Almost all researchers focus on key properties of a
modular, convexity and Fatou property [3, 11, 22, 27–30].

Rhoades [42] introduced the notion of ϕ-contractive mappings and obtained some common fixed
point theorems (for further study, see [16, 41]). Recently, g-interpolation over Ćirić-Reich-Rus type
contraction and weakly contraction are defined [14].

In late 19th century, fixed point theory is shown to be successful in challenging problems and has
contributed significantly to many real-world problems, various strong fixed point results are proved
under strong assumptions. Particularly, in modular spaces, some of these assumptions can lead to have
some induced norms. For example, some assumptions do not often hold in practice or can lead to some
reformulations as a particular problem in normed vector spaces. A recent trend of research has been
dedicated to studying the fundamentals of fixed point theorems and relaxing the assumptions (used to
prove these results) with the ambition of relaxing the convexity of the modular spaces further.

It is a well-known fact that a mapping which satisfies the Banach contraction principle is
necessarily a continuous mapping. Therefore, it was natural to wonder that in a complete metric
space, a discontinuous mapping which satisfies somewhat similar contractive conditions may have a
fixed point. Kannan [16] answered to this problem positively by introducing a new type of
contraction. In 2018, Karapinar [17] introduced the concept of interpolation Kannan-type contraction,
this concept appealed to many researchers to investigate and generalized the interpolation type
contractive mappings in various contractions like interpolative Ćirić-Reich-Rus type contraction [41],
interpolative Hardy Rogers type contraction [18, 19]. Several fixed point results are proved using
these generalized interpolative type contractions in metric spaces and Branciari distance spaces.

In this paper, we define a new notion “modular- like space” which is a generalization of a modular
space (for details, see [5,6,8,24,34,44]) without using the concept of the convexity, which was a very
strong condition used in modular space. We state and prove Banach fixed point theorem in modular-
like space without using the extra assumptions. After that, we provide some sufficient conditions for
the existence of a fixed point or a point of coincidence for some mappings which satisfy g-Hardy
Rogers type contraction or g-φ-Hardy Rogers type contraction, or Ćirić-Reich-Rus type contraction
without using strong assumptions on the modular-like space. This paper starts with Section 2, which
includes some new definitions, two handy lemmas, and four main theorems on modular-like spaces.
In Theorem 2.21, we generalizes interpolation Ćirić-Reich-Rus type contraction mapping and obtain
fixed point of involved contraction in modular-like space without strong assumption of convexity as
in modular spaces. Further, we provide some examples to support our idea of modular-like space and
obtained results. Finally, in Section 3, an application of our main result to the integral equation is
provided.

2. Modular-like spaces and related fixed point results

In this section, we provide a definition of generalized modular-like metric space in order to explain
the connection between this definition and our new definition “modular- like space”, further we provide
suitable examples, remarks, and lemmas, which are required to obtain our main results.
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Definition 2.1. [48] Let X be a non-empty set. A function D : (0,+∞) × X × X → [0,+∞] is said to
be a generalized modular-like metric on X, if it satisfies the following axioms:

(1) If Dλ(x, y) = 0 for some λ > 0, then x = y for all x, y ∈ X;

(2) Dλ(x, y) = Dλ(y, x) for all λ > 0 and x, y ∈ X;

(3) There exists C > 0 such that, if (x, y) ∈ X × X, (xn) ⊂ X with lim
n→+∞

Dλ(xn, x) = 0 for some λ > 0,
then Dλ(x, y) ≤ C lim sup

n→+∞

Dλ(xn, y).

The pair (X,D) is said to be a generalized modular-like metric space.

Now, we are presenting the definition of a modular-like space.

Definition 2.2. A modular-like space is a linear space X together with a function % (called a modular-
like space (X, %)) which assigns a real number %(u) to every u belongs X satisfying the following
axioms:

(1) %(u) = 0 implies u = 0,

(2) %(−u) = %(u),

(3) %(au + bv) ≤ %(u) + %(v), for every a, b ∈ [0, 1] such that a + b = 1.

Note that, a modular-like space on X satisfies all properties of a modular except that %(0) may be
positive, for further explanation, see the following example.

Example 2.3. Let

%(u) =

{
2, if u = 0,
1, otherwise,

where u ∈ R. Clearly, (R, %) is‘a modular-like space, but as %(u) = 2 whenever u = 0, then (R, %) is not
a modular space.

For a modular-like space (X, %), a function w% on R+ is said a growth function (for more details,
see [12]) and is defined as:

w%(x) = inf{w ∈ R : %(xu) ≤ w%(u) : u ∈ X, 0 < %(u)}.

Moreover, % is said to satisfy the Fatou property, if

%(x − y) ≤ lim inf
n

%(xn − y),

whenever (xn) is a sequence of X and %-convergent to x ∈ X and y ∈ X.
Next, we show that a general modular-like metric may be induced with a modular-like. Let (X, %)

be a modular-like space. Define D : (0,+∞) × X × X → [0,+∞] as

Dλ(x, y) = %(
x − y
λ

),

where λ ∈ (0,+∞). If % satisfies the Fatou property, then Dλ(x, y) has all axioms of Definition 2.1 (for
more details see [48]).

Note that, we will not use the Fatou property for the modular-like space in our results, so our
modular-like does not induce a modular-like metric. In our results, we suppose that‘w%(2) < +∞. To
ease the notation, we use X instead of modular-like space (X, %).

AIMS Mathematics Volume 7, Issue 9, 16422–16439.
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Definition 2.4. Suppose X is a modular-like space. Then a sequence (un) in B ⊆ X is said to be:

(1) %-convergent to a point u ∈ B, if lim
n→+∞

%(un − u) = %(0), and denoted by un → u.

(2) %-Cauchy sequence, if lim
n,m→+∞

%(un − um) exists and is finite.

When % is modular then the definition of %-convergence is the same as the convergence in a modular
space.

Remark 2.5. Letj %(u) = 1jfor eachju ∈ R andjun = 1 for alljn ∈ N. Thenjit is easyjto seejthat un → 0
because 1 = %(un − 0) = %(0) = 1jand in the same way, we have un → 1.jHence, injmodular-like
spacesjthe limitjof ajconvergent sequencejis not necessarilyjunique.

Definition 2.6. A subset B of a modular-like space X is known as:

(1) %-closed, if it contains all limits of %-convergent sequences.

(2) %-complete, if each %-Cauchy sequence in B is %-convergent and %-convergent to a point of B and
lim

n→+∞
%(un − u) = %(0) = lim

n,m→+∞
%(un − um), for each n,m ∈ N

⋃
{0}.

Note that, every %-closedasubset of a %-complete modular-like space is %-complete.

Example 2.7. A functional %, for each real number u satisfying %(u) = u2, is a modular-like. Now, the
conditions (1) and (2) clearly hold. Since square is a convex function, condition (3) is satisfied, too. It
is easy to show, (R, %) is a %-complete modular-like space.

The following lemmas are handy tools, which will be used in the sequel.

Lemma 2.8. For any sequence (un) in X such that un → u and for some v ∈ X. The following inequality
holds:

%(u − v)
ω%(2)

− %(0) ≤ lim inf
n

%(un − v) ≤ lim sup
n

%(un − v) ≤ ω%(2)%(u − v) + ω%(2)%(0).

Proof. Using the definition of the modular-like and the growth function ω% at real number 2, we have

%(u − v) = %(u − un + un − v) = %(2(
u − un

2
+

un − v
2

))

≤ ω%(2)%(
u − un

2
+

un − v
2

)

≤ ω%(2)(%(u − un) + %(un − v)).

This implies
%(u − v)
ω%(2)

− %(u − un) ≤ %(un − v).

Since lim %(un − u) = %(0), by taking lim inf on the above inequality, then the left hand side of the
above inequality is satisfied. By the same argument, we will have the right hand side too. �
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Note that, if %(0) = 0, then the inequality of Lemma 2.8 changes to the simple inequality:

%(u − v)
ω%(2)

≤ lim inf
n

%(un − v) ≤ lim sup
n

%(un − v) ≤ ω%(2)%(u − v).

Further, Rus [43] defined a collection of non-decreasing, positive real valued functions, we will denote
this class by Ψ, and is defined as:

Definition 2.9. [43] Suppose that Ψ, represents the collection of all nondecreasing‘functions ψ : R+ →

R+ with
∑+∞

k=0 ψ
k(x) < +∞ for all x > 0. Then, there are two important properties ψ(x) < x for each

x > 0 and ‘ψ(0) = 0.

Now, we are going to prove the following lemmas, which is essential for our main results.

Lemma 2.10. Let‘(un) be a sequence in X, satisfying

%(un+1 − un) ≤ ψ(%(un − un−1)), (2.1)

for all n ∈ N, where ψ ∈ Ψ. Then, for each m, n ∈ N
⋃
{0}, lim

n,m→+∞
%(un − um) = 0.

Proof. We suppose that 0 < %(u1 − u0). By using the condition (2.1) for un, n times, we get

%(un+1 − un) ≤ ψn(%(u1 − u0)).

Without less of generality, we suppose that m > n, so m = n + p, for p ∈ N, using the above inequality
and triangle inequality of the modular-like space, we have

%(un − um) = %(un − un+1 + un+1 − un+p) = %(2(
un − un+1

2
+

un+1 − un+p

2
))

≤ ω%(2)%(
un − un+1

2
+

un+1 − un+p

2
)

≤ ω%(2)[%(un − un+1) + %(un+1 − un+p)]
≤ ω%(2)[%(un − un+1) + ω%(2)%(un+1 − un+2) + ω%(2)%(un+2 − un+p)]
...

≤ ω%(2)ψn(%(u1 − u0)) + ω2
%(2)ψn+1(%(u1 − u0)) + . . . + ωp

%(2)ψn+p−1(%(u1 − u0))

≤ ωp
%(2)

m−1∑
k=n

ψk(%(u1 − u0)).

Since the series is convergent and
∑m−1

k=n ψ
k(%(u1 − u0)) is converging to zero. Thus,

lim
n,m→+∞

%(un − um) = 0.

�

Now we can state one of our main results, which is an equivalent of Banach’s theorem in a modular-
like space. We would like to highlight that the convexity of % and Fatou property are not used in our
results.
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Theorem 2.11. Let X be a %-complete modular-like space and consider a mapping g : X → X be a
mapping which satisfies %(gx − gy) ≤ k%(x − y), for every x, y ∈ X and some k ∈ [0, 1). Then g has a
unique fixed point.

Proof. Take x0, x1 ∈ X. We know from our assumption that for every n ≥ 1, there exists a sequence
xn+1 ∈ X such that xn+1 = gxn and

%(xn+1 − xn) ≤ k%(xn − xn−1).

Lemma 2.10 implies that lim
n,m→+∞

ρ(xm − xn) = 0. Since X is a %-complete space, there exists x ∈ X such

that lim
n→+∞

%(xn − x) = %(0) = lim
m,n→+∞

ρ(xm − xn) = 0.

On the other hand, from our assumption, it is true that for every xn = gxn−1, we have that

%(gxn − gx) ≤ k%(xn − x),

which implies that lim
n→+∞

%(xn+1 − gx) = lim
n→+∞

%(gxn − gx) = 0 and by Lemma 2.8, we have

%(x − gx)
ω%(2)

− %(0) ≤ lim inf
n

%(xn+1 − gx) = 0,

this implies that %(x − gx) = 0, and by using the contraction, uniqueness of fixed point can be proved.
�

From now and onward, X will represent a %-complete modular-like space, T, g : X → X are
mappings such that TX ⊆ gX and gX is %-closed. Now, we are going to define some new contractions
for mappings T, g : X → X and Tx = g = z defined on modular-like spaces and prove that these
mappings have a point of coincidence z ∈ X and x ∈ X as a coincidence point.

Definition 2.12. A mapping T satisfies g-Hardy Rogers type contraction, if there exist ψ ∈ Ψ and
α, η, ω ∈ (0, 1) that

%(Tu − Tv) ≤ ψ
(
[%(gu − gv)]α[%(gu − Tu)]η[%(gv − Tv)]ω

[
%(gu − Tv) + %(gv − Tu)

4w%(2)
]1−α−η−ω

)
, (2.2)

for all u, v ∈ X with Tu , gu,Tv , gv, gu , gv.

Theorem 2.13. Let T be a g-Hardy Rogers type contraction on a %-complete modular-like space X.
Then T and g have a point of coincidence.

Proof. Consider any u0 ∈ X. Since TX ⊆ gX, inductively we can find a sequence (un) such that
g(un+1) = T(un) for all n ∈ N

⋃
{0}. If gun = Tun for some n, then Tun is a point of coincidence for

g and‘T. Assume that gun , Tun, for all n. By replacing‘u and v with un and un+1 in (2.2) and using
gun+1 = Tun, we obtain

%(Tun − Tun+1) ≤ ψ([%(gun − gun+1)]α[%(gun − Tun)]η[%(gun+1 − Tun+1)]ω

[
%(gun − Tun+1) + %(gun+1 − Tun)

4w%(2)
]1−α−η−ω)
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= ψ([%(Tun−1 − Tun)]α[%(Tun−1 − Tun)]η[%(Tun − Tun+1)]ω

[
%(Tun−1 − Tun+1) + %(Tun − Tun)

4w%(2)
]1−α−η−ω)

≤ ψ([%(Tun−1 − Tun)]α+η[%(Tun − Tun+1)]ω

[
%(Tun−1 − Tun) + %(Tun − Tun+1)

2
]1−α−η−ω),

i.e.,

%(Tun − Tun+1) ≤ ψ([%(Tun−1 − Tun)]α+η[%(Tun − Tun+1)]ω

[
%(Tun−1 − Tun) + %(Tun − Tun+1)

2
]1−α−η−ω). (2.3)

Since ψ(x) < x, for all x > 0, we obtain

%(Tun − Tun+1) < [%(Tun−1 − Tun)]α+η[%(Tun − Tun+1)]ω

[
%(Tun−1 − Tun) + %(Tun − Tun+1)

2
]1−α−η−ω. (2.4)

Suppose that %(Tun−1 − Tun) < %(Tun+1 − Tun) for some n ≥ 1. Then,

%(Tun−1 − Tun) + %(Tun − Tun+1)
2

< %(Tun − Tun+1).

From the inequality (2.4), we infer

%(Tun − Tun+1) < [%(Tun−1 − Tun)]α+η[%(Tun − Tun+1)]1−α−η,

which implies that
[%(Tun+1 − Tun)]α+η < [%(Tun−1 − Tun)]α+η.

Hence,
%(Tun+1 − Tun) < %(Tun−1 − Tun),

which is a contradiction. Thus, for all n ≥ 1,

%(Tun+1 − Tun) ≤ %(Tun−1 − Tun).

Using above inequality and (2.3), we have

%(Tun+1 − Tun) ≤ ψ(%(Tun − Tun−1)). (2.5)

By Lemma 2.10, we have lim
n,m→+∞

%(Tun − Tum) = 0, ‘consequently, the sequences (Tun) and (gun) are

%-Cauchy. So there is‘z belongs to X which

lim %(Tun − z) = %(0) = lim %(gun+1 − z) = %(Tun − Tun+p) = 0. (2.6)

Since gX is a %-closed set, there exists w ∈ gX such that z = gw. We‘claim that z is a point of
coincidence for g and T, i.e., z = gw = Tw. By (2.2), we obtain

%(Tw − Tun) ≤ ψ([%(gw − gun)]α[%(gw − Tw)]η[%(Tun − gun)]ω

AIMS Mathematics Volume 7, Issue 9, 16422–16439.
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[
%(gw − Tun) + %(gun − Tw)

4w%(2)
]1−α−η−ω)

< [%(gw − gun)]α[%(gw − Tw)]η[%(Tun − gun)]ω

[
%(gw − Tun) + %(gun − Tw)

4w%(2)
]1−α−η−ω. (2.7)

And by Lemma 2.8, we have %(Tw−z)
w%(2) ≤ lim sup

n→+∞

%(Tw − Tun), and lim sup
n→+∞

%(Tun − gun) ≤ w2
%(2)%(0).

These and (2.7) implies that

%(Tw − z)
w%(2)

≤ lim sup
n→+∞

([%(z − gun)]α[%(z − Tw)]η[w2
%(2)%(0)]ω

[
%(z − Tun) + %(gun − z)

4w%(2)
]1−α−η−ω).

Using above inequality and (2.6), we get %(Tw − z) = 0. Therefore,

Tw = z = gw.

�

Now, we will illustrate our result with the help of the following example.

Example 2.14. Suppose that the self mapping T, g defined on a set X = {1, 2, 3, 4} as following:

T1 = T4 = 3,T2 = T3 = 4,

and
g1 = 1, g2 = 4, g3 = 2, g4 = 3.

Such that TX ⊆ gX and gX is %-closed. Let the modular-like % : R→ R be

%(x) =

{
0.5, if x ∈ {−1, 0, 1},
1, otherwise.

As (X, %) is %-complete. Also, suppose that ψ(x) = 5x−1
5x+1 and α = η = ω = 1

3 . Since T2 = g2 = 4, and
T4 = g4 = 3, so we must show that the inequality (2.2) is satisfied just for x, y ∈ {1, 3}. We have

%(T1 − T3) ≤ ψ
(
[%(g1 − g3)]

1
3 [%(g1 − T1)]

1
3 [%(g3 − T3)]

1
3

[
%(g1 − T3) + %(g3 − T1)

4w%(2)
]0
)
, (2.8)

i.e., 0.5 = %(−1) ≤ ψ(%
1
3 (−1)%

2
3 (−2)) = 0.5640, so T is a g-Hardy Rogers type. So, the mappings T

and g have a point of coincidence. The points of coincidence for mappings T and g are 3 and 4.

The previous example leads us to the following remark.

Remark 2.15. In Theorem 2.13, T and g do not have a fixed point, just as T and g accept points of
coincidence which are not necessarily unique.

AIMS Mathematics Volume 7, Issue 9, 16422–16439.
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We use‘the notation Φ to represent the set of all nondecreasing functions φ : R+ → R+ satisfying

φ(x) < x, lim
s→x+

φ(s) < x and lim
x→+∞

(x − ω%(2)φ(x)) = +∞.‘

Definition 2.16. A mapping T is said to be a g-φ-Hardy Rogers type contraction, if there exist
α, η, ω, ν, γ, ζ ∈ R+ with α + η + ω + ν + γ + ζ = 1 such that

%(Tu − Tv) ≤ φ
(
[%(gu − gv)]α[%(gu − Tu)]η[%(gv − Tv)]ω

[
%(gu − Tv) + %(gv − Tu)

2
]ν[%(gu − gu)]γ[%(gv − gv)]ζ

)
, (2.9)

for all u, v ∈ X with Tu , gu, Tv , gv and‘gu , gv.

Theorem 2.17 is more applicable and general than Theorem 2.13, because the conditions on φ ∈ Φ

are weaker than ones on ψ ∈ Ψ involved in Theorem 2.13.

Theorem 2.17. Every g-φ-Hardy Rogers type contractive mappings T has a‘point of coincidence.

Proof. Let u ∈ X,‘and TX ⊆ gX, define a sequence (un) such that u0 = u, and gun+1 = Tun, for all
integer n. If gun = Tun, for some n then Tun is a point of coincidence for g and T.

Assume that gun , Tun, for all n. If we show that Dn(u0) = diam{Tu0,Tu1, . . . ,Tun} is convergent
to a finite real point as n → +∞, then {Tun} is a %-Cauchy sequence. For that, first we have to show
that Dn(u0) = %(Tu0 − Tuk), for some k = k(n) ∈ {0, 1, . . . , n}. Suppose, on contrary that there are
positive integers 1 ≤ i = i(n) ≤ j = j(n) such that Dn(u0) = %(Tui − Tu j) > 0.‘From our assumption,
by replacing u and v‘with ui and u j in (2.9) and using gun+1 = Tun, we obtain

%(Tui − Tu j) ≤ φ([%(gui − gu j)]α[%(gui − Tui)]η[%(gu j − Tu j)]ω

[
%(gui − Tu j) + %(gu j − Tui)

2
]ν[%(gui − gui)]γ[%(gu j − gu j)]ζ)

= φ([%(Tui−1 − Tu j−1)]α[%(Tui−1 − Tui)]η[%(Tu j−1 − Tu j)]ω

[
%(Tui−1 − Tu j) + %(Tu j−1 − Tui)

2
]ν[%(Tui−1 − Tui−1)]γ[%(Tu j−1 − Tu j−1)]ζ)

≤ φ(Dn(u0)), (2.10)

which implies that
Dn(u0) ≤ φ(Dn(u0)) < Dn(u0),

which is a contradiction. Thus,
Dn(u0) = %(Tu0 − Tuk)

holds.‘It is clear that Dn(u0) is nondecreasing. So, lim
n→+∞

Dn(u0) exists, i.e.,

lim
n→+∞

Dn(u0) = +∞

or
lim

n→+∞
Dn(u0) < +∞.
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Suppose that Dn(u0) is infinite as n→ +∞, by the triangle inequality, we have

%(Tu0 − Tuk) ≤ ω%(2)(%(Tu0 − Tu1) + %(Tu1 − Tuk)).

So, by (2.10), we have
Dn(u0) ≤ ω%(2)(%(Tu0 − Tu1) + φ(Dn(u0))).

Therefore,
(I − ω%(2)φ)(Dn(u0)) ≤ ω%(2)%(Tu0 − Tu1) < +∞,

which contradicts that
lim

x→+∞
(I − ω%(2)φ)x = +∞.

Which implies that
lim

n→+∞
Dn(u0) < +∞.

Now, we have to show‘that Dn(u0) is %-bounded as n→ +∞. We shall prove that

D = lim
n→+∞

Dn(u0) = 0.

Let n be any arbitrary integer, and i, j be any positive integers with i, j ≥ n + 1. Then by
inequality (2.10), we have

%(Tui − Tu j) ≤ φ(Dn(u0)).

Suppose that D > 0. Hence, we get D ≤ lim
n→+∞

φ(Dn(u0)) = lim
s→D+

φ(s) < D which is a contradiction.
Therefore, D = 0, i.e., lim

n→+∞
Dn(u0) = lim

n,m→+∞
%(Tun − Tum) = 0. This implies {Tun} is a %-Cauchy

sequence, so (gun) is a %-Cauchy sequence. Since X is a %-complete space, there exists z ∈ X such that

lim
n→+∞

%(Tun − z) = lim
n→+∞

%(gun+1 − z) = %(0) = lim
n,m→+∞

%(Tun − Tum) = 0. (2.11)

Since gX is a %-closed set, there exists w ∈ gX such that z = gw. We claim that z is a point of
coincidence for g and T. For this,‘we assume that z = gw , Tw. Then by (2.9),‘we obtain

%(Tw − Tun) ≤ φ([%(gw − gun)]α[%(gw − Tw)]η[%(Tun − gun)]ω

[
%(gw − Tun) + %(gun − Tw)

2
]ν[%(gw − gw)]γ[%(gun − gun)]ζ)

< [%(gw − gun)]α[%(gw − Tw)]η[%(Tun − gun)]ω

[
%(gw − Tun) + %(gun − Tw)

2
]ν[%(gw − gw)]γ[%(gun − gun)]ζ . (2.12)

By Lemma 2.8, we have
1

ω%(2)
%(Tw − z) ≤ lim sup

n→+∞

%(Tw − Tun),

and
lim sup

n→+∞

%(Tun − gun) ≤ ω2
%(2)%(0).
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Thus, from (2.12), we infer that

1
ω%(2)

%(Tw − z) ≤ lim sup
n→+∞

[%(gw − gun)]α[%(gw − Tw)]η[%(Tun − gun)]ω

[
%(gw − Tun) + %(gun − Tw)

2
]ν[%(gw − gw)]γ[%(gun − gun)]ζ (2.13)

≤ lim sup
n→+∞

[%(z − gun)]α[%(z − Tw)]η[w2
%(2)%(0)]ω

[
%(z − Tun) + ω%(2)%(z − Tw)

2
]ν[%(0)]γ[ω2

%(2)%(0)]ζ . (2.14)

From above inequality and (2.11) implies that %(Tw − z) = 0,‘which is a contradiction. Therefore,

Tw = z = gw,

that is, z is a point of coincidence for T and g in X. �

Corollary 2.18. If there exist α, η, ω, ν, γ, ζ ∈ R+ with α+ η+ω+ ν+ γ+ ζ = 1 such that for k ∈ (0, 1),

%(Tu − Tv) ≤ k
(
[%(gu − gv)]α[%(gu − Tu)]η[%(gv − Tv)]ω

[
%(gu − Tv) + %(gv − Tu)

2
]ν[%(gu − gu)]γ[%(gv − gv)]ζ

)
,

for all u, v ∈ X with Tu , gu, Tv , gv and‘gu , gv. Then g and T have a point of coincidence.

Proof. If, we take φ(x) = kx in Theorem 2.17, the result is concluded. �

Example 2.19. Define a function % : R→ R by

%(u) =

{
6, u ∈ {−1, 1},
3, u , {−1, 1}.

Let X = {0, 1, 2} , then (X, %) is a %-complete modular-like space. Define self mappings T and g on X
by gu = u and T defined by T(0) = 0, T(1) = 2, andT(2) = 0. Then, T is a g-φ-Hardy Rogers type
contraction for α = 0.4, η = 0.4, ν = 0.1, ω + γ + ζ = 0.1, and φ(x) = 0.99x, it is enough to show that
the inequality (2.9) holds, for u = 1 and v = 2. Further,

%(T1 − T2) ≤ φ
(
[%(g1 − g2)]α[%(g1 − T1)]η[%(g2 − T2)]ω

[
%(g1 − T2) + %(g2 − T1)

2
]ν[%(g1 − g1)]γ[%(g2 − g2)]ζ

)
, (2.15)

which implies that

%(2) ≤ φ
(
[%(−1)]α[%(−1)]η[%(2)]ω[

%(1) + %(0)
2

]ν[%(0)]γ[%(0)]ζ
)
. (2.16)

Because,
3 ≤ 0.99 · 60.8 · 30.1 · 4.50.1 = 5.3850.

Therefore T and g have a‘point of coincidence T0 = g0.
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Definition 2.20. Consider α, η ∈ (0, 1) with α + η < 1 such that

ς(%(Tu − Tv)) ≤ ς(R(u, v)) − ϕ(R(u, v)), (2.17)

for all u, v ∈ X\Fix(T), where Fix(T) contains some points of X that do not change by the mapping T,
and R(u, v) = [%(u − v)]α[%(u − Tu)]η[%(v − Tv)]1−α−η. Then mapping T is called Ćirić-Reich-Rus type
weakly contractive mapping.
Where ϕ : R+ → R≥0 is a lower semi-continuous function with ϕ(x) = 0 if and only if x = 0, and
ς : R+ → R≥0 is a continuous monotone nondecreasing function with ς(x) = 0 if and only if x = 0.

Theorem 2.21. Every Ćirić-Reich-Rus type weakly contractive mapping T has a fixed point.

Proof. For any u0 ∈ X,‘consider a sequence (un) defined as un+1 = Tun, n ∈ N. If un+1 = un holds for
some n then un is clearly a fixed point of T in X. Otherwise, if un+1 , un for each n ≥ 0. From (2.17),
we have

ς(%(un+1 − un)) ≤ ς([%(un − un−1)]α[%(un − un+1)]η[%(un−1 − un)]1−α−η)
−ϕ([%(un − un−1)]α[%(un − un+1)]η[%(un−1 − un)]1−α−η)

≤ ς([%(un − un−1)]1−η[%(un − un−1)]η),
(2.18)

which can be written as

%(un+1 − un) ≤ [%(un − un−1)]1−η[%(un − un+1)]η.

After simplification, we get
[%(un+1 − un)]1−η ≤ [%(un − un−1)]1−η,

and so
%(un+1 − un) ≤ %(un − un−1), for all n ≥ 1.

As (%(un+1 − un)) is a decreasing sequence of positive real numbers. There exists some c ≥ 0 such
that‘ lim

n→+∞
%(un+1 − un) = c. From inequality (2.18), we have

ς(c) ≤ ς(c) − ϕ(c),

which implies that c = 0. Hence,
lim

n→+∞
%(un+1 − un) = 0. (2.19)

Now,‘we have to prove that (un) is a %-Cauchy sequence. On contrary suppose that there exists a real
number ε > 0, for any k ∈ N, mk ≥ nk ≥ k such‘that

%(umk − unk) ≥ ε, %(umk−1 − unk) < ε. (2.20)

From (2.17) and using (2.20), we obtain

ς(ε) ≤ ς(%(umk − unk)) ≤ ς(R(umk−1, unk−1)) − ϕ(R(umk−1, unk−1)),

where
R(umk−1, unk−1) = [%(umk−1 − unk−1)]α[%(umk−1 − umk)]

η[%(unk−1 − unk)]
1−α−η.
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Also,
%(umk−1 − unk−1) ≤ ω%(2)(%(umk−1 − unk) + %(unk − unk−1))

≤ ω%(2)(ε + %(unk−1 − unk)),

and using (2.19), we conclude lim
k→+∞

R(umk−1, unk−1) = 0. Then ς(ε) ≤ ς(0) − ϕ(0) = 0, which is
contradiction with ε > 0, thus (un) is a %-Cauchy sequence. As X is %-complete, we obtain z ∈ X such
that lim

n→+∞
%(un − z) = %(un − un+1) = %(0) = 0.‘Assume that Tz , z, we have for all n ∈ N,

ς(%(un+1 − Tz)) ≤ ς(R(un, z)) − ϕ(R(un, z)), (2.21)

where
R(un, z) = [%(un − z)]α[%(un+1 − un)]η[%(z − Tz)]1−α−η.

Using‘(2.19), we get lim
n→+∞

R(un, z) = 0, apply limit n → +∞ in (2.21) and using Lemma 2.8, we have

ς( 1
ω%(2)%(z − Tz)) ≤ ς(%(un+1 − Tz)) ≤ ‘ς(0) − ϕ(0) = 0, which is a contradiction, thus Tz = z. �

In the following example, we bring an Ćirić-Reich-Rus type weakly contractive mapping which
satisfies the conditions of Theorem 2.21.

Example 2.22. Define % : R→ R as:

%(u) =


0, u = 0,
5, u ∈ (−1, 1) − {0}
3, otherwise.

Let X = [0, 5], then (X, %) is a %-complete modular-like space. Suppose T : X → X is defined as:

Tu =

{
0, u ∈ [0, 1),
3, u ∈ [1, 5].

Choose ς(x) = x2, and ϕ(x) = x
3 for all x ∈ R≥0, α = 0.4‘and η = 0.3.

Now, we are going to satisfy the inequality (2.17). We have two steps.

Step 1. Suppose that‘u, v ∈ [0, 1) or u, v ∈ [1, 5], then

ς(%(Tu − Tv)) = ς(%(0)) = 0,

If R(u, v) = 0 then inequality (2.17) is satisfied on the other hand, if R(u, v) , 0, then we have R(u, v) ≥
1 and therefore

ς(R(u, v)) − ϕ(R(u, v)) = R2(u, v) −
R(u, v)

3
≥ 0.

Thus, the inequality (2.17) is‘satisfied.

Step 2. Suppose that‘u ∈ [0, 1) and v ∈ [1, 5], then

ς(%(Tu − Tv)) = ς(%(3)) = 9,

and
3.4968 ≤ R(u, v) ≤ 5,
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thus
ς(R(u, v)) − ϕ(R(u, v)) ≥ 12.22789 −

5
3

= 10.561223.

Hence
ς(%(Tu − Tv)) ≤ ς(R(u, v)) − ϕ(R(u, v)),

for all u, v ∈ [0, 5]\{0, 3}. Then, T possesses two fixed points 0 and‘3.

Example 2.23. Suppose that the self mapping T : {1, 2, 3} → {1, 2, 3} defined as following:

T1 = T2 = 2,T3 = 3.

Also, define ς(x) = 2x, ϕ(x) = x
10 and the modular-like % : R→ R by

%(x) =

{
1, if x = 0,
2, otherwise.

Let α = 0.5 and η = 0.4. We have

R(1, 1) = %0.5(0)%0.5(−1) =
√

2.

Since
FixT = {2, 3},

so it remains to show the inequality (2.17) for {1}. We have ς(%(T1 − T1)) ≤ ς(R(1, 1)) − ϕ(R(1, 1)) if
and only if ς(1) ≤ ς(

√
2) − ϕ(

√
2) if and only if 2 ≤ 2

√
2 −

√
2

10 = 19
10

√
2. Then T is called to satisfy

Ćirić-Reich-Rus type weakly contractive and has two fixed points.

From the help of examples, we have the following remarks.

Remark 2.24. If T is Ćirić-Reich-Rus type weakly contraction, T accepts a fixed point that is not
necessarily unique.

Remark 2.25. In Theorem 2.13, T and g do not need a fixed point, just as T and g accept a point of
coincidence and is not necessarily unique. Also, it is not necessary that T and g to be continuous. In
Example 2.14, g is not continuous because the sequence (2) is convergent to 1 but (g2) is not convergent
to g1.

3. Application to integral equation

Now, consider a real-valued continuous function α defined on [a0, b0] such that

α(x) = β(x) + γ

∫ b

a
G(x, s)K(s, α(s))ds, x ∈ [a0, b0], (3.1)

where γ is a constant, K : [a0, b0]×R→ [a0, b0] is lower semi-continuous, and G : [a0, b0]× [a0, b0]→
(0,+∞) is continuous.

For simplicity, we will use X = {α ∈ C[a0, b0] : max
x
|α(x)|2 ≥ 1}, where C[a0, b0] denote all real

continuous functions defined on [a0, b0], and a modular-like % defined on X as
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%(α) =

 max
a0≤x≤b0

| α(x) |2, α , 0,

1, α = 0.

Since X is %-complete and the integral equation defined in (3.1) can be reformulated to show that α
is a solution of problem (3.1) if and only if α is a fixed point of f : X → X defined as:

fα = β(x) + γ

∫ b0

a0

G(x, s)K(s, α(s))ds.

Now, we suppose that the following assumptions are satisfied:

(i) for any u, v ∈ X,

|K(x, u(x)) − K(x, v(x))| ≤
1
2
| u(x) − v(x) |0.8| u(x) − fu(x) |0.1| v(x) − fv(x) |0.1,

(ii) max
a0≤x≤b0

∫ b0

a0
G2(x, z)dz ≤ 4

b0−a0
,

(iii) | γ |2≤ 1.

Then, the integral equation in (3.1) has a solution in X.
For fu = fv Eq (2.17) is satisfied, so we suppose that fu , fv. By the Cauchy-Schwarz inequality

and assumption (i–iii),‘we have

%(fu − fv) = max
a0≤x≤b0

| β(x) + γ

∫ b0

a0

G(x, s)K(s, u(s))ds − β(x) − γ
∫ b0

a0

G(x, s)K(s, v(s))ds |2

=| γ |2 max
a0≤x≤b0

|

∫ b0

a0

G(x, s)[K(s, u(s)) − K(s, v(s))]ds |2

≤| γ |2 max
a0≤x≤b0

{ ∫ b0

a0

G2(x, s)ds
∫ b0

a0

[K(s, u(s)) − K(s, v(s))]2ds
}

=| γ |2 max
a0≤x≤b0

∫ b0

a0

G2(x, s)ds

1
4

∫ b0

a0

| u(s) − v(s) |1.6| u(s) − fu(s) |0.2| v(s) − fv(s) |0.2 ds

≤
| γ |2

b0 − a0

∫ b0

a0

max
a0≤s≤b0

| u(s) − v(s) |1.6| u(s) − fu(s) |0.2| v(s) − fv(s) |0.2 ds

≤| γ |2 [ max
a0≤s≤b0

| u(s) − v(s) |2]0.8[ max
a0≤s≤b0

| u(s) − fu(s) |2]0.1[ max
a0≤s≤b0

| v(s) − fv(s) |2]0.1

≤ [%(u − v)]0.8[%(u − fu)]0.1[%(v − fv)]0.1.

Theorem 2.21‘with ϕ(u) = 0, ς(x) = x
3 , α = 0.8, and η = 0.1, is satisfied i.e.,

ς(%(fu − fv)) ≤ ς([%(u − v)]0.8[%(u − fu)]0.1[%(v − fv)]0.1)
− ϕ([%(u − v)]0.8[%(u − fu)]0.1[%(v − fv)]0.1).

Therefore, f has a fixed point w ∈ X, i.e., the integral Eq (3.1) has a solution.
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4. Conclusions

In this paper, we define a modular-like space and prove some results on this space. This paper
opens a door for proving various results on modular-like space. In our main results, we introduced a
new method in which %-convergence of the constructed sequence is used. Further, we illustrated each
result with the help of a proper and nontrivial example, which shows the validity of our result. Further,
as an application, we solved an integral equation with the help of our main theorem.
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46. N. Saleem, I. Iqbal, B. Iqbal, S. Radenović, Coincidence and fixed points of multivalued F-
contractions in generalized metric space with application, J. Fixed Point Theory Appl., 22 (2020),
81. https://doi.org/10.1007/s11784-020-00815-3

47. W. Sintunavarat, Fixed point results in b-metric spaces approach to the existence of a solution for
nonlinear integral equations, RACSAM, 110 (2016), 585–600. https://doi.org/10.1007/s13398-015-
0251-5

48. D. Turkoglu, N. Manav, Fixed point theorems in a new type of modular metric spaces, Fixed Point
Theory Appl., 2018 (2018), 25. https://doi.org/10.1186/s13663-018-0650-3
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