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1. Introduction

One of the most popular topics of theoretical studies in the vast area of mathematics is the theory of
fractional derivatives. Theories such as fractional derivatives and fractional integrals play significant
roles and they are apt theories for tackling the issues that prevail in the present world. They have been
discussed and analyzed by many famous authors in their research works, and they are helpful in finding
the solutions for real-life problems. The fractional equations, which are based on the properties of
fractional derivatives, are used to solve problems in the fields of mathematical modeling and simulation
of systems and processes.

The fields of science and engineering have gained importance and popularity by the documented
applications of fractional differential equations, which are generalizations of the classical differential
equations of integers in a diverse and widespread area. Fractional calculus is developing largely in the
midst of science and engineering problems. Fractional derivatives are easily used to solve problems in
interdisciplinary applications in an elegant manner. Most of the systems are constructed very accurately
using fractional derivatives and integrals in an easy way, and fractional calculus is applicable in areas
such as fluid flow, rheology, viscoelasticity, signal processing, economics, etc. Books on fractional
derivatives and fractional integrals are largely available and published, such as [1-7].

The fundamental and the basic properties of the usual derivatives, such as the chain and product
rules, have been lost and become more complicated in the obtained fractional derivatives in the present
form of calculus. Khalil et al. [8]. introduced the conformable derivative, which is more similar to the
classical derivative, in the year 2014. It was introduced as a new fractional derivative. The phenomena
and the real-world scenario systems that are more aptly described with the help of fractional differential
equations have been identified by many researchers in their works in recent times. The symmetries can
be found by solving a related set of partial fractional differential equations. The real-world issues in
the field of science are clearly understood with the help of an important mathematical tool. This tool
is called the natural description of the evolution processes which us provided by the oscillation theory
of differential equations. The monographs and the references mentioned [9-12] can be used by the
readers to have a detailed discussion on the applications of impulsive differential equations in a very
clear manner.

For the oscillation theory of impulsive differential equations, first investigation and research was
published in the year 1989 [13], and a paper related to this topic was published in the year 1991 [14].
The simple and natural framework of mathematical modeling for population growth was provided
by the impulsive differential equations that found by the authors mentioned in [14]. Several authors
studied the oscillatory behavior of the differential equations with or without the module of impulse
[15-28]. The concentration and attention are much less on systems of partial differential equations
[29-36] and systems of impulsive partial differential equations [37—40]. Many researchers have found
excellent results and outcomes, and significant attention has been given to analyzing the oscillation of
the differential equations in the last few years. The references cited in this paper provide us with some
notable results, with the help of [41-44], in the above discussed field in a detailed manner.

The current paper is organized as follows. In section 2, we introduce the proposed impulsive system
and the boundary condition that will be discussed in the paper. In section 3, we present several
preliminary definitions and notations we use through all the paper. In addition, we provide some
needed auxiliary results. In section 4, we present the main results by establishing sufficient conditions
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for the oscillation of all solutions of the proposed problems. In section 5, we provide an example to
illustrate the main results and to validate the proposed work. Finally, a brief conclusion and description
of future work are provided at the end of this paper.

2. Impulsive system
In this paper, we will discuss the following impulsive system:
a(l
o—{ﬂwo+fgo@ﬂwrowwmo)

+mo Qﬂwn+fgooﬂwfogwm@)

m d

+ Zl 2 f Ginj(w, 1, ) fij(F(w, o (1, §))dn(s) = a;(1)Ad;(w, 1) ©
n= ,I= E
+ % é Ay (AY (W, pr(1), 1# 1, (W) EYXRL =G
n=1h=1

Vi(w,17) = ag (W, 10, 0w, 1))
0"Y(w,1}) ny 0“%i(w, 17)
g P\ T e

)’ f:]"z"."l‘:]‘!z"..’m

where A represents the Laplacian in the Euclidean space R", and ¢ is a bounded domain in RY with a
piece-wise smooth boundary dy. 7= represents the conformable partial fractional derivative of order
a,0<a<1,and R, = [0, +00). Moreover, we study the boundary condition as follows:

0%(w, 1)

By + ui(w, )9 (w,1) =0, (w,1) € 0 XR,, (B)

where vy represents the outer surface normal vector to 9y, and u;(w, 1) € C (O X R,,R,).
During this work, we let the following hypotheses hold.

(H)) r()) € C*(Ry,(0,+00)), To(r(®) 2 0, pt) € C(R,,R), g(t,6) € C*(Ry X [a,b], (0, +00)),

veq Lr(s) + pls) |
flo sl—“—A(s)ds = +o00, where A(1) = exp (f T )

(Hy) ai(1), ainn(1) € PCR4,R,), As(1) = 1mjn {aiih(l)_ g: |am'h(l)|} >0, i,n=12,---,mh =
<i<m

n=1, n#i
1,2,---,1, where PC represents the functions that are piece-wise and continuous in : which also
have the discontinuities that take place in: = 1,, £ = 1,2,---, and left continuous at 1 = 1,, £ =
1,2,---

(H3) T(la g) € Ca (R+ X [a’ b]9R)s O-j(l’ g)’e C(R+ X [a’ b]9R)’ O-j(l’ g) < L, T(la g) <1 for S € [aa b]a
0 (1,¢) and 7(1, ¢) are non-decreasing with respect to ¢ and ¢ respectively, and

liminf o;(1,¢) = 11m1nf T(l §)=+00, j=1,2,---,d,

1—+00, ¢€[a,b] 1—+00, ¢€[a

on()) € CR,R), pp(1) < 1and lim pp(1) = +o0, B = 1,2,---,1, a, b are nonpositive constants
1—+00
with a < b.
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(Hj4) There exists a function 8;(1) € C*(R,, R,) satisfying 6,(1) < 0 ;(1,a), T,(8;(1)) > 0 and 11_1)1330 0;(1) =
+o00, j=1,2,---,d,n(s) : [a,b] — R decreases, and the integral is of type Stieltjes in the BVP
(E). ]

(Hs) ginj(w,1,6) € C (¥ xR, X [a,b],R), giij(1,6) = Iul)lellil giij(w,1,¢),

Ginj(1,€) = max Ginf(w,1,6)|, 0(1,6) = min {Qiij(l, ) — X Guij(s, §)} >20,in=12,--,m,

n=1, n#i
ij ﬂn
j=12,---.,d, f;;(9,) € CR,R) convex in R, 9, f;;(¢,) > 0 and % >e€>0,ford, #0,
in=1,2-,mj=12-d. !
. . . aaﬁi(w’ l) . . . . . . . ..
(Hg) 9y(w, 1) and their derivatives o are piecewise continuous in ¢ with discontinuities of first
la

0"0i(w, 1)

kind only at ¢ = 1,, £ = 1,2,---, and left continuous at 1 = 1, %j(w, 1) = Fi(w,1,), 3
l(l

0"Yi(w, 1,
M’gzl,z’...’izl’z’...’m_
o g
(H7) aq, (W, 10, 9w, 10)) , Be, (U-),lf,% € PCy xR, xR,R), ¢ = 1,2,---,i=1,2,---,m,
l(l

and there exist positive constants a,, az_, be., bz with b, < az such that fori = 1,2,--- ,m, { =
1,2,---,

* alf,' ((,L), le, 19'1'((1), l[))

U= Pi(w, 1¢)

*9i(w,1p)
" IBf,' ((.U, le, (1310
< ag, bff S 9*Yi(w,1¢)
0

< by,

3. Preliminaries

In this section, we present some definitions and review some noteworthy results from the literature
which we will use throughout the paper.

Definition 1. [45] A solution of system (E) means a vector function (¢ (w,1),- - ,P,(w, 1)) such that
ﬁi(w, l) € CZCL/(I/_/X [l—l ’ +OO), R) mca(l/_lx [i—l ) +OO), R) ﬂC(l/_/X [l_—l ) +OO), R) and ﬁi(wa l)’ i = la 2’ e ,m
are satisfying the BVP (E) in G such that

~
|
—_

I1<h<i >0

1_; := min< 0, min {inf 7(s, }
! { ge[a,b]{zZO ( g)}

min {o, min {inf ph(l)}}

and

L min{O, min {infaj(l,g)}}.

1<j<d, sela,b] \ 1=0

Definition 2. [45] A nontrivial component 9;(w, 1) of the vector function (¢ (w,1),--- , I (w,1)) is
said to be oscillatory in Y X [0y, +0) if for each 6 > &y there is a point (wy, 19) € ¥ X [0y, +0) such that
191'((1)0, lo) =0.

Definition 3. [45] The vector solution (91(w, 1), - - - , ¥,(w, 1)) of the problem (E) and (B) is said to be
oscillatory in the domain G if at least one of its nontrivial components oscillates in G. Otherwise, the
vector solution ¥;(w, 1) is said to be non-oscillatory in G.
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Definition 4. [45] The vector solution (¥(w,1),- -+ ,9(w,1)) of the problem (E) and (B) is said to
strongly oscillate in the domain G if each of its nontrivial components oscillates in G.

We use some of the definitions given by the authors in [8].

Definition 5. Let f : [0,00) — R. Then, the “conformable fractional derivative” of f of order « is
defined by

fa+a™) - f©

&

To(H() = lim
forall1>0,a € (0,1].
If f is a-differentiable in some (0, a),a > 0, and 1ir(1)1 F@(1) exists, then we define

FOO = lim f.

Definition 6. 7%(f)(1) = I**"' f) = fal i(ff)j
and a € (0, 1).

dx, such that the type of the integral is improper Riemann,

The following theorem defines the fundamental properties of the conformable fractional derivative.
Theorem 1. Let @ € (0, 1] and f, g be a-differentiable at a point 1 > 0. Then,
(@) Tolaf +bg) = aT(f) +bT,(g), forall a,b € R.
(i) T,(2*) = pt'™@, for all p € R.
(iii) T,(x) = 0, for all constant functions f(1) = k.

(v) Ta(f8) = fTa(g) + 8T (f).

To(f) = fTa(g)
) T"(]Ej): o zf £ :
8
. . : e df
(vi) If f is differentiable, then T,(f)(1) =1 QE(l).
Definition 7. [46] Let f be a function of n variables w1, w,,- - ,w,, and the conformable partial
derivative of f of order 0 < a < 1 in w; is defined as follows:
aa/ . f((i)l,(i)z,"',Q)i_l,(,l)l'+8(i)l.l_a,"',wn)_f((j)l,(,l)z,"',(,()n)
af(wl’w%"' ’wl’l):llm .
(')a)l. -0 £

Next, we state two results which will help us establish our main results.
Lemma 1. [47]If X and Y are non-negative, then
X+ (k- DY*>aXY<, k>1,
X (1 -0y <Xy, 0<k<l,
ifand only if X =Y.
It is known in [48] that the first eigenvalue k, of the problem

Aw(w) + kw(w) 0 in ¥y,
w(w) =0 on dy,

is positive, and the corresponding eigenfunction ®(w) is positive in .
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4. Oscillation of the BVP (E) and (B)
In this section, we establish sufficient conditions for the oscillation of all solutions of the problem

(E), (B).
Theorem 2. If the functional impulsive conformable fractional differential inequality

To (r(0Te(W®)) + p()To (W)

d-p b
2 [ €0 ¢) [1 — [ 80 (1,€), )dn(s) | W(0;(1)dn() < 0, 1 # 1,
j:

W@t T,W(@t
;< ) WD) oy, =120 i= 120 m,
T W) !

4.1

*

. 6= To(Wap)

< ag,,

has only zero and non-negative solutions, then each solution of the BVPs (E) and (B) is an oscillation
inG.

Proof. We use the contradiction technique and assume that there exists a non-oscillatory solution
(M (w,1), -+, F(w, 1)) of the BVP (E) and (B). We let |}(w,1)] > Ofori > 19, i = 1,2,---m. Let

0; = sgn ¥i(w, 1), wi(w,1) = 6;(w, 1), and then w;(w, 1) > 0, (w,1) € ¥ X [19,+00),i =1,2,---m. From
(H3), there exists an 1; > 19 such that 7(z, ¢) > 19, 07(1, ) > 19 for (1,¢) € [11, +00) X [a, b] and ps(1) > 19

for 1 > 1. Then,

wilw,7(1,6) >0 for (w,1,6) € Y X [11,+00) X [a, b],
wilw,o(1,6)) >0  for (w,1,6) €Y X [11,+00) X [a,b], j=1,2,--,d,
and wi(w, pn(1) >0 for (w,1) €Y X [11,+0), hi=1,2,---,L

Fori > 1y, 1 #1, ¢ =1,2,---, multiplying both sides of equation (E) by ¢; and integrating with respect
to w over the domain i, we obtain

d d
i [r(z)zl-‘la (. 0dx+ [, [ 610 909,76 9))dn(§)dX)]

d
+p ( [, 50, ndx + [, [ g1, )0, 7, §))dn(§)dX)
m d 4.2
£ 55 [ 7 St (9ulw, . 60) dintddx @2

n=1j=1

= (1) [, 60w, Ddx + 3, > Jy @inn @68, (w, pr())dx,
n=1n=1

1>1,i=1,2,--+ ,m.

We can see that

b b
[ [ samsns1t (a0 sn)ansts = [ [ e o1fy (0w, ,0.69) o),
¥y Ja a 1

and

b b
f f 8@, §)oui(w, T(1, §))dn(s)dx = f f 81, §)oiui(w, T(1, §))dxdn(s).
¥ Ja a

¥
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16334

Therefore,

d d
zl‘"d—t [r(l)ll‘“a (fw wi(w, 1)dx + fab fw g8, owi(w, 7(1, g))dxdn(g))]

d
+p(l)ll_"a (fw wi(w, Ndx + fab fw g, o)wi(w, 7(1, g))dxdn(g‘))

d
) { r J, i@ 1. 9)fi (wiw, o752, §))) dxdn(s)
=

4.3)
m b
+ 3 oo, 7, dinf(@,1,9) fin (Wi, 01, 6)) dxdn(g)}
’ !
= ai(v) [, Awi(w, ndx + 3 { [, ainAWwi(w, pr())dx
+ i 5,-6"fwamh(l)Awn(w,pn(l))dX}, r2u,i=1,2,--- ,m.
n=1, n#i
Using boundary condition (B) and Green’s formula, it follows that
owi(w,
wa,»(a), dx = f Wilw l)dS = —f ui(w, ywi(w, 1)ds, 4.4)
v ay Oy o

and

f Aw,(w, pp(D)dx = f wa@ = - f Hn(W, pr(@)Wi(w, pr(1))dS, 4.5)
¥ oW Y Y

where i = 1,2,--- , ;i =1,2,--- ,m, and dS is the surface element on 9. Using Jensen’s inequality
from (Hs) and assumptions,

b b
f f Giij(@, 1, ) fit (Wilw, (1, 6))) dxdn() > f f eqij(w, 1, Wilw, (1, §)dxdn(s),  (4.6)
a Jy a 1

and

b b
f f Ginf(@. 1, §) fin (Wi, (1. 6)) ) dxdip(s) = f f €qinj(W, 1, IWn(w, (1, §))dxdn(s).  (4.7)
a v a v

From (4.3)—(4.7), we get

d d
e [r(l)l]_az ( witw.ndx + [} [, gt ewilw, 76, g))dxdn(g))]
d
+p(z)zl‘”d—t ( fw wi(w, Ndx + fab L g, owi(w, 7(1, §))dxd77(§))

d m
t2 { [ [, €aist: Owitw, o, spdxdn) = X [ [, €Ginj(t, hwalw, o0 g))dxdn(g)}
f=

n=1, n#i

< 3 {= [, i@, pn@)ainwilw, pr(0)dS

h=1

+ g: j':ﬁ |amh(l)|ﬂn(w,ph(l))wn(w’ph(l))ds} s 1 > ll’i = 15 29 cec o, M.

n=1, n#i
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Setting
vi(1) = fw,-(a), Ddx, z;(1) = f wilw, wi(w,)dS, 1> 1,i=1,2,--- ,m,
v oy

we obtain
d d
= [r(l)ll_“— (Vi(l) + [ ! 2 Wi, §))dn(§))]
d
+pate L (v W+ [ 8 owi(r(, §))d17(§))

d m
+3 { [} €us- v, 0dn(s) = 3. [7 eyt e g))dn(g)} (4.8)
J= n=1, n#i
1 m
<3 {—a(pho))a,-,-ho) £ 5l zn(pho))} ,

1>1,i=1,2,--- ,m.

Let V(1) = Z vi(1), Z(1) = Z zi(1), for 1 > 1;. It follows from (4.8) that

d d
el - [r(l)z1 ol (V(l)+f g(,o)V(1(, g))dn(g))]

d
i (va) + [ g oV, g))dn(g))
4.9)

nln;tt

+ 2 6{ 1( f qiij (1, §)vi(0;(1, €))dn(s) — fa nj(l,s*)vn(dj(t,g))dn@))}

{ﬁ anWzon®) — 3 |amh<z)|zn<ph(z)>)},

h— i=1 n= 1 n#i

12y, i=1,2,---,m

Note that

m b m
Z f [Qiij(l’g)vi(o-j(lag))_ Z szj(l,s*)vn((rj(t,g)))dn@)

i=1 n=1, n#i

b m
= f [quj(t,g)vl(d,-(l,g))— Z Ehn,,-(l,c)vn(rfj(l,g))]dn(g)
a n=1, n#l

m

b
- f {qzzju,g)vz(a,-(z,g))— > zzzn,-(z,g)vn«rj(z,g))]dn(g)

n=1, n#2

b m
+-~-+f (qmmj(z,g)vm(o'j(l,g))— Z qmnj(l,§)Vn(0j(l,§)))d77(§)

n=1, n¥m

b m
= f [f]uj(l,S')— D amie g))m(cr,(z )dn(s)

n=1, n#l

b
+ f {qm(z,g)— Z qn2j<z,g)]n(a,-(ug))dn(g)

n=1, n¥2
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b m
+ -+ f (Qmmj(l’ S') - Z qnmj(l’ S‘)) Vm(o—j(l’ g))dn(g‘)

n=1, n¥m

b m m
> L 121521 [qiij(l, S)— Z Gnij(1, S‘)} Z vi(o (1, §))dn(s)

n=1, n#i i=1

b
:f Qi1 )\V(o(1,o)dn(s), 1>, j=1,2,---,d,

and similarly,

1

> 112,132, [ai,-h(l) - Z |anih(l)|] Zl: Zi(en(1))

n=1, n#i

(aiih(l)zi(ph(l))_ Z Iamh(z)lzn(ph(l))]
=1

n=1, n#i

= Ay(Wz(or(1), 121, h=1,2,---,L

Thus, from (4.9), we have

d d
ll_aa’_t [r(z)ll_aa (V(z) + fab 81, V@, §))dn(§))]

d
+p@ = (V@ + [ 80,0V 6)dn(s)

d !
+ Zl Efab 0, 9)V(0 (1, €)dn(s) + th An(WZ(pn()) <0, 121,i=1,2,---,m
= -

We obtain
Zen() = Y alpr@) 2 00 120, h= 1.2, 1.
i=1
Hence,

d d

s [r(z)zl-“d—t (v + [ s sviet, §))dn(§))]
d

= (V) + [ 0,0Vt §)dn(s)

d b .
te [ Qi oV (. )dn(s) <0, 1211,i=1,2,--- ,m.
]:

Set W) = V() + fab g(1,)V(1(1,¢))dn(s). Then,

T, (rWTo(WW)) + p)To(W(@)

a

d b
DN f Qi1 V(e (1, Ndn(6) <0, 1> 1,i=1,2,-,m.
j=1

(4.10)
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It is easy to get that W(z) > O for 1 > 1;. Next, we show that 7,(W(1)) > O for 1 > 1,. As a matter of
fact, assume the opposite, that there exists T > 1, such that 7,,(W(T)) < 0.
To rTe(W@)) + pOT(W@) <0, 121,
To(rNT (W) + r(To(To(W®)) + p)To(W@) <0, 1 21,. (4.11)

From (H,), we have T,(A(1)) = A@)(M

r(1)
A
multiply % on both sides of (4.11), and we obtain
r(1

)and T,(AG) >0, AG) > O0for: > 1,. We

AT (Te(WD)) + To(A@NT(W®) = To (AT ,(W0)) <0, 12 1. (4.12)

From (4.12), we have A(@)(T,(W(1))) < A(T)T,(W(T)) <0, 1 > T. Thus,

’ " AT (W(T))
LTQ(W(S))dssﬁ SA(s) ds, 1>T,

ds
sImA(s)’

W) < W(T)+ A(T)T,(W(T)) fl
T

From the hypothesis (H;), we get lim W(i) = —oo. This contradicts W(z1) > 0 for : > 0. Thus,
1—>+00
T,(W@)) > 0and 7(1,¢) <1 forz > 1. Hence,

b
V)= W@) - f 8, ©)V(r(1, 6))dn(s)
W) — c()W()

b
W) (1 - f g, s‘)dn(s‘))

\%

\%

and

V(oj(1,¢)) = W(ffj(l,g))(l - fab 8o, 6), s*)dn(s*)), Jj=12--.d
Therefore, from (4.10), we have
To r(VT(W@)) + p(0)To(W(1))
+ Zd; fb 6Qj(l,§)[l - fb g(O'j(l,G),g)dn(g)] W(o;(,6)dn(s) <0, 1 21.
—Ja a
From (Hs) and (Hy), we have
Wlo (i, )1 =z Wloj(,a)] >0, ¢€[a,b] and 0,() <o ;(1,a) <1,
and consequently, W(6;(2)) < W(o;(1, a)) for 1 > 1,. Therefore,
To r()To(W@)) + pOT(W(Q))
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d b b
+Ze f Qj(z,s*)[l— f 80 j(1,6),9)dn(¢) | W(O;(1)dn(s) <0, 1# 1.
Jj=1 a a

Fori: > 1y, 1 =1, € = 1,2,--- , multiplying both sides of the equation (E) by ¢;, and integrating
with respect to w over the domain ¢ and from (H;), we get

* (Ig((,(), 175 19'((,(), lf)) ﬁl’(wa Ly ﬂl(w9 l[)) <

a, = <ae b; < S bg
Hw, 1) ’ B(w, 1) ’
"i(w,if)
* 19 ((1) l * < 0 < bg
ﬂ (w, l[) bt = 6”195(;,1() - T

According to w;(1) = ¢; fw %i(w, 1,)dx, we have

0] V(z*) b < (V(lZ))
€ - V(l() N - T(Z(V(lf)) -

Because W(1) = V(1) + fa b g, ¢)V(1(1,¢))dn(s), we obtain

. W(l}—) * T(y(W(l+))

<ay, —_—

W@~ TaWap)
Therefore, W(1) is an eventually positive solution of (4.1). This contradicts the hypothesis and
completes the proof. O

Theorem 3. If there exist some jy € {1,2,---,d} and ¢(1) € C*(R,, (0, +0)) such that

- . A(s)
f lol<z_51<5( ) 1[¢(S)B(s)—4c(s)]ds:+oo, (4.13)
where
T, b "
AQ) = (so(z))_p(z)’ B(1) =€ f Qjo(l,S')[l— f g(ajo(z,g),g)dn(g)] an(o),
@(1) r(1) ; )
and
Ta(gjo(l))
CcQ) =
& 00, ())r@;,(1)

then each solution of the (BVPs) (E) and (B) represents an oscillation in G.

Proof. From the proof of Theorem 2, we suppose that W(z) is a non-zero and non-negative solution of
the inequality (4.1). Then, a number 7; > 1 is introduced in a way that W(0,,(1)) >0, j=1,2,---,d
for 1 > 1;. Thus, we obtain

T (rTo(WW)) + p)To(W()
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b b
+ ff Qj, (1, §)[1 —f 8(7j,(1,6),€)dn(s) [ W(B,(0)dn(¢) <0, 121, (4.14)

Define

r(T(W()

Z(1) := ¢(1) W@ Q)
Jo

1= 1.

Then, Z(z) > 0 for 1 > 19, and

Ta b b
To(Z(1) < ( (b@) _p (’))zu)—ego(z) f Qjo(l,g)[l— f (0 1(1,6), )dn(s)
o) Q) . .

220 Tu®,0)
(0, (6,0))

Thus,
T.(Z() < AWZ() — BOe() — Z*0)C(),
by,
Za}) < —2Z).
a;
Define
b\
f.
U@ = — .
=] (a; ] 720
10=1,<t i
. . . ) b,
In fact, Z(z) is continuous on each interval (1, 1,411, and we take into account that Z(1}) < —Z(1,). It
a;

follows that for 1 > 1,
AN b\
[,' gi
uip= || [—] ZEN [—] Z() = Uw),
10<1<1¢ al’i 10<1j<tg at’i
and for all ¢ > 1,
b\ A
_ i - {;
UGy) = n (c?) Z(1;) < n (;] Z(r) = Uip),
10<tj<tp-| i 10<1<tg i

which implies that U(z) is continuous on [z, +c0). Also,

b
r.u@+ | | [

.
—i] U*(1)C(1) + rl (b_i) Be(®) - ADU®
a a

<<t \ i <ip<t N i
b\ by, b\’
=[] (i) T.Z@)+ | | (—") [ (—"] C(HZ*)
a a a
<<t N i w<te<t NG/ g<ig<a NG
be ) be )
+ — | BWe@) - (_*) AWZ(1)
lol;[<t (agi ) lol;[f<t afi
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b\
= l_[ [a—f) [TQ(Z(l)) + Z2(l)C(l) —Z(WAQ) + B(l)(p(l)] <0,
10=<1¢<1 i
that 1s,
b b\
r.wm=<- || (a—f)C(z)Uz(z)+A(l)U(z)— [ (ai) BW)¢(). (4.15)
10<1,<1 4 10<1,<1 4

Taking

by, AQ) b\ 1
x- J [1(5)ewovo. v- TJ [1(%) @&

from Lemma 1, we have

by, 2() :
AU — | | ( )C()Uz()_ 2C0) (—] .
ft 10<1,<1

<1<t [1

Thus,

b, A2
- [1 3] osr-5]
10<1p<1 i

Using the technique of integrating both sides from 1, to 1, we get

A A%(s)
(a—z) 0y [B(s)go(s)—4c(s)]ds

UG < Up) - f ﬂ

to 10=<17<S§

Letting 1 — +o00, from (4.13), we have lim U(1) = —oco, which contradicts U(z) > 0. O
1—+00

Theorem 4. Suppose that ¢(1), (1) € C*(R,, (0, +0)), and E(1, 5),e(1,s) € C*(D,R), in a way that
D = {1, s)lt = s > 19> 0} where

(Hg) E(1,1) =0, 1>19; E(1,5) >0, 1> 521,

(Ho) 0“E(l s) > 0: 6“5;;, s) <0
8“E
(Hyo) — 6;’ 9 — o1, 5) VEGS)
If
. b\ [ BO@SE )p(s)
l_)+oop E(l lo) 0 <i<s a[i sl-a
I-a ASSSOHVEGDH ],
- m |:€(l, $)P(s) — To(Pp(5) VE(, 5) — o ] ]ds =400, (4.16)

then all the solutions of the BVP of both (E) and (B) are oscillatory in G.
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Proof. From the proof of Theorem 3,

by, AR
r.wm=<- || (a—i’)6<z>U2(z)+A<z)U(z>— [ (a—") B¢ ().
10<t¢<1 i <1<t 4
We multiply the above inequality by H(z, s)¢(s) for 1 > s > T and integrate from 7 to 1, and we get
f To(U($)EG, S)¢(S) B f l—[ bi, ) C()UP(5)E, S)¢(S)
T Sl a T s aé’i Sl -
f ASU(S)E, S)¢(S)
sl -
f l_[ [bt’] B(s)p(s)E(, S)¢(S)
. sl a

10<1/<s§

Thus,

-1
l
f l—[ [b&)
%
T 1=<1,<S§ afi

[ AG)EG 5)6(5)
T

$(s) = E@t, )Ta((5)) -
_ f (bf ) CEUSER D) |
T10<z¢<v

Sla

] U(s)ds

Sl—a

a ‘.

f (bz ) B(s)p(s)E(, S)¢(S)
. Sl a
1

) A)P(s) VEG 9 |
4 fr 1 (2) ) [e(” ) = Ta () VEG,5) = =]

S UMEQT)p(T) 4.17)

From (4.17) for1 > T > 1y, we have

Sla

[ B(s)@()EG, $)$(s)
E(l lO) 0, <l(<s

l-a

A(s)czs(s)\/E(l—s
- 3G )[e(z, )p(s) — To(B(5)) VEG, 5) — ] ]

f f B(S)‘P(S)E(l $)p(s)
E(l o) Wq p st
A()@(s) VE@, s ] ]}

[e(l 90) = To(@(s) VEG, 5) - =2

AC(9)¢(s)

AIMS Mathematics Volume 7, Issue 9, 16328—16348.



16342

T -1
< 1 [b_t’) B(s)p(s)E(, S)¢(S)ds+¢(T)U(T)
E(lal()) ] 10<17<8 az s]_a
T -1
< f (Z—f) —B(S)fl(f3¢(s)ds+¢(T)U(T).
0 go<y<s NG

Letting 1 — +o0, we get

. "1 (b)) [ BOESEG, 5)¢(s)
l_)+°°p E(l’ lO) 0 p<ip<s Clz si=e
I-a A VEGS |
—m[m, 96(5) = To(@() VEG 9 - “ XN s)] ]ds
T -1
. f I (b_e) B BEROOS) ooy
0 g<ip<s afi §
< +00,
which implies a contradiction with (4.16). |

Remark 1. In Theorem 4, by choosing ¢(s) = ¢(s) = 1, we have the following corollary.
Corollary 1. Suppose that

1 l b\
lim su Zh
l—>+oop E(l’ lO) 1—[ (az)

ds = +00.

B(s)E(1, s) B sl @ s) - A VEQ, s) 2
sl-a 4C(s) e s I-a

to 10<1y<$§
Then, all the solutions of the boundary value problem mentioned in (E), (B) are oscillatory in G.

Remark 2. Using Theorem 4 and Corollary 1, by varying the weighted functions’ parameters E(1, s) we
can attain various oscillatory conditions. We shall give an example, by choosing E(1, s) = (1—s)<"!, 1>
s > 19, in which k > 2 is an integer, and then e(1, s) = s'~%(k— 1)1 — 5)* 32, 1 > 5 > 1. From Corollary
1, we get the following

Corollary 2. If an integer k > 2 such that

1 ’ b\ B I-a
lim sup —(z e f | | (a_il) (1— s)K—][SI(:? 3 4SC(S)X
1=+ 0 g<i<s N i
Axs) 2k-DAs) 72—,
[sz‘z" B (1—5) (1—s)? ”ds -

then all the solutions of the BVP mentioned in both (E) and (B) are oscillatory in G.

.1 .
Now, we study E(1, s) = [R(1) — R(s)]X, 1 > s > 19, where R(1) = fo o) )ds and lim R(1) = +oo, and
wp(s 1—+00

then e(z, s) = s'k[R(1) — R(s)]%. From Corollary 1, one can get the following
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Corollary 3. If an integer k > 2, such that
b\ B(s) s'™@
— R R

[ [az) [R() — ()1[ T

A%(s) 2kA(S) §2720? B
[sHa T RO-RG) RGO - R(s))Z} ]ds -

| | :
i S e ) — RGP f

0 pp<ie<s

then all the solutions of the BVP of both (E) and (B) are oscillatory in G.

5. An example

In this section, we illustrate our main result with an example.

Example 1. We give the following system:

61/2 01/2 —7r/41
=17 |45 (ﬂl(w l)+_7{2 (@, 1+ 26)ds

91/2 —n/41
+(—§) % 1/2[ 1(w,1) +_7{2 2191(w 1+ 2g')dg)
/4 -n/4 ll/2
+61 f M(w, 1+ 2¢)dg + 121 f h(w, 1+ 2¢)dg = ?Aﬁl(w, 1)
-n/2 -r/2
323 1
+81 + < "3 A (w,1-31/2) + EAﬁz(w,l— 3n/2), 1#£1, £=1,2,---,

o1/2 91/2 —n/41
i 4(9 7 (02((0 1) +_J2 —th(w, 1+ Zg)dg] 5.1)

4\ o' s
+( 5) PRI [ﬁz(w 1) +_7{2 zﬁz(w 1+ 2§)d§)
—7T/4 —71'/4 1
+12t [ 9w, 1+26)ds + 141 [ Or(w,1+2¢)ds = (101 - E)Aﬁz(w, )
—x/2 -r/2
1/2

172 3 3
+ (101 + %)Aﬂl(w,z ~37/2) + (’? - E)Aﬁz(w, 1=31/2), 1Eu, £=1,2,---,

C+1
di(w, 1) = %ﬂi(w, 1),

ﬂ(w l;)— ﬁ(w ), €=12,---, i=1,2,

for (w,1) € (0,m) X R,, with the boundary condition

0 0
—0(0 l)— ﬁ(ﬂ =0, 1#1, i=1,2. (5.2)
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+1
Here,t//:(O,Jr),NZZ,m:Zd:1,l:l,a/:%,a,gi:az:T,bgi:bZ:Li: 1,2,
1 4
r@) =4, gt,¢) = X p1() =1-3r/2, pQ1) = ~3 o1(1,¢) = 1(1,¢) =1+ 26, 1) = ¢, fij(¥,) = D,
112 23 1
€ = 1, gni(w,1,6) = 61, gii(w,1,6) = 121, a;(1) = 5 an() = 8+ = ap () = >
1 112 3123
¢11(w,1,6) = 121, gni(w,1,6) = 141, a>(1) = 81 — > az (1) = 81+ 5 an (1) = =5 7 0i1(1,6) =
1
—61, [a,b] = [-n/2,-n/4], k = 3, 0,(1) = 1, To(0,(1)) = 1'% Since 1y = 1, 1, = 2¢, A(s) = 3
35(81 — 2 1/2
B(s) = —¥, E(s) = ST.
Then, hypotheses (H,) — (H7) hold; moreover,
lim lnb;"d fm]_[ £ 4
—ds = s
1—+00 10 a[. 1 €+ 1
10=17<s§ ! I<ip<s
1] L 15 £ 13 ¢
= ds + ds + ds+---
flll—[mls f [ 7 f [ 7
<1<s 1 l<y<s 2 l<y<s
1 1 2
= 1+ -X2+=-X=X2%+---
+ ) X 2+ 3 X 3 X +
+0o0 2}1
= = 400
“—n+ 1
Thus,
1 ' +1 3532 4s 4 1
li —5)? - 81— ] — - - —1d
l?lfip(z—l)Z{ [ —=a-9 [ 6 BT T T T 5oy 25s] s}

= + oo.

Hence, all the mentioned conditions of Corollary 2 hold, meaning that all the solutions of the problem
(5.1)-(5.2) are oscillatory in G. As a matter of fact, ¥1(w, 1) = coswsint, th(w,1) = cosw cost is such
a solution.

6. Conclusions

In this work, we have discussed several systems of impulsive conformable partial fractional
differential equations and some of their oscillatory solutions under the Robin boundary condition. In
addition, we used several modified techniques to find some sufficient conditions for the solutions. To
validate the work, we worked on illustrating the main results by providing a section of an example.
In our future work, we will discuss some oscillatory solutions for systems of impulsive conformable
partial fractional differential equations of neutral type.
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