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Abstract: The energy balance ordinary differential equations (ODEs) model of climate change is 

extended to the partial differential equations (PDEs) model with convections and 𝑞-diffusions. Instead 

of integer order second-order partial derivatives, partial 𝑞 -derivatives are considered. The local 

stability analysis of the ODEs model is established using the Routh-Hurwitz criterion. A numerical 

scheme is constructed, which is explicit and second-order in time. For spatial derivatives, second-order 

central difference formulas are employed. The stability condition of the numerical scheme for the 

system of convection 𝑞-diffusion equations is found. Both types of ODEs and PDEs models are solved 

with the constructed scheme. A comparison of the constructed scheme with the existing first-order 

scheme is also made. The graphical results show that global mean surface and ocean temperatures 

escalate by varying the heat source parameter. Additionally, these newly established techniques 

demonstrate predictability. 
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1. Introduction  

Currently, solving non-linear differential equations in many scientific phenomena has gravitated 

to the attention of many researchers. Today, 𝑞-calculus and partial differential equation are considered 

the center of attention by contemporary society. In the eighteenth century, Euler and Jacobi formulate 

the history of 𝑞-calculus. Later on, F.H Jackson [1] was considered a pioneer who provided extensions 

to Euler and Jacobi’s work during the twentieth century. A profound surge in the study of 𝑞-calculus 

was observed during the mid-twentieth century because researchers found its extensive applications in 

several mathematical and analytical branches. Nowadays, 𝑞 -calculus has found its concern in 

mathematical modeling in terms of quantum computing. Details are available in [2–4].  

The 𝑞 -calculus is a novel branch that deals with studying the link between physics and 

mathematics. Several mathematical areas, such as number theory, combinatorics, orthogonal 

polynomials, basic hypergeometric functions, and quantum theory, are considered 𝑞 -calculus as a 

primary source of research. This branch has provided an interesting methodology in differential 

transform methods; hence, suitable to draw numerical approximations for the ordinary and partial 

differential equations.   

This field is the origin of the 𝑞-differential equation, which describes several physical processes 

involved in quantum dynamics, discrete dynamical systems, and discrete stochastic processes. It is 

worth mentioning that q-differential equations are elaborated on a time scale set as a 𝑇𝑞 in which 𝑞 

stands for scale index. Based on 𝑞-calculus theory, several other concepts have been introduced and 

familiarized, such as 𝑞 -Laplace transform, 𝑞 -Gamma and 𝑞 -Beta functions, 𝑞 -Mittag–Leffler 

functions, 𝑞-Taylor expansion, and 𝑞-integral transform theory. Details of 𝑞-calculus and 𝑞-partial 

differential equations can be seen in [5–12]. Studies related to classical fractional calculus are more 

advanced than fractional 𝑞-calculus.   

Recent literature review revealed few advanced studies that provide a peculiar solution to the 

fractional 𝑞-differential equation. Abdeljawad et al. in [13] utilized a novel generalized version of 

discrete fractional 𝑞-Gronwall inequality to verify the rareness of an initial value problem involving 

a non-linear delay Caputo fractional 𝑞-difference system. 

Considering Banach’s contraction mapping principle, the writer of [14] provides a diverse 

solution for resolving Caputo q-fractional boundary value problem with the 𝑝-Laplacian operator. Ren 

et al. in [15] proved the uniqueness of nontrivial solutions by the contraction mapping principle. 

Additionally, they established the existence of many positive solutions under certain circumstances 

using traditional fixed point theorems. By using the Ascoli-Arzela Theorem and a 𝑞 -analogue 

Gronwall inequality, Zhang et al. in [16] gave the existence and uniqueness of the solution of the 

Caputo fractional 𝑞-differential equations. Whereas in [17], Zhang et al. elaborated on the existence 

of a unique solution in the 𝑞-integral space. 

The combination of 𝑞-calculus and physics and mathematics has resulted in a wide variety of 

applications in combinatorics, relativity theory, mechanics, number theory, and orthogonal 

polynomials [18–20]. 𝑞-Taylor’s formula was firstly introduced by Jackson [1], which was later on 

modified to its q-remainder by Jing and Fan [21]. He utilized the 𝑞 -differentiation approach and 

formulated results on the 𝑞-remainder in the 𝑞-Taylor’s formula. Ernest [22] derived four variable 𝑞-

Taylor’s formulas with their integral 𝑞 -remainder; however, [23] Prashant et al. examined the 𝑞 -

analogue of the iterative methods, particularly the 𝑞-analogue of generalized Newton Raphson method 

for the solution of algebraic transcendental equations and compared the precision of the results 
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obtained by the traditional methods by using this formula. Several physical phenomena of the real 

world involving linear and non-linear models can be interpreted using 𝑞-differential equations. Jafari 

et al. [24] used the Daftardar decomposition methodology to solve the 𝑞-difference equations and 

determined the method’s convergence. 

A homogenization function has been proposed in [25] to address inverse source problems of the 

non-linear time-fractional wave equation. The new scheme was capable of solving 2D and 3D inverse 

source problems of non-linear time-fractional wave equations via resolving a linear matrix system. The 

new scheme did not involve numerical integration, regularization, mesh generation, and fundamental 

solutions. A new general variant [26], the useful and effective type of inequality, has been obtained on 

Chebyshev’s inequality. It was concluded that the main findings had generalized various existing 

results and also iterated the Chebyshev inequality in special cases. With the help of Atangana-Baleanu 

integral operators, new results were generated for strongly convex functions [27].   

In literature, numerous numerical methods exist to solve ordinary and partial differential 

equations. Some have been adopted to solve time-dependent problems, including Runge-Kutta 

methods. Runge-Kutta methods for partial differential equations are multi-stage methods that produce 

more stable regions than the multi-step method. But, stability regions of all Runge-Kutta methods are 

different. These methods only discretize one temporal variable, and any other scheme can be 

considered for spatial discretization. Some of the existing numerical methods have been constructed 

for solving differential equations. But there does exist much work in Quantum Calculus. The numerical 

methods for solving Quantum Calculus are also a future considered area where methods will be 

required to solve problems. This work also consists of the numerical scheme that can be considered to 

solve integer-order differential equations, and the method can be considered to tackle the problem 

having 𝑞-diffusion. Like integer-order derivatives, the finite difference formulas can be derived for 

the 𝑞 -derivative. These difference formulas for discretizing 𝑞 -derivative(s) terms are based on 𝑞 -

Taylor series approach. Also, in this study, the effects of convection and 𝑞-diffusion are added to the 

existing energy balance model of ODEs. The PDEs model is more general than the ODEs model 

because it also shows the behavior of temperatures on spatial variable(s). The summary of the work is 

given in the next paragraph. 

The problem of climate change is constructed by considering non-linear force terms and 𝑞 -

diffusion in the existing energy balance model. After this, the construction of the proposed scheme is 

given with stability analysis. The leading error terms and order of convergence for non-linear 

convection time-dependent problem is also provided. Later on, some discussion is presented.   

Since humans interact with the environment, this interaction is responsible for changing 

temperature. On the other side, environmental circumstances affect humans, posing a new threat in the 

form of climate change. The present climate change model is based on the rate at which the global 

mean surface temperature (GMST) increases. The global mean surface temperature has been increased 

by 0.07 ℃ per decade stated in [28]. For the study of variation in climate, some mathematical models 

have been introduced. These energy balance models are simple, but these models are quite effective 

models of the climate system. M. Budyko [29] and W.D. Sellers [30] introduced these models 

approximately 50 years ago. But in this study, these model is studied in the form of ordinary and partial 

differential equations. Since ordinary differential equations (ODEs) provide information over one 

variable, the partial differential equations (PDEs) model gives more information than ODEs models. 

Also, the ODEs model can be considered a special case of PDEs models. In this study, the mathematical 

model in the form of PDEs can be expressed as: 
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𝜕𝑇

𝜕𝑡
+ 𝑐1

𝜕𝑇

𝜕𝑥
= 𝑑1𝑇𝑞,𝑥𝑥 −

𝜆

𝐶
𝑇 −

γ

C
(𝑇 − 𝑇𝐷) + 𝑄𝑇

𝑚, (1.1) 

𝜕𝑇𝐷

𝜕𝑡
+ 𝑐2

𝜕𝑇𝐷

𝜕𝑥
= 𝑑2𝑇𝐷,𝑞,𝑥𝑥 +

𝛾

𝐶𝐷
(𝑇 − 𝑇𝐷), (1.2) 

where 𝑇 is the temperature of GMST, 𝑇𝐷 represents global mean deep ocean temperature, 𝑐1 and 

𝑐2  are coefficients of convection, 𝑑1  and 𝑑2  are coefficients of diffusion, 𝜆  denotes the climate 

feedback parameter, 𝛾 denotes deep-ocean heat uptake parameter, 𝐶 and 𝐶𝐷 denotes effective heat 

capacity of the upper box and effective heat capacity of the deep ocean, respectively.     

Instead of classical derivatives in integer form, 𝑞-derivatives for diffusion are considered. The 

𝑞-derivative has been defined in the literature. 

Definition [31]: The 𝑞-derivative of 𝑣(𝑥) is expressed as: 

𝑣𝑞
′(𝑥) =

𝑣(𝑞𝑥)−𝑣(𝑥)

𝑞𝑥−𝑥
, 0 < 𝑞 < 1. (1.3) 

At this stage of the solution procedure, stability conditions corresponding to the ODEs model are 

analyzed. So the equilibrium points of Eqs (1.1) and (1.2) using 𝑐1 = 𝑐2 = 𝑑1 = 𝑑2 = 0 and 𝑚 =

0.5 can be found by solving the equations   

0 =
𝜆

𝐶
𝑇 −

𝛾

𝐶
(𝑇 − 𝑇𝐷) + 𝑄𝑇

3, (1.4) 

0 =
𝛾

𝐶𝐷
(𝑇 − 𝑇𝐷). (1.5) 

Solving Eqs (1.4) and (1.5) yields two points 

𝐵0(0,0) and 𝐵1 (
𝑄2

𝜆2
,
𝑄2

𝜆2
). (1.6)  

The Jacobin of the system (1.4) and (1.5) can be expressed as  

𝐽 = [
−𝛾 − 𝜆 +

𝑄

2√𝑇
𝛾

𝛾 −𝛾
]. (1.7) 

The Jacobin evaluated at 𝐵1 is given as  

𝐽|𝐵1 = [
−𝛾 −

𝜆

2
𝛾

𝛾 −𝛾
]. (1.8) 

The characteristic polynomial for matrix (1.8) is expressed as  

𝑅(𝑦) = 𝑦2 + (2𝛾 +
𝜆

2
) 𝑦 + 𝛾𝜆 −

𝛾𝜆𝑄

2
. (1.9) 

According to the Routh-Hurwitz criterion, the system of ODEs is stable. If the following 
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inequality holds,  

𝛾𝜆 −
𝑄𝛾𝜆

2
> 0. (1.10) 

2. Construction of numerical schemes 

In this section, a numerical scheme is constructed, which can be used to solve any time-dependent 

partial differential equation. The scheme is explicit in both of its stages. The first stage of the scheme 

is just the forward Euler scheme. So for Eq (1.1), the first stage of the scheme is expressed as: 

�̅�𝑖
𝑛+1 = 𝑇𝑖

𝑛 + 𝛥𝑡 (
𝜕𝑇

𝜕𝑡
)
𝑖

𝑛
, (2.1) 

and the second stage of the scheme is given by  

𝑇𝑖
𝑛+1 = 𝑎𝑇𝑖

𝑛 + 𝑏�̅�𝑖
𝑛+1 + 𝛥𝑡 {𝑐 (

𝜕�̅�

𝜕𝑡
)
𝑖

𝑛+1

+ 𝑒 (
𝜕𝑇

𝜕𝑡
)
𝑖

𝑛
}. (2.2) 

Substitution Eq (2.1) into Eq (2.2), it is obtained: 

𝑇𝑖
𝑛+1 = 𝑎𝑇𝑖

𝑛 + 𝑏𝑇𝑖
𝑛 + 𝑏𝛥𝑡 (

𝜕𝑇

𝜕𝑡
)
𝑖

𝑛
+ 𝛥𝑡 {𝑐 (

𝜕𝑇

𝜕𝑡
)
𝑖

𝑛
+ 𝑐𝛥𝑡 (

𝜕2𝑇

𝜕𝑡2
)
𝑖

𝑛

+ 𝑒 (
𝜕𝑇

𝜕𝑡
)
𝑖

𝑛
}. (2.3) 

Expanding 𝑇𝑖
𝑛+1 using the Taylor series expansion of the form  

𝑇𝑖
𝑛+1 = 𝑇𝑖

𝑛 + 𝛥𝑡 (
𝜕𝑇

𝜕𝑡
)
𝑖

𝑛
+
(𝛥𝑡)2

2
(
𝜕2𝑇

𝜕𝑡2
)
𝑖

𝑛

+ 𝑂((𝛥𝑡)3). (2.4) 

Substituting Eq (2.4) into Eq (2.3) and comparing coefficients of 𝑇𝑖
𝑛, ∆𝑡 (

𝜕𝑇

𝜕𝑡
)
𝑖

𝑛
  and 

(∆𝑡)2 (
𝜕2𝑇

𝜕𝑡2
)
𝑖

𝑛

on both sides of the resulting equations gives  

1 = 𝑎 + 𝑏
1 = 𝑏 + 𝑐 + 𝑒

1

2
= 𝑐

}. (2.5) 

Solving Eq (2.5) gives  

𝑏 = 1 − 𝑎

𝑐 =
1

2

𝑒 = 𝑎 −
1

2

}. (2.6) 

Consider the central difference formula for the second-order partial 𝑞-derivative term, which can 

be derived using 𝑞-Taylor series expansion,  

(𝑇𝑞,𝑥𝑥)𝑖
𝑛
≈

(𝑇𝑖+1
𝑛 −2𝑇𝑖

𝑛+𝑇𝑖−1
𝑛 )(1+𝑞)

2(Δ𝑥)2
 where 0 < 𝑞 ≤ 1. (2.7) 
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Substituting numerical approximation (2.7) into Eq (1.1) and employing the first stage of the 

constructed scheme for time discretization, it is obtained:  

�̅�𝑖
𝑛+1 = 𝑇𝑖

𝑛 + Δ𝑡 {−𝑐1𝛿𝑥𝑇𝑖
𝑛 + 𝑑1𝛿𝑥

2𝑇𝑖
𝑛 −

𝜆

𝐶
𝑇𝑖
𝑛 −

𝛾

𝐶
(𝑇𝑖

𝑛 − 𝑇𝐷,𝑖
𝑛 ) + 𝑄(𝑇𝑖

𝑛)𝑚}, (2.8) 

and the second stage of the proposed scheme is expressed as  

𝑇𝑖
𝑛+1 = 𝑎𝑇𝑖

𝑛 + 𝑏𝑇𝑖
𝑛 + Δ𝑡 [𝑐 {−𝑐1𝛿𝑥�̅�𝑖

𝑛+1 + 𝑑1𝛿𝑞,𝑥
2 �̅�𝑖

𝑛+1 −
𝜆

𝐶
�̅�𝑖
𝑛+1 −

𝛾

𝐶
(�̅�𝑖

𝑛+1 − �̅�𝐷,𝑖
𝑛+1) +

𝑄(�̅�𝑖
𝑛+1)𝑚} + 𝑒 {−𝑐1𝛿𝑥𝑇𝑖

𝑛 + 𝑑1𝛿𝑞,𝑥
2 𝑇𝑖

𝑛 −
𝜆

𝐶
𝑇𝑖
𝑛 −

𝛾

𝐶
(𝑇𝑖

𝑛 − 𝑇𝐷,𝑖
𝑛 )}], 

(2.9) 

where 

𝛿𝑥𝑇𝑖
𝑛 =

𝑇𝑖+1
𝑛 −𝑇𝑖−1

𝑛

2Δ𝑥
 

𝑎𝑛𝑑 

𝛿𝑞,𝑥
2 𝑇𝑖

𝑛 =
(𝑇𝑖+1
𝑛 −2𝑇𝑖

𝑛+𝑇𝑖−1
𝑛 )(1+𝑞)

2(Δ𝑥)2 }
 

 

. (2.10) 

3. Stability analysis 

Before starting stability analysis of the constructed scheme, the system of Eqs (1.1) and (1.2) are 

expressed in a single vector-matrix equation as:  

𝜕𝑼

𝜕𝑡
+ 𝐴

𝜕𝑼

𝜕𝑥
= 𝐵𝑼𝑞,𝑥𝑥 + 𝐽|𝐵1𝑼, (3.1) 

where 𝑼 = [𝑇, 𝑇𝐷]
𝑡 , 𝐴 = [

𝑐1 0
0 𝑐2

] , 𝐵 = [
𝑑1 0
0 𝑑2

]. 

Employing the constructed numerical scheme to Eq (3.1) gives  

�̅�𝑖
𝑛+1 = 𝑼𝑖

𝑛 + Δ𝑡{−𝐴𝛿𝑥𝑼𝑖
𝑛 + 𝐵𝛿𝑞,𝑥

2 𝑼𝑖
𝑛 + 𝐽|𝐵1𝑼𝑖

𝑛}, (3.2) 

and  

𝑼𝑖
𝑛+1 = 𝑼𝑖

𝑛 + 𝛥𝑡 [𝑐 {
−𝐴𝛿𝑥�̅�𝑖

𝑛+1 +

𝐵𝛿𝑞,𝑥
2 �̅�𝑖

𝑛+1 + 𝐽|𝐵1�̅�𝑖
𝑛+1} + 𝑒{−𝐴𝛿𝑥𝑼𝑖

𝑛 + 𝐵𝛿𝑞,𝑥
2 𝑼𝑖

𝑛 + 𝐽|𝐵1𝑼𝑖
𝑛}]. (3.3) 

By adopting Von Neumann’s stability criteria, consider the transformations 

�̅�𝑖
𝑛+1 = 𝑬𝑛+1𝑒𝑖𝐼𝜓, 𝑼𝑖

𝑛 = 𝑬𝑛𝑒𝑖𝐼𝜓

𝑼𝑖±1
𝑛 = 𝑬𝑛𝑒(𝑖±1)𝐼𝜓, �̅�𝑖±1

𝑛+1 = �̅�𝑛+1𝑒(𝑖±1)𝐼𝜓

𝑼𝑖
𝑛+1 = 𝑬𝑛+1𝑒𝑖𝐼𝜓

}. (3.4) 

Substituting transformation (3.4) into Eq (3.2) yields  
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�̅�𝑛+1𝑒𝑖𝐼𝜓 = 𝑬𝑛𝑒𝑖𝐼𝜓 + Δ𝑡 {−𝐴 (
𝑒(𝑖+1)𝐼𝜓−𝑒(𝑖−1)𝐼𝜓

2Δ𝑥
)𝑬𝑛 + 𝐵 (

𝑒(𝑖+1)𝐼𝜓−2𝑒𝑖𝐼𝜓+𝑒(𝑖−1)𝐼𝜓

2(Δ𝑥)2
) (1 + 𝑞) +

𝐽|𝐵1𝑬
𝑛𝑒𝑖𝐼𝜓}. 

(3.5) 

Dividing both sides of Eq (3.5) by 𝑒𝑖𝐼𝜓, it is obtained  

�̅�𝑛+1 = 𝑬𝑛 − 𝑐4𝐴(2𝐼𝑠𝑖𝑛𝜓)𝑬
𝑛 +

𝐵𝑑(2𝑐𝑜𝑠𝜓−2)𝑬𝑛(1+𝑞)

2
+ 𝐽|𝐵1𝑬

𝑛, (3.6) 

Eq (3.6) can be written as  

�̅�𝑛+1 = (𝐼. 𝐷 − 𝑐4𝐴(2𝐼𝑠𝑖𝑛𝜓) + 𝐵𝑑(𝑐𝑜𝑠𝜓 − 1)𝑬
𝑛(1 + 𝑞) + 𝛥𝑡𝐽|𝐵1)𝑬

𝑛, (3.7) 

where 𝐼. 𝐷 denotes the identity matrix and 𝑐4 =
Δ𝑡

2Δ𝑥
, 𝑑 =

Δ𝑡

(Δ𝑥)2
. 

Similarly, substituting transformations from (3.4) into Eq (3.3) and dividing the resulting equation 

by 𝑒𝑖𝐼𝜓, it gives  

𝑬𝑛+1 = 𝒂𝑬𝑛 + 𝑏�̅�𝑛+1 + (−𝑐4𝐴(2𝐼𝑠𝑖𝑛𝜓) + 𝐵𝑑(𝑐𝑜𝑠𝜓 − 1)(1 + 𝑞) + 𝛥𝑡𝐽|𝐵1)�̅�
𝑛+1 +

(−𝑐4𝐴(2𝐼𝑠𝑖𝑛𝜓) + 𝐵𝑑(𝑐𝑜𝑠𝜓 − 1)(1 + 𝑞) + Δ𝑡𝐽|𝐵1)𝑬
𝑛. 

(3.8) 

Substituting Eq (3.7) into Eq (3.8) and rewrite the resulting equation in the form  

𝑬𝑛+1 = (𝑎𝐼. 𝐷 − 2𝑐4𝐴(2𝐼𝑠𝑖𝑛𝜓) + 𝐵𝑑(𝑐𝑜𝑠𝜓 − 1)(1 + 𝑞) + Δ𝑡𝐽|𝐵1)𝑬
𝑛 + (𝑏𝐼. 𝐷 −

𝑐4𝐴(2𝐼𝑠𝑖𝑛𝜓) + 𝐵𝑑(𝑐𝑜𝑠𝜓 − 1)(1 + 𝑞) + Δ𝑡𝐽|𝐵1)(𝐼. 𝐷 − 2𝑐4𝐴(2𝐼𝑠𝑖𝑛𝜓) + 𝐵𝑑(𝑐𝑜𝑠𝜓 −

1)(1 + 𝑞) + Δ𝑡𝐽|𝐵1)𝑬
𝑛. 

(3.9) 

The stability condition is expressed as  

(𝑎 + 𝜇𝐵𝑑(𝑐𝑜𝑠𝜓 − 1)(1 + 𝑞) + Δ𝑡𝐽|𝐵1 + 𝑏 + 𝑏𝜇𝐵𝑑(𝑐𝑜𝑠𝜓 − 1)(1 + 𝑞) + 𝑏Δ𝑡𝐽|𝐵1 −

4𝑐4
2𝜇𝐴

2 sin2𝜓 + 𝜇𝐵𝑑(𝑐𝑜𝑠𝜓 − 1)(1 + 𝑞) + 𝜇𝐵
2𝑑2(𝑐𝑜𝑠𝜓 − 1)2(1 + 𝑞)2 +

Δ𝑡𝐽|𝐵1𝜇𝐵𝑑(𝑐𝑜𝑠𝜓 − 1)(1 + 𝑞) + Δ𝑡𝐽|𝐵1 + Δ𝑡𝐽|𝐵1𝜇𝐵𝑑(𝑐𝑜𝑠𝜓 − 1)(1 + 𝑞) + (Δ𝑡𝐽|𝐵1)
2
)
2

+

(−6𝑐4𝜇𝐴 sin𝜓 − 2𝑐4𝜇𝐴𝜇𝐵𝑑𝑠𝑖𝑛𝜓(𝑐𝑜𝑠𝜓 − 1)(1 + 𝑞) − 2Δ𝑡𝐽|𝐵1𝑐4𝜇𝐴 sin𝜓)
2
≤ 1, 

(3.10) 

where 𝜇𝐴 & 𝜇𝐵 are maximum eigenvalues of 𝐴 and 𝐵, respectively. 

4. Error analysis 

Since the proposed scheme is second-order accurate in time and space, the leading error terms in 
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both space and time can be found by Taylor series analysis. For discretization of convection term, the 

Taylor series expansions are given as 

𝑇𝑖+1
𝑛 = 𝑇𝑖

𝑛 + ∆𝑥 (
𝜕𝑇

𝜕𝑥
)
𝑖

𝑛
+
(∆𝑥)2

2
(
𝜕2𝑇

𝜕𝑥2
)
𝑖

𝑛

+
(∆𝑥)3

6
(
𝜕3𝑇

𝜕𝑥3
)
𝑖

𝑛

+
(∆𝑥)4

24
(
𝜕4𝑇

𝜕𝑥4
)
𝑖

𝑛

+ 𝑂((∆𝑥)5), (4.1) 

𝑇𝑖−1
𝑛 = 𝑇𝑖

𝑛 − ∆𝑥 (
𝜕𝑇

𝜕𝑥
)
𝑖

𝑛
+
(∆𝑥)2

2
(
𝜕2𝑇

𝜕𝑥2
)
𝑖

𝑛

−
(∆𝑥)3

6
(
𝜕3𝑇

𝜕𝑥3
)
𝑖

𝑛

+
(∆𝑥)4

24
(
𝜕4𝑇

𝜕𝑥4
)
𝑖

𝑛

+ 𝑂((∆𝑥)5). (4.2) 

Subtracting Eq (4.2) from Eq (4.1), and rewrite the resulting equation in the form  

𝑇𝑖+1
𝑛 −𝑇𝑖−1

𝑛

2∆𝑥
= (

𝜕𝑇

𝜕𝑥
)
𝑖

𝑛
+
(∆𝑥)2

6
(
𝜕3𝑇

𝜕𝑥3
)
𝑖

𝑛

+ 𝑂((∆𝑥)4). (4.3) 

The leading error term in the discretization of convection term is the third-order partial 

derivative term and also multiple of (∆𝑥)2And therefore, the discretization is second-order accurate. 

For finding leading errors in the spatial discretization of 𝑞-diffusion term, the 𝑞-Taylor series 

expansions are expressed as 

𝑇𝑖+1
𝑛 = 𝑇𝑖

𝑛 + ∆𝑥𝐷𝑞𝑢|𝑖
𝑛
+
(∆𝑥)2

[2]𝑞!
𝐷𝑞
2𝑢|

𝑖

𝑛
+
(∆𝑥)3

[3]𝑞!
𝐷𝑞
3𝑢|

𝑖

𝑛
+
(∆𝑥)4

[4]𝑞!
𝐷𝑞
4𝑢|

𝑖

𝑛
+ 𝑂((∆𝑥)5), (4.4) 

𝑇𝑖+1
𝑛 = 𝑇𝑖

𝑛 − ∆𝑥𝐷𝑞𝑢|𝑖
𝑛
+
(∆𝑥)2

[2]𝑞!
𝐷𝑞
2𝑢|

𝑖

𝑛
−
(∆𝑥)3

[3]𝑞!
𝐷𝑞
3𝑢|

𝑖

𝑛
+
(∆𝑥)4

[4]𝑞!
𝐷𝑞
4𝑢|

𝑖

𝑛
+ 𝑂((∆𝑥)5). (4.5) 

Adding Eqs (4.4) and (4.5), and rewrite the resulting equation in the form of 

(
𝑇𝑖+1
𝑛 −2𝑇𝑖

𝑛+𝑇𝑖−1
𝑛

2(∆𝑥)2
) [2]𝑞! = 𝐷𝑞

2𝑢|
𝑖

𝑛
+ 2

(∆𝑥)2

[4]𝑞!
𝐷𝑞
4𝑢|

𝑖

𝑛
+ 𝑂((∆𝑥)4). (4.6) 

The leading error term for the discretization of 𝑞-diffusion term can be seen in Eq (4.6), which 

contains a fourth-order spatial 𝑞 -derivative term, which is multiple of (∆𝑥)2 Therefore, the 

discretization of 𝑞-diffusion term is second-order accurate.  

The leading error term in temporal discretization is given as 

(∆𝑡)3

6

𝜕3𝑇

𝜕𝑡3
|
𝑖

𝑛

. (4.7) 

5. Order of convergence 

For finding the order of convergence of the proposed scheme, a non-linear parabolic equation is 

given as 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
= 0, (5.1) 

subject to initial and boundary conditions  

𝑢(0, 𝑥) = 𝑥 and 𝑢(𝑡, 0) = 0. (5.2) 
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The exact solution of the problem (5.1) and (5.2) is given as [32] 

𝑢(𝑡, 𝑥) =
𝑥

1+𝑡
    where    |𝑡| < 1. (5.3) 

The comparison of three numerical schemes for finding order of convergence of the problems 

(5.1) and (5.2) is shown in Table 1. The norm of the error is also shown in Table 1, which shows the 

accuracy of the considered numerical scheme for finding the solution to the problem. Theoretically, 

the order of accuracy of each employed numerical scheme for constructing Table 1 is the same, which 

is two. Still, the order of convergence of all three schemes is less than two. One of the three schemes 

is the classical finite difference scheme in which second-order central temporal discretization is 

adopted with second-order central spatial discretization. The norm of error produced by the central 

scheme is less than those given by the other two schemes. The following formula computes the order 

of convergence 

𝐶∆𝑡 =
𝑙𝑜𝑔(𝐿∞

𝐶 𝐿∞
𝑝

⁄ )

𝑙𝑜𝑔(∆𝑡𝑐 ∆𝑡𝑝⁄ )
, (5.4) 

where 𝐿∞
𝐶  is the maximum norm of error vector at the current temporal step size ∆𝑡𝑐 and 𝐿∞

𝑝
 is the 

maximum norm of the error vector at the previous temporal step size ∆𝑡𝑝. 

Table 1. Comparison of the order of convergence of three numerical schemes using 𝑡𝑓 =

0.9, 𝑁𝑥 = 50. 

∆𝑡 2nd order Runge-Kutta 2nd order Central 2nd order Proposed 

𝐿∞  𝐶∆𝑡 𝐿∞  𝐶∆𝑡 𝐿∞  𝐶∆𝑡 

1
40⁄  𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒 − 0.3299 − 0.0140 − 

1
80⁄  0.0070 − 0.1160 1.5079 0.0069 1.0208 

1
160⁄  0.0035 1.0000 0.0693 0.7432 0.0035 0.9792 

1
320⁄  0.0018 0.9594 0.0466 0.5725 0.0017 1.0418 

1
640⁄  0.0009 1.0000 0.0352 0.4048 0.0009 0.9175 

6. Results and discussion 

The constructed numerical schemes are explicit and second-order accurate. This accuracy of the 

scheme can be verified by observing the construction procedure of the scheme. Since the scheme is 

constructed by balancing second-order derivative terms in Taylor series expansion, it is second-order 

accurate. The consistency of the scheme can be verified from its order of accuracy. If the scheme is at 

least first-order accurate, then it is consistent. Since the constructed scheme is second-order accurate 

so it is also consistent. The stability of the scheme has been shown in the previous section. Using the 

condition of stability analysis, the scheme is conditionally stable, and it is consistent. Therefore, it is 

conditionally convergent for linear time-dependent partial differential having 𝑞 -diffusion. The 

stability region of the constructed scheme depends on the choice of the parameter 𝑎. Different values 

of the parameter 𝑎 produce different stability regions.  

The system of ordinary differential equations (1.1) and (1.2) is also solved with Matlab solver 

ode45. The ode45 solver can be used to solve linear and non-linear differential equations having initial 

conditions. According to Matlab code, the solver converges for small values of the heat source 
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parameter 𝑄 when it is applied for solving ordinary differential equations (1.1) and (1.2) using 

𝑐1 = 𝑐2 = 𝑑1 = 𝑑2 = 0. Figures 1 and 2 compare the constructed numerical scheme with the forward 

Euler method. The error is found by finding the absolute difference between the constructed/Euler 

schemes and Matlab solver ode45. From this comparison, it can be concluded that the constructed 

scheme produces less error than that given by the existing forward Euler scheme using two different 

sets of numerical values of the contained parameters. Figure 3 shows the impact of 𝑞 on global mean 

surface temperature 𝑇 and global mean deep ocean temperature 𝑇𝐷. Both types of temperature have 

escalating behavior on the temporal variable 𝑡, but the global mean deep ocean temperature has dual 

behavior on the spatial variable𝑥 . Both global mean surface and deep ocean temperatures over 

temporal and spatial variables 𝑡 and 𝑥 increase by enhancing heat source parameter 𝑄, this kind of 

behavior can be seen in Figure 4. Figures 5–8 show the contours of global mean surface and deep 

ocean temperatures using two different sets of numerical values of the parameters. 

 

Figure 1. Comparison of proposed and existing schemes for ODEs model using 𝑄 = 0.3,

𝜆 = 0.3, 𝛾 = 0.1, 𝐶 = 1, 𝑚 = 0.2, 𝑁 = 1000. 

 

Figure 2. Comparison of proposed and existing schemes for ODEs model using 𝑄 = 0.4,

𝜆 = 0.3, 𝛾 = 0.1, 𝐶 = 1, 𝑚 = 0.9, 𝑁 = 1000,  𝑇0 = 4,  𝑇𝐷,0 = 0. 
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Figure 3. Variation of 𝑞 on the global mean surface and oceanic temperatures using 𝑄 =

0.5, 𝜆 = 0.1, 𝛾 = 0.7, 𝐶 = 1, 𝑚 = 1.5, 𝑁𝑥 = 40, 𝑁𝑡 = 300,  𝑑1 = 0.7, 𝑑2 = 0.9,

𝑐1 = 0.1, 𝑐2 = 0.4, 𝑇0 = 4,  𝑇𝐷,0 = 0. 

 

Figure 4. Impact of heat source parameter 𝑄 on the global mean surface and oceanic 

temperatures using 𝜆 = 0.5, 𝛾 = 0.7, 𝐶 = 1, 𝑚 = 0.9, 𝑞 = 0.9, 𝑁𝑥 = 40,  𝑁𝑡 = 300,

𝑑1 = 0.7, 𝑑2 = 0.9, 𝑐1 = 0.1,  𝑐2 = 0.4, 𝑇0 = 4,  𝑇𝐷,0 = 0. 
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Figure 5. Contour plot for global mean surface temperature using 𝜆 = 0.1, 𝛾 = 0.3, 𝐶 =

0.1, 𝑚 = 0.5, 𝑄 = 0.3, 𝑞 = 0.9,  𝑁𝑥 = 40,  𝑁𝑡 = 100,  𝑑1 = 0.1,  𝑑2 = 0.1, 𝑐1 =

0.1,  𝑐2 = 0.1, 𝑇0 = 4,  𝑇𝐷,0 = 0. 

 

Figure 6. Contour plot for global mean oceanic temperature using 𝜆 = 0.1, 𝛾 = 0.3, 𝐶 =

0.1, 𝑚 = 0.5, 𝑄 = 0.3, 𝑞 = 0.9,  𝑁𝑥 = 40,  𝑁𝑡 = 100,  𝑑1 = 0.1, 𝑑2 = 0.1, 𝑐1 =

0.1,  𝑐2 = 0.1, 𝑇0 = 4,  𝑇𝐷,0 = 0. 

 

Figure 7. Contour plot for global mean surface temperature using 𝜆 = 0.5, 𝛾 = 0.7, 𝐶 =

1, 𝑚 = 0.9, 𝑄 = 0.1, 𝑞 = 0.9, 𝑁𝑥 = 40,  𝑁𝑡 = 100, 𝑑1 = 0.1,  𝑑2 = 0.1,  𝑐1 = 0.1,

𝑐2 = 0.1, 𝑇0 = 4, 𝑇𝐷,0 = 0. 
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Figure 8. Contour plot for global mean oceanic temperature using 𝜆 = 0.5, 𝛾 = 0.7, 𝐶 =

1, 𝑚 = 0.9, 𝑄 = 0.1, 𝑞 = 0.9,  𝑁𝑥 = 40, 𝑁𝑡 = 100, 𝑑1 = 0.1, 𝑑2 = 0.1, 𝑐1 =

0.1,  𝑐2 = 0.1, 𝑇0 = 4,  𝑇𝐷,0 = 0. 

7. Conclusions 

The study was comprised of modifying the energy balance model of climate change. Two types 

of modifications were suggested. The model of ordinary differential equations models was extended 

to the model of partial differential equations having convections and 𝑞 -diffusions effects. The 

numerical schemes were constructed, which were explicit and second-order accurate. Applying a 

numerical scheme for the ODEs and PDEs models and the graphs represented some results. The 

stability condition was given for the linear time-dependent differential equations. The impact of the 

parameter of 𝑞 on both types of temperatures was also shown, and it was concluded that global mean 

surface and deep oceanic temperatures had increasing behaviors over temporal variables. Also, it was 

observed that the deep ocean temperature had both increasing and decreasing behaviors on spatial 

variable 𝑥 . Global mean surface and deep ocean temperatures escalated on spatial and temporal 

variables by the rising coefficient of linear and non-linear heat source terms. The presented numerical 

schemes can be further applied to different time-dependent problems having integer-order and 𝑞𝑡ℎ 

order spatial derivative terms. Also, the proposed numerical scheme can be further applied in 

epidemiological disease models and other problems [33–35] in fractional calculus. 
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