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Abstract: In data analysis, the choice of an appropriate regression model and outlier detection are both
very important in obtaining reliable results. Gamma regression (GR) is employed when the distribution
of the dependent variable is gamma. In this work, we derived new methods for outlier detection in GR.
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set. The results of simulation and real-life application the evidence better performance of the adjusted
Pearson residual based outlier detection approach.
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1. Introduction

Regression analysis is the main tool to study the relationship between and dependence of one or
more variables on one or more independent variables. These relationships can be observed in every
research area. Regression analysis has a wide variety of applications in different fields [1–4] and Sarhan
et al. [5]. Regression results are reliable only if the quality of data is good and the selected regression
model is correct. If the quality of data and the regression model are not appropriate, then the results of
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measuring such relationships are incorrect. The quality of data refers to the outlier free data set [2, 6].
The correct regression model refers to identifying the distribution of the response variable.

An outlier is a point that is far from the rest of the data points [7–9]. In the regression context,
Desgagné [10] stated that the observations with more distant regression errors conflict with most of
the errors originating from the assumed normal distribution. An outlier may or may not affect the
regression inferences. An outlier may be in one or multiple variables. Outlier detection in univariate
analysis has been done by several researchers i.e. many studies in the literature have focused on
univariate analysis [7–9, 11, 12]. Outlier diagnostics in the linear regression model (LRM) has also
gained much attention from researchers [13,14]. Balasooriya et al. [15] compared some well-known
outlier detection methods by using the LRM. They concluded that all methods do not agree with each
other for the detection of outliers.

Regression analysis is used to determine the model for forecasting/prediction purposes. There is a
variety of regression models, e.g., LRMs, generalized linear models (GLMs) and non-linear models,
Gamma regression (GR) is employed, when the distribution of the dependent variable is gamma. GR
has a variety of applications in the literature with examples in health sciences, industries and
environment, for more details see [16–23].

Outlier detection using univariate gamma response without considering any independent variable is
also available in the literature [24–28]. Shayib and Young [29] first studied the extreme residuals in
GR and proposed the Pearson and Anscombe residuals with modified forms; they concluded that the
modified forms of these residuals are not good.

The detection of outliers in the GR model has not been addressed in the literature. This paper deals
with outlier detection in the GR model by using a new approach i.e., an adjusted Pearson residuals
(PRs) approach. Outlier detection with the adjusted form of residuals (other than PRs) was first
studied by Tiao and Guttman [30]. This approach was also proposed for some of the GLM responses.
Cordeiro [31] introduced the adjusted PRs for the Poisson regression model. In addition, adjusted
Wald residuals and PRs for beta regression have been suggested by various authors [32,33]. In these
studies, most of the researchers focused on the adjusted PRs probability distributions. They observed
that the adjusted residuals performed better than others.

The main objectives of the current research were to propose some outlier diagnostics based upon
Pearson (standardized and adjusted) residuals in GR, modify some available LRM-based outlier
detection methods for GR and then make a comparison of these modified and proposed outlier
detection methods with the help of simulations and a real data set.

2. Materials and methods

The probability density function of the gamma response variable (y) is given by

f (y; ν, τ) =
1

τνΓ (ν)
yν−1e−

y
τ , y > 0, ν > 0, τ > 0. (2.1)

The mean and variance of Eq (2.1) are respectively given as E(y) = ντ and Var(y) = ντ2. According
to Hardin and Hilbe [34], Eq (2.1) can be transformed with parameters ν = ϕ−1 and τ = µϕ. Given
these parameters, the gamma density for y is given by
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f (y; µ, ϕ) =
1

Γ
(

1
ϕ

) (
1
µϕ

) 1
ϕ

y
1
ϕ−1 e−

y
µϕ , y > 0, µ > 0, ϕ > 0. (2.2)

The mean and variance of Eq (2.2) are respectively given as E(y) = µ and Var(y) = ϕµ2.
For the ith observation, let xi1, . . . xip represent the p independent variables. Then, the GR for the

mean of the response variable y is given by

g (µi) = ηi = xT
i β, i = 1, . . . , n.

where xT
i =

(
1, xi1, . . . , xip

)
, β =

(
β0, β1, . . . , βp

)
is the vector of regression coefficients including

intercept and g(.) is the link function. This link function in the GR can be reciprocal or log.
Let li be the log-likelihood function of the response variable of Eq (2.2) which is mathematically

defined by

li = li (µi, ϕ) =
n∑

i=1


yi
µi
+ ln (µi)

−ϕ
+

1 − ϕ
ϕ

ln (yi) −
ln(ϕ)
ϕ
− ln

[
Γ

(
1
ϕ

)] . (2.3)

Let β̂, µ̂ and ϕ̂ be the maximum likelihood estimates (MLEs) which are obtained by maximizing
the log-likelihood of Eq (2.3) using the Netwon-Raphson iterative method. The MLE of β is computed
by solving the system of equations. For this purpose, we equate the first derivative of Eq (2.3) to zero;
then, we have

U (β) =
∂l
∂β
= −

1
ϕ

(
y− (Xβ)−1

)
X = 0, (2.4)

where U (β) is the score vector of the order (p + 1) × 1. Since Eq (2.4) is nonlinear in β, Newton-
Raphson methods can be employed for the estimation of β [34]. Suppose βm is the approximated MLE
of β at the mth iteration; then, the iterative reweighted method [35] gives the following expression

βm+1 = βm + {I (βm)}−1 U (βm) , (2.5)

where I (βm) is the (p+1)×(p+1) fisher information matrix at the mth iteration. Applying convergence
in deviance to Eq (2.5), the unknown parameters can be computed as

β̂ =
(
XTŴX

)−1
XTŴẑ , (2.6)

where ẑi = η̂i +
yi−µ̂i

µ̂2
i

is the adjusted response variable, Ŵ = diag
(̂
µ2

1, . . . , µ̂
2
n

)
and µ̂i =

1
xT

i β̂
.

Several types of the GLM residuals are available in the literature [33] but we consider the most
popular PR for the detection of an outlier.

The PRs for GR are defined by

χi =
yi − µi√

V (µi)
=

yi − µi

µi
. (2.7)
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The standardized PRs are characterized as

χ
′

i =
χi√

ϕ(1 − hii)
, (2.8)

where hii = diag
(
H = ŵ 1

2 X(XTŴX)−1XTŴ 1
2
)
.

Generally, E (χi) to order O
(
n−1

)
does not converge to zero and Var (χi) does not tend to one. Here

n is the sample size. To handle such a situation, we require some adjustments to these residuals. To do
this, Cox and Snell [36] obtained some matrix formulae for the adjusted residuals.

Various criteria are available in the literature [2,12] for testing the quality of regression models.
These criteria include mean quadratic error prediction (MEP), the Akaike information criterion (AIC),
standard errors and coefficients of determination. As our study is concerned with the GR model,
we consider some different criteria for testing the goodness of the GR model after diagnosing the
outlying points. These include the Pearson chi-square statistic

(
χ2

)
, MEP, the AIC, Efron’s pseudo

r-squared criterion
(
R2

E f ron

)
and the dispersion parameter

(
ϕ̂
)
; these criteria are computed according to

the following relations:
χ2 =

∑n
i=1 χ

2
i , where χi is the ith PR defined in Eq (2.7).

MEP =
∑n

i=1
V1/2 (µi) χ2

i

(1 − hii) n
, where V (µi) = µ2

i is the variance function of the GR model.

AIC =
−li (MK) + 2p

n
, where li is the log likelihood function of the GR model defined in Eq (2.3).

R2
E f ron = 1 −

∑n
i=1 (yi − µ̂i)2∑n
i=1 (yi − ȳ)2 ,

ϕ̂ =
χ2

n − p − 1
.

3. Outlier detection method

This section comprises two subsections. In the first subsection, the proposed outlier detection
methods based on the PRs of the GR model are presented. The second one comprises a review of
some existing outlier detection methods.

3.1. Proposed outlier detection methods

The PRs have a significant contribution in regression diagnostics. Here we propose an outlier
detection method based upon PRs.

3.1.1. Standardized PRs

In regression analysis, the standardized residuals are generally used for the detection of outliers.
So, here we consider standardized PRs, which have been defined in Section 2 by Eq (2.8) as

χ
′

i =
χi√

ϕ(1 − hii)
. (3.1)

On the basis of standardized PRs, the ith point is considered to be an outlier if
∣∣∣χ′i ∣∣∣ > 3.
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3.1.2. Jackknife PRs

There are some analytical methods that are used for the detection of outliers. One of these analytical
methods is the use of jackknife residuals. Cook and Weisberg [37] suggested that the outliers can be
detected with the help of jackknife residuals. They defined the jackknife residuals for LRMs as

eJi = ri

√
n − p − 1
n − p − r2

i

, (3.2)

where ri is the standardized residual of the LRMs. The decision rule for the detection outlier is that if
|eJi| > t α

2n
(with n − p − 1 degrees of freedom), then there is an indication for the existence of outliers.

The application of these residuals for the detection of outliers in chemometrics with reference to an
LRM has been studied by Meloun and Militky [2]. Now, we modify Eq (3.2) for the GR by following
Amin et al. [1] and obtaining

χJi = χ
′

i

√
n − p − 1

n − p − χ′2i
. (3.3)

To identify outliers of the GR, we propose the cut-off point for the jackknife PR to be if
∣∣∣χJ,i

∣∣∣ >
t(1−α)(n − p − 1), then the ith observation is declared as an outlier t is the student t-distribution with
(n − p − 1) degrees of freedom.

3.1.3. Adjusted PRs

Amin et al. [1] proposed the adjusted PRs in the inverse Gaussian regression for the detection of
single influential points in chemometrics. These residuals are proposed for the GR as follows:

χA
i =

χi − ri
√

vi
, (3.4)

where ri = (E (Ri))T = −
√
ϕ

2 (I −H) Jz, where H = W 1
2 X(XTWX)−1XTW 1

2 , J = diag
(
2µ2

)
and z =

(z11, . . . , znn)T is a vector; also, vi = (Var (Ri))T = 1 + ϕ2 (QHJ − T) z , where Q = diag(2) and T =
diag

((
2ϕ−1 + 6

)
µ2

)
.

Note that r̂i and v̂i are computed by using µ̂i instead of µi.
Amin et al. [1] stated that the adjusted residuals can be used for the detection of an outlier. The

decision rule to declare the ith observation is an outlier is that
∣∣∣χA

i

∣∣∣ > 2.

3.2. Available outlier detection methods

In the literature, numerous methods have been recommended for the detection of outliers. We
consider a few of them for comparison with the adjusted PR for the GR model.

3.2.1. Z-method

For the identification of outliers in univariate cases, the Z-score is introduced based on the median
and inter-quartile range (IQR) as below:

zi =
yi −Median(yi)

IQR(yi)
. (3.5)
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The Z-score method declares that the ith observation is an outlier if |Z| > 3.

3.2.2. Modified Z-method

The modified Z-statistic (MZS) has been proposed for the detection of outliers based on the
median [38]; MZS is defined as

Z∗i =
yi − Median(yi)

Median |yi − Median(yi)|
, (3.6)

where Median|.| represents the median absolute deviation from the median. One can conclude that the
ith observation is an outlier if Z∗i > 3.50.

3.2.3. Grubb’s test

This test was introduced by Grubbs [13] for the detection of a single outlier in the univariate
response variable. The Grubb’s (G) test only detects single outliers. Therefore, it suspects that most
of the observations are outliers. The G statistic can be defined as G = Max|yi−y|

S , where s is the sample
standard deviation. For our assumed model, the G statistic is modified as

G =
|yi − y|

S
. (3.7)

The decision rule of the G statistic for detecting outliers is given as G >

√
t2( a2n ),n−2

n−2+(t2( a2n ),n−2) , where a is

the level of significance and n represents the sample size. The above decision rule may be unable to
find the appropriate outlier. So, we propose another decision rule for Grubb’s method to diagnose an
outlier a GR model. For the ith data point, if G ≥ 2, then this data point is declared as an outlier.

4. Results and discussion

A comparison of the proposed methods of outlier detection with already available methods through
the use of simulations and a real-life data set is presented in this section.

4.1. Simulation study

This section explains the simulation experiment conducted to study the performance of two types
of GR residuals, i.e., the standardized and adjusted residuals to detect outliers. We generated the
dependent variable of the GR model with reciprocal link function to be
yi ∼ Gamma (µi, ϕ) ; i = 1, ..., n, where µi = (β0 + β1xi1 + ... + β4xi4)−1, where xi’s are generated from
two probability distributions, i.e., uniform (0, 1) and standard normal distributions. The true values of
the regression parameters vector β were selected as the normalized eigenvector corresponding to the
largest eigenvalue of the XT ŴX matrix such that βTβ=1 [39]. The sample sizes were generated as
n = 25, 50, 75, 100, 125, 150, 175 and 200 and we took on the values of dispersion, i.e.,
ϕ = 0.33, 0.67 and 2. A single outlier was generated for the dependent variable, i.e., the 8th

observation was replaced as y8 = y8 + a0, where a0 = yi + 3 (V (yi)). The multiple outliers in the
dependent variable are generated as yii = yii + a0, where ii= 8, 15, 20 three outliers. The performance
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of these diagnostics was assessed by using gamma—produced samples for the identification of a
generated outlier(s). The simulated results were computed with the help of the R-statistical language.
The simulation study was replicated 1000 times to find the outliers in percentages.

In Table 1, the performance of our proposed methods is gauged for the detection of outliers based
on the standard normal generated x’s, and by using PRs with dispersion and sample sizes. It can be
observed that for ϕ < 1, the performance of the χA

i method was better than that of the other methods
in diagnosing the generated single outlier. For this dispersion, when sample sizes were increased to
100, the performance of the χ

′

i, χ
A
i and χJ outlier detection methods was improved. The performance

of the Z, Z∗ and G outlier diagnostic methods was not affected by the increase in sample size. It can
also be observed that the performance of all outlier diagnostic methods increased with increasing in
dispersion. Moreover, when ϕ = 2 and n > 50, the performance of all the diagnostic methods seems
to have been identical. This indicates that sample size and dispersion have some significant effect on
our proposed method χA

i in the detection of a single outlying point. The comparison of the outlier
diagnostic methods revealed that χA

i is better than other methods. It can be seen that the detection was
better with the proposed method than with all of the other diagnostic methods, when the values of X
were generated from U(0, 1). For further details, see Table 2. It can be seen that the performances of
the available methods were not good as compared to the performance of our proposed method.

When we applied these methods for the detection of multiple outlying points with standard
normally generated independent variables, the performance of our proposed method seemed to be
better and more consistent than those of the other methods. The detection performance of the other
diagnostic methods was reduced to 50%. On the other hand, the outlying diagnostic performance of
all methods was reduced to some extent when the independent variables were generated from the
uniform distribution. The performance of all outlier diagnostic methods increased rapidly as the
dispersion crossed 1.0 (see Tables 1–4). We found that our proposed method performed better than
the other methods including the case when the X’s were generated from the standard normal
distribution instead of the x’s being generated from the uniform distribution.

Based on our findings (Tables 1–4), we can rank the methods as the adjusted PR being the first
and the Grubb method being the second best method for outlier detection. Moreover, the results show
that the performance of outlier detection increases with an increase in sample size. In studying the
effect of dispersions on the outlier detection methods, we have found that outlier detection methods
are affected directly by the dispersion. This means that upon increasing the dispersions, the outlier
detection efficiencies of different methods are increased. The maximum numbers outliers were detected
for larger dispersions.
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Table 1. Comparison for single outlier detection methods for single outlier detection when
x
′

s ∼ N(0, 1).

ϕ n χ
′

χA χJ Z Z∗ G
0.33 25 0.00 89.40 26.70 18.60 28.30 61.60

50 0.50 93.30 34.70 13.90 25.20 64.40
75 1.80 97.90 42.30 15.70 26.00 68.90

100 1.70 98.60 42.80 12.50 24.00 69.90
125 3.00 99.00 42.40 13.50 24.50 67.20
150 3.90 99.00 43.90 12.40 23.60 66.70
175 4.80 99.20 44.10 14.20 24.40 67.90
200 4.70 99.40 44.10 13.30 25.40 68.20

0.67 25 0.10 99.30 56.00 41.10 54.10 91.30
50 8.80 100.00 76.80 39.50 57.60 95.00
75 15.30 100.00 84.50 39.60 58.40 95.10

100 20.60 100.00 87.50 38.80 58.60 96.60
125 24.30 100.00 87.60 37.20 55.80 97.00
150 30.50 100.00 87.90 41.60 60.70 96.60
175 26.70 100.00 88.70 37.40 59.20 96.30
200 30.30 100.00 89.40 38.60 59.40 96.10

2.00 25 19.60 100.00 99.30 95.70 98.30 100.00
50 87.30 100.00 100.00 98.20 99.60 100.00
75 96.60 100.00 100.00 98.20 100.00 100.00

100 98.70 100.00 100.00 98.10 99.70 100.00
125 99.50 100.00 100.00 99.40 100.00 100.00
150 99.70 100.00 100.00 99.40 99.90 100.00
175 99.50 100.00 100.00 99.50 99.90 100.00
200 99.80 100.00 100.00 98.60 100.00 100.00
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Table 2. Comparison for single outlier detection methods for single outlier detection when
x
′

s ∼ U(0, 1).

ϕ n χ
′

χA χJ Z Z∗ G
0.33 25 0.00 93.60 27.80 15.10 23.80 54.30

50 0.10 94.90 33.50 12.60 22.30 62.30
75 2.20 97.60 34.60 10.30 21.20 61.70

100 2.50 98.00 38.10 12.90 23.00 62.50
125 2.70 98.30 41.10 12.40 22.30 65.10
150 2.80 98.40 38.60 10.90 21.60 63.60
175 4.00 98.30 42.00 14.70 24.30 63.40
200 2.80 97.60 39.10 9.90 22.00 62.80

0.67 25 0.30 99.70 62.00 35.30 49.00 88.20
50 7.50 99.90 73.80 36.20 53.40 93.70
75 13.20 100.00 78.30 33.20 51.50 93.60

100 20.00 100.00 82.70 34.70 51.70 94.40
125 18.00 100.00 84.30 33.10 53.70 95.80
150 22.60 100.00 86.30 34.40 54.20 96.30
175 23.60 100.00 83.50 32.90 51.40 95.10
200 24.10 100.00 85.50 33.60 53.20 94.80

2.00 25 19.60 100.00 99.70 93.80 97.20 100.00
50 84.80 100.00 100.00 95.70 99.00 100.00
75 95.90 100.00 100.00 97.00 99.50 100.00

100 97.30 100.00 100.00 97.50 99.50 100.00
125 98.90 100.00 100.00 97.90 99.80 100.00
150 99.30 100.00 100.00 98.90 99.90 100.00
175 99.70 100.00 100.00 99.20 100.00 100.00
200 99.40 100.00 100.00 99.00 99.80 100.00
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Table 3. Comparison of outlier detection methods for multiple-outlier detection when x
′

s ∼
N(0, 1).

ϕ n χ
′

χA χJ Z Z∗ G
0.33 25 0.00 85.80 14.63 8.50 16.23 34.60

50 0.20 95.33 27.50 10.33 20.73 51.53
75 0.90 97.10 31.37 10.63 21.30 55.60

100 1.73 98.27 35.50 11.33 21.90 60.40
125 2.60 98.73 40.80 12.53 24.10 63.07
150 3.53 98.50 40.97 11.63 21.87 63.70
175 3.90 99.10 42.30 11.77 23.30 64.73
200 3.93 98.93 41.50 11.43 22.23 63.80

0.67 25 0.00 98.33 28.30 22.87 37.60 53.53
50 1.30 99.93 58.83 32.20 49.83 81.63
75 5.73 100.00 69.07 32.60 52.30 88.57

100 10.07 100.00 75.57 34.87 55.30 91.40
125 14.90 100.00 80.83 34.90 55.77 93.37
150 17.43 100.00 83.67 35.60 56.87 94.13
175 19.77 100.00 84.17 34.07 54.33 93.97
200 21.57 100.00 86.30 36.53 57.83 94.87

2.00 25 0.00 100.00 57.97 86.07 93.50 87.40
50 12.03 100.00 96.07 95.77 98.80 99.83
75 48.13 100.00 99.83 97.50 99.50 100.00

100 74.57 100.00 99.87 98.50 99.73 100.00
125 87.00 100.00 99.97 98.77 99.93 100.00
150 93.03 100.00 100.00 98.87 99.87 100.00
175 95.53 100.00 100.00 99.20 99.97 100.00
200 97.17 100.00 100.00 99.17 99.93 100.00
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Table 4. Comparison of outlier detection methods for multiple-outlier detection when x
′

s ∼
U(0, 1).

ϕ n χ
′

χA χJ Z Z∗ G
0.33 25 0 76.57 23.63 8.37 15.8 31.5

50 0.27 93.67 31.1 9.33 18.8 47.07
75 0.77 95 32.8 9.23 19.23 51.63

100 1.7 96.97 34.53 9.13 18.03 55.23
125 1.87 97.3 37.1 9.77 19.4 57
150 2.33 97.93 39 10 21.03 59.37
175 3.1 98.3 40.13 10.53 21.13 60.13
200 2.87 98.4 39.47 10.27 21.07 61.17

0.67 25 0 89.93 40.97 20.83 33.23 50.87
50 2.37 99.83 62.37 26.13 43.07 78.47
75 7.07 99.93 69.5 28.67 46.63 85.27

100 11.1 100 75.17 29.57 47.67 88.6
125 12.93 100 78.03 30.73 49.73 90.7
150 15.6 100 79.97 29.67 48.4 92.1
175 16.77 100 81.4 31.3 51 91.67
200 19.73 100 83.9 31.43 52.37 93.13

2 25 0.2 98.87 61.93 80.83 90.67 85.1
50 23.57 100 95.03 92.93 97.43 99.8
75 53.6 100 99.17 95.6 99.03 99.93

100 73.97 100 99.77 96.63 99.43 99.9
125 83.43 100 99.77 97.37 99.8 99.97
150 90.17 100 100 97.6 99.57 100
175 92.73 100 100 98.33 99.77 100
200 95.13 100 100 98.37 99.73 100

4.2. Application: ARDENNES dataset

Now, we will evaluate the performance of the proposed methods with the help of a real application.
For this purpose, we applied the ARDENNES data taken from Barnard et al. [40]. The main use for
this data set was to determine the first etch biopsy, i.e., in the beginning of a layer of extracted incisor
enamel (y) based on two explanatory variables for the data on 55 children. These explanatory variables
included the etched depth (x1), which was estimated from the amount of calcium removed for the
duration of the etch biopsy as the first explanatory variable. The age of the child (x2) which had been
transformed to the decimal system from years and months was considered as the second explanatory
variable. Mallet et al. [41] applied linear regression and other models to this data set using log (y)
as a response variable. After fitting the LRM, they explored the outlier detection analysis of this data
and found that the 23rd, 48th and 52nd points were the outliers. However, this data set is not well fitted
to the normal distribution since the trend of the dependent variable is positively skewed. From the
distribution of the fitting test, we observed that the GR model is well fitted to this data set, the results
are reported in Table 5.

AIMS Mathematics Volume 7, Issue 8, 15331–15347.



15342

Table 5. Fitting the Probability Distributions of the Response Variable.

Distribution Fitting Normal Gamma Inverse Gaussian Weibull
Tests Statistic P-Value Statistic P-Value Statistic P-Value Statistic P-Value
Anderson-Darling 1.0945 0.0066 0.3553 0.4699 0.437 0.4152 0.5883 0.1279
Cramér-von Mises 0.1405 0.0311 0.0539 0.4617 0.0872 0.2991 0.0725 0.2542
Pearson chi-square 10.6364 0.1553 5.5454 0.5937 7 0.4288 7.7273 0.3572

So the appropriate regression model to determine the etch biopsy based on these two explanatory
variables is the GR model.

The fitted GR is given by

µ̂i = (0.00073[0.0008,N] + 0.0003x1[0.00012, S ] − 0.0009x2[0.000083,N])−1,

where the square brackets contain the standard errors of the estimated parameters. The letter N
represents the non-significance and S represents the significance of the regression coefficients. The
fitted GR model achieved the following results MEP=267.08, AIC=847.19, and Pearson chi-square
statistic= 11.61. After fitting the GR model, we next computed the outlier statistics, which are plotted
in Figure 1.

From Figure 1, we can observe that the proposed outlier detection methods detected the 9th, 23rd,
48th and 52nd points as outliers. The 9th point was not detected as an outlier in the original work due
to misidentification of the regression model but this did not affect the GR estimates. Hossain and
Naik [42] also indicated that an outlier may or may not affect the regression estimates. So, in this case
this outlying point had minimal effect on the GR estimates while R2

E f ron also decreased because outliers
are related to the response variable. R2

E f ron only improved due to elimination of the influential points
which are related to the explanatory variables for more details see [5,43,44]. All detected outliers
indicated that these children had high lead levels in their enamel, but there were no extreme points
in the explanatory variables. Moreover, these outliers were also identified successfully by using the
Jackknife residuals and adjusted PRs.

After deleting the identified outliers, the refitted GR model was given by

µ̂i = (0.00183[0.00069, S ] + 0.0003x1[0.0001, S ] − 0.0002x2[0.000071, S ])−1,

with MEP = 169.85, AIC = 756.15 and Pearson chi − square statistic = 6.89. These results indicate
how much the variation decreased after deleting the identified outliers, e.g., the Pearson chi-square
statistic (variation measure) was reduced to 59% (see Table 6). Another noticeable point is that the two
independent variables were found to be significant after deleting the identified outliers. From Table
6, it can be observed that an individually high outlier is the 48th point, which affected the fitted GR
results. Collectively, all detected outlying points affected the GR estimates of β0 and β2 respectively.
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Figure 1. Index plots for outlier detection methods.

Table 6. Change (%) in the GR results after deleting the outlying points.

Outlying Points β0 β1 β2 MEP ϕ̂ R2
E f ron AIC

9 5.78 -9.06 -6.62 -4.24 -2.91 -12.28 -2.27
23 15.56 9.04 23.87 0.23 1.8 4.39 -1.96
48 72.49 -0.34 66.86 -2.27 -19.58 52.58 -3.15
52 22.84 8.27 28.64 -0.23 -9.25 27.63 -2.64

9,23,48,52 149.68 9.78 145.04 3.04 -48.02 119.11 -10.91
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5. Conclusions

Outlier detection in regression models is an important step to getting reliable and valid results.
These detections methods are based on some diagnostic test statistics, which can be calculated based
on the regression results. To detect the outliers, the first and most important step is the choice of an
appropriate regression model, because, sometimes, outliers may arise due to an inappropriate
regression model. For the selection of an appropriate regression model, one should test the
distribution of the response variable. If the probability distribution of the dependent variable is
gamma, the appropriate choice of model is the GR model. In this paper, we proposed outlier
diagnostics based on the use of the Pearson (standardized and adjusted) residuals in GR model. Some
available LRM-based outlier detection methods were modified for the GR model. These modified
methods were compared with our proposed outlier detection methods with the help of simulations and
a real data set. These results indicate that our proposed methods for the detection of outliers are better
than available methods in terms of improving the results of the selected model to enable better
decisions in statistics and other disciplines.
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