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Abstract: In this paper, under the assumption of an initial bounded region €(0), we establish the
blowup phenomenon of the regular solutions and C! solutions to the two-phase model in R". If the
total energy E and the total mass M > 0 satisfy

N

max Z u(0, Xp) <
E0A0) 4=

min{2, NI' = 1), N(y - D}E
i )

where E = fg(()) (%n |b7|2 +3p |L7|2 + ==nt + ﬁpy) dV and M = fg(o)(n + p)dV > 0, then the blowup

of the solutions to the two-phase model will be formed in finite time in RY. Furthermore, under
the assumptions that the radially symmetric initial data and initial density contain vacuum states, the
blowup of the smooth solutions to the two-phase model will be formed in finite time in R¥(N > 2).

Keywords: two-phase model; singularity formation; free boundary problems; regular solutions;
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1. Introduction

The compressible inviscid liquid-gas two-phase model in R that will be considered is as follows:
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n; + div(nit) = 0,
o, + div(pil) = 0, (1.1)
[(po + n)id]; + div[(p + n)ii ® il] + VP(n,p) = 0,

where ii = ii(t,X), P = P(n,p) = n' + p” are the velocity and pressure while n = n(t,%) > 0, p =
p(t, X¥) > 0 are the densities of two phases, where y, T > 1.

Euler equations have been used as one of the basic models for studying fluids, plasmas, atmospheric
dynamics, and condensed matter in [2,5-7, 11, 30], and the blowup analysis for these equations is
carried out in [3,4,12,17,21,25,26,28,34,36]. In 1985, Sideris [25] constructed the functional

F(O):f)?-pﬁd)? (1.2)
R3

to prove that the C! solutions of the three-dimensional compressible Euler equations will blow up in
a finite time when the initial functional F(0) is sufficiently large. Yuen [35] used the energy method
to consider the blowup results of the C' solutions and the weakened regular solutions of the Euler
equations in RY. In [18], the authors rewrote the system in the form of a quasilinear wave equation
about the density p to study the blowup of solutions to Euler equations. Liu, Wang and Yuen studied
the blowup results of solutions to the compressible Euler equations with time-dependent damping
with vacuum and C! solutions of the irrotational compressible Euler equations with time-dependent
damping in [19]. In [24], the author studied the three-dimensional Euler equations with a free boundary
subjected to tension.

In the two-phase fluid, because of its wide application in aerospace, micro-technology, chemical
engineering and other fields, it has aroused many researchers’ interest. Zuber studied the two-phase
model firstly in [39]. The motion of liquid and gas mixture is studied by the two-phase model in [16]. In
[23], the authors considered a hyperbolic two-phase model. For existence, asymptotic and uniqueness
of global weak solutions to the two-phase flow model with vacuum, Yao, Zhang and Zhu used the
line method and a priori estimate to obtain relevant results in [31-33], and there are also studies of
these issues in [1, 8, 13-15,27]. In [37], under the assumption of H>—norm of the initial perturbation
with a constant state is sufficiently small and L'—norm is bounded, Zhang and Zhu studied the global
existence of Cauchy problem to viscous liquid-gas two-phase flow in three dimensions. Furthermore,
for the Cauchy problem of 3D inviscid liquid-gas two-phase flow, Zhang considered the optimal L” — L2
1<p< g) time decay rates of the solutions with the damping on the qualitative behaviors in [38]. Wen
and Zhu [29] considered global existence of weak solutions to two-fluid about the Dirichlet problem in
one dimension. In [10], Dong et al. considered the energy integration method to prove the singularity of
the smooth solutions to the Cauchy problem for the viscous two-phase model in arbitrary dimensions.
Furthermore, Dong and Yuen provided the blowup phenomena of self-similar solutions for the inviscid
liquis-gas two-phase flow [9]. By introducing the definition of regular solutions, Makino and Perthame
studied the blowup phenomena of radical symmetric solutions to the Euler-Poisson equations with
compact support and with a repulsive force and an attractive force in [20, 22].

2. Materials and methods

In this paper, we study the blowup results of regular solutions and C! solutions of the two-phase
model in RY with a free boundary. Our method depends on the energy integration method and a quasi-
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linear wave equation about p, the singularity of the two-phase model will form in finite time.
3. Results

3.1. Main theorems

In this section, we give the blowup results of regular solutions and C! solutions of the two-phase
model in RY with a free boundary. Firstly, we introduce the definition of regular solutions to the
two-phase (1.1).

Definiton 3.1. (Weakened regular solution) A solution (n, p, ii) to the system (1.1) which is in R and
in the non-vacuum region is regular for 1 <I' <2or1 <y <2, if
-1 Pt BN 1
(n ; ,pﬂ,u)EC, 3.1)
with a fixed constant n > 1.
In the following, we state the blowup results of the two-phase model with a free boundary in RY.

Theorem 3.1. Assume that the fluid enters a bounded open region Q(t) € RY, with the contacting
vacuum boundary 0 (t). Suppose that the (n, p, il) is a weakened regular solution on [0, T) X Q(t) of
the two-phase model (1.1) in R, If

N

max Z u7 (0, %) <

EDA0) 4=

min{2, NI = 1), N(y - D}E
M ,

(3.2)

2 2
where the total energy E = fQ(O) (%n |u| + %p |u| + ﬁnr + ﬁpy) dV and the total mass M = L(O)(n+
p)dV > 0, then the solutions of the two-phase model will blow up in finite time T.
Furthermore, we consider the two-phase model (1.1) with the pressure P = P(n,p) = n” + p”. In
this paper, we will rewrite the two-phase model (1.1) by forming a quasi-linear wave equation about

the density p and studying the blowup results for solutions of the two-phase model in R¥(N > 2) with
the initial data

1=0:n=nyX), p=poX), i=ip(X). (3.3)

Introducing radial symmetry, the initial data become
5 X
no(¥) = no(r),  po(X) = po(r), ip(X) = ;Vo("), (3.4)

N 1
where r = () x7)2.
i=1
In the following, we give the blowup results of the two-phase model in R¥(N > 3).

Theorem 3.2. Assume that the initial density no > 0 and py > 0 in (3.3), and (ng, po, ip) € H>(RM).
Consider the solutions (n, p, il) of the two-phase model (1.1) in RN(N > 3). If the initial conditions

no(0) =0, po(0) =0, (3.5)
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f (no + po)(r)dx > 0, (3.6)
RN
and
-1 vl
B f (+n00+p)Vo , 1 ra+ %”>N ’ f (no+p0) , ) a7
RV rle’ 27711 +y) (N = 2)In2 gy Te
N
are satisfied, where r(’lrjﬂ) is the volume of the unit ball in RY, then the solutions will blow up on or
2

r(+Y) ]7_1

N
(N-2)!n2

y-1
S 2H(0) T _ (no+po) — 1
before the finite time =_—5-—, where H(0) = fRN dx and Cy = \/ TR [

Then, under the appropriate assumptions, we will give the blowup results of the two-phase model
in the two dimensional cases.

Theorem 3.3. Assume that the initial density ny > 0,py > 0 in (3.3), and (ng, po, o) € H*(R?). Let
Ko(r) be the modified Bessel function

Ko(r) = fo "oy, (3.8)
Consider the solution (n, p, ii) of the two-phase model (1.1) in R2. If the initial conditions

no(0) =0, po(0) =0, (3.9)

fRz(no + po)(r)dx > 0, (3.10)

and
y+1

, 1 (00 + po)(r)Ko(r)dx)
f (no + po) VoK, (r)dx > 1) = 3.11)
w2 ([ Ko(dx) ?

L
are satisfied, then the solutions will blow up on or before the finite time 22— where G(0) = fRz (no+

y-DC ’
p0)Ko(r)dx and Cy = /m (fRZ Ko(r)dx)

Remark 3.1. For the two-phase model in RN with pressure P = P(n, p) = (n + p), we can also obtain
the same blowup results.

_xt

3.2. Blowup for the two-phase model with a free boundary

In this section, we will show the proof of the blowup result of solutions to the two-phase model
in RV, Firstly, we give some lemmas for the conserved energy and the properties of the local second
inertia function to the two-phase model.

Lemma 3.1. Assume the density n and p have compact support in the region C(t) for non-trivial C!
solutions of the two-phase model (1.1) in RN, where Q(t) is a moving region, and the region Q(0) is
bounded by the contacting vacuum boundary, then

M(r) = M(0), (3.12)
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and

1 2 1 2 1 1
0<E=E@l)= —nld| + =pli] + Ty Y |dv , 3.13
< (1) L(t)(2n|u| 2p|u| F—ln y—lp < o0 ( )

that is, the total energy energy E(t) is conserved, where M(t) = fg (t)(n +0)dV represents the total mass.

Proof. By (1.1); and (1.1),, we obtain
d
— M) = (n; + p)dV = —f div(nit) + div(pi)dV = 0. (3.14)
dt Q) Q)

Therefore, M(t) = M(0).
Multiplying i on both sides of the Eq (1.1); and integrating over (¢), we obtain

f (nid), - udV + f divinii ® il) - udx + f (oid); - udV + f div(pil @ il) - udV
0 0 0 0

+ f VP(n,p)-udV = 0. (3.15)
(1)
On the one hand, from (1.1);, we have
1 1

= i = 3 [af* divenity = 0. (3.16)

Due to . |
2 — - 2

(En |u| )t = (nit), - i — M |u , (3.17)

we obtain

f (nid), - udx + f divinii ® i) - udV
Q(r) Q1)

1 1
f (—n|ﬁ|2) dv + f —n,|id]” dv + f i [V (ni® )] dV
o \2 ¢ an 2 o)

1 2 1 2 — - —
f (§n|u| ) dV—f 5 |a|" v - (nde+f ii-[V-(ni®i)]dv. (3.18)
Q) t Q) Q)

We note that

N
i-[V-(ni®i)]= Z u; puJ u; + nu;0; u ”| Za (ou;) + Z nuu ;0. (3.19)

i, j=1 i, j=1

Thus, we get

L()[—Hﬁfv-(nﬁ)w- [V-(nﬁ@ﬁ)]]dv

:fg()[__ﬂ Za(nu)+ i’ Za(nu)Znuuja u;

i, j=1
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dv

r '
| =

L& N
= f |I/_l)| Z 8i (nu;) + Z nu,-ujé?jui
Q) i=1 i, j=1
[ N N

- -
:f - i - Ojilnu; + Z nuu 0 u; | dV
Qo [ 1 i, j—l
:f —Znuuﬁu]+2nuuﬁu,
Q(1) i

i, j=1 i, j=1

i

=0. (3.20)
Therefore, we obtain
1
f (nid); - ﬁdV+f divini @ it) - udV = f (—n|ﬁ2) dv. (3.21)
) o) au \2 ,
Similarly, we get
1
f (pid), - #dV + f div(pi ® il) - #1dV = f (—p|b7|2) dv. (3.22)
Q(r) Q) Q@) 2 t

On the other hand,

P, = T on+yp'op
N N
=T nF—l [— Z 8,‘ (nu,-) - Z ai (put)]
i=1 i=1
N N N N
= D0 g = 3 Tl = " 0o i = 3y (3.23)
i=1 i=1 i=1 i=1
Integrating over the region €X(¢) and applying the integration by parts, we obtain

N
T
L([)P,dv fQZa(n)udv fQZrnaudv LZ@(p)udV f{);ypvaiuidv

® i21 (l),l " =1

N
LZ@(n)udV+‘fQ ZF@(n)udV LZ@(p)udV nya(p)udV

(1‘),1 () “i=1 () =1 QW) 7

f Z(r— 13,0 u; dV+f Z(y— 1)d,(0")u:dV. (3.24)
Q(t)

QO =1

+yp"!

Therefore, we have

1 1
f ii- VP(n,p)dV = —f at(nr)dV + — f 0,(p")dV. (3.25)
Q) r-1 Q) y-1 Q@)

Thus, by (3.15), we obtain

d _d 1 2 1 1 . 1
EE(I) = dt(L(I)2n|u| p|| —1" +y_1p7dV)
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= f (nid), - udV + f div(nii ® ii) - idx + f (oid), - udV
Q@) Q1)

Q1)

; f divipil @ ) - AV + f VP(n.p) - #dV = 0. (3.26)
Q)

Q)

Therefore, for non-trivial C! solutions, we obtain
E(t) = E(0) < oo. (3.27)

The proof is complete. O

Next, we show the second derivative of the local second inertia function for the two-phase
model (1.1) in RY for the solutions on [0, T) x Q(¢).
Before stating the following lemma, we first give some physical quantities as follows:

F(t) = f nit - xdV + f pii - xdV = F,(t) + F (1), (3.28)
Q) Q1)
1 1
H(t) = = f n|d v+ f pld*av = H,) + H, 1), (3.29)
2 Q1) 2 Q(r)
and
1 2 1 2 1 1
E(t) = f —n it dV+f —plid|” dV + f anV+—f prdV
Q(t)2 | | Q(t)2 | | -1 Q) y-1 [010))
= Ep(0) + Eyp(0) + Ein(1) + Ejp(0), (3.30)

where F,(t) and F,(t), H,(t) and H,(t), Ei,(¢) and E;,(1), E;,(t) and E;, (1) represent the momentum
weight, the local second inertia, the kinetic energy and the internal energy for the two-phase fluid,
respectively.

Lemma 3.2. For the two-phase model (1.1) in RY, we have
H (1) = F(1), (3.31)

and
H'(t) = 2E1,() + 2E;,(t) + N(T = D)E;, () + N(y — DE, (1) (3.32)

Proof. Differentiating H(f) with respect to ¢, we obtain
, 1 2 1 2 , ,
HO=5 | nlif dv+s | pld[ dV=H,@) +H@. (3.33)
2 Jaw 2 Jaw

Applying the integration by parts to (3.33) and using (1.1),, we get

, 1 > 1 al
H(t) = —= f divinit) |7 dV = —= f A:(nuy)x>dV
3 )., dved | 3 ), 2o

0 5
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)2 [®:
= = 2nu;x;dV = nu;x;dV
2 Q@) ; ’ Q) Z
= f X-nudV = F,(1). (3.34)
Q)

Similarly, we have

H (1) = F (). (3.35)
Therefore, we obtain

H (1) = F(1). (3.36)

Next, we calculate H  (7) as follows:

H (1)

F@= | (ni),- %dV+ f (pil), - XdV

Q0 Q)

—f divini ® it) - XdV — f div(pil ® il) - XdV — f VP(n,p)-xdV. (3.37)
Q@) Q) Q@)
By using the integration by parts, we get

N N

f divini ® il) - XdV = f Zai(nu,-uj)xjdV: —f Znuiujﬁixjdv
Q1) Q® Q®
= —f nﬁ~ﬁdV:—f nla* av. (3.38)
Q1) Q1)
Similarly, we have
f div(pﬁ’@ﬁ)-)?dV:—f ol av, (3.39)
Q(r) Q)
and
f VP(n,p)-¥dV = —-N f n'dvV - N f p'dV. (3.40)
Q) Q@) Q)

From (3.38) to (3.40) and Gauss formula, we obtain

F () :f n|ﬁ|2dV+f p|ﬁ|2dV+Nf anV+Nf prdv
Q(t) Q(r) Q(t) Q(r)
2Ej (1) + 2E, (1) + N(T = DE; (D) + Ny = DE;(0). (3.41)

H' (1)

The proof is complete. O

Using the above lemmas, we will give the proof of the blowup results of the solutions to the two-
phase model with a free boundary in RY.

Proof of Theorem 3.1. Introducing

=
|

r—

p=nn"n,w=pr, (3.42)
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for n(t, x) # 0 and p(t, x) # 0, we transform the momentum equations (1.1) into

(r'u+wz)%+iu% + 2o b wF) =0 (3.43)
v o LMox )T ax Y e '

Simplifying the above equation, we have

n n_ (9Lti al 6ul~ nF i 6 ny g 6
=4+ )| — + — |+ = —p 4+ 1 —w =0, 3.44
(¥ @ )(Gt ;ulﬁx,) - 1('0 Hxi"o v - 1w 6xiw ( )

where 7 > 1 is an arbitrary constant, (y — )D[' + l —n>0and (n—1)y+1-n> 0.
We study the solutions near the contacting vacuum boundary point Xy(¢) in the region Q(¢). Firstly,
we consider the local second inertial function

H(t):lf n|x12dV+1f pl av. (3.45)
2 Jaw 2 Ja

By Lemma 3.2, we obtain

H (1)

2Eim(1) + 2Ep(1) + N(I' = DE;, (1) + N(y = DE;p(1)
min{2, N(I' = 1), N(y — D)}E(?)
= C\E, (3.46)

v

with the conserved total energy E = fQ(O) (%n |L7|2 +1p |L7|2 + Lnl + y%],07) dV by Lemma 3.1, where
C, = min{2, N(T = 1), N(y — 1)}.
Therefore, we obtain C.E
H() > H(0) + H(O) + ‘Tﬁ. (3.47)

For an arbitrary point X,(¢) € 0€(¢) with the contacting vacuum, by applying Lemma 3.1 and p(0, Xy) =
0, we obtain

%+ZN:L¢%—0 (3.48)
o L Yox, '

We consider the governing differential dynamic system at the contacting vacuum point Xp(7):

D2xo () _ -
{ pr =0, fori=1.2,- N, (3.49)
x0,i(0, Xo) = X0, X0,(0, Xo) = 1;(0, Xp),
where dxfi’;(’) = u,(t, %p(1)).
The solutions of the above system are as follows:
Xo,i(1) = xo; + u;(0, Xp)t. (3.50)
Then, we get
dxo(t
ui(t, Xo(t)) = xzt() = u;(0, Xp). (3.5

AIMS Mathematics Volume 7, Issue 8, 15313-15330.
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By applying the Euclidean norm, we obtain

D=

max (x%+x§+---+x,2\,)2 > max (xl +x2+~-+x2N)
¥eoQ(r) ReQ(r)
Therefore, we have

_max |x0| > max |7c)|
RedUr) TeQ(r)

1 2
xl(fndvz—fnx dv.
Q) 2 o H
N

1 2
— max E x5 (t
2 2edQ(r) P 0.0)

Q(1)

Furthermore, we obtain

— max
2 edQt) e

~M2

Similarly, we obtain

pdV > lf ol av.
2 Q(t)

Therefore,

N

v

1 5 ( f f ) 1( f 2 f 2
= max ) xp,(7) ndV + pdV = n|x| dV + plx| dV
Zfoeﬁﬂ(t); o Q) Q) 2 \Jan |1 Q) H

H(t) > HO) + HO)t + %Ezz,

that is
N

max > ,(1) > %(H(O) + HO) + Clz—Etz),

ToedQAr)4=

with the conserved total mass M = (n+ p)dV > 0in Lemma 3.1.

Q(0)
By (3.50), we have

N

2 - CIE > =
N (H(O) + H(O) + Tzz) < max (o, + 2o, w0, D)t + 10, 7)),

FedA0) =

When t — +o0, we obtain

2H(0) 2H(0) C1E 2
=t I+t 70€d0)i=
M < lim Xo€0CU0)i=1

> 0.

N
max 3 (x2, + 2x0,-1:(0, %)t + 12(0, %)r?)

lim <
t—+00 [2 f—+00 t2

Therefore, we have

C\E
~= < max u; 2(0, %)),
%€0Q(0)

that is

in(2, N(T - 1),N(y - 1))E
min (2, N( ), N(y = 1)) < max u(0, %),
M X€0Q(0)

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

which contradicts with inequality (3.2) in Theorem 3.1. Therefore, we conclude that the solutions for

the two-phase model (1.1) in RN will blow up in finite time.
This completes the proof.

O
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3.3. Blowup for the two-phase model with vacuum

For proofing the blowup results of solutions to the two-phase model in RV(N > 2), we first introduce
the properties of the two-phase model.

Lemma 3.3. (Theorem 2.1 in [18]) Assume that ny > 0, py > 0 and (ng, po, uy) € H*(RY) , then there
exists a unique solution (n, p, il) to the two-phase model on some time interval [0, T), which satisfies

n.peC([0,T)xRY), (3.62)

and
iieC ([o, T), H3(RN)) ncC! ([0, T), HZ(RN)) N C? ([o, T), Hl(RN)). (3.63)

Lemma 3.4. (Lemma 4 in [35]) From the mass equations (1.1); and (1.1),, we obtain

n(t, X(t)) = n(0, Xp) exp (—f V-L‘st) (3.64)
0

and

p(t, X(1)) = p(0, Xp) exp (— f V-ﬁds) . (3.65)
0

Next, we give the lemma to show the property of the modified Bessel function Ky(r).

Lemma 3.5. (Lemma 3.1 in [18]) The modified Bessel function Ky(r) = j(;oo e oM dt satisfies

{ Ko(r) < 2, IKy(nl < %, 0<r<3, (3.66)

Ko(r) < &Kyl <&, r> 1,

ko
for some constants Cy depending only on k > 1.

Then, we give the proof of the blowup results of solutions to the two-phase model in R¥(N > 2).

Proof of Theorem 3.2. We consider the solution (n, p, i) that satisfies the conditions in Theorem 3.2.
From the two-phase system (1.1), we obtain

—(V - (nil); + V - (pid),)
AP+ V- [V-((n+p)i®i)]. (3.67)

Ny + Pir

Then, multiplying Eq (3.67) by i and integrating over R to obtain

d? + 1 1
i f AP—dx + f V[V ((n +p)i ® )] —dx. (3.68)
drr Jen re’ v TE" RN re’
By the divergence theorem, we obtain
1 1 0P 1 0 1
f AP—dx = f PA—dx — lim —— — —(—)P|ds. (3.69)
gV Te” RN Te" &0 J,_ .\ Or re" Or re"
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By applying the assumption (3.5) and Lemma 3.4, we obtain n(t, 6) = 0,p(t, 6) =

0. Using the

continuity of P, we get that for any sufficiently small § > 0, there is 0 < & < 1, such that P(t,%) < ¢

while r = &, then,

é’(%) re’ +e"
fr:g o Pds = frzg oy Pds
re"+e" (e + 1)ef
< (5];8 g ds=9¢ . T ds
+1 + 1)e®
= oNa)e 1 EEDE _ snaen-2EE D
g“e e~
where a(N) = N(N — 2)=Z e N) and o (1 N) is the volume of the unit ball in RY.
Therefore, for N > 3, we obtaln
. ()
lim < Pds = 0.
&—0 —e 8}"
Similarly, we get
oP 1
lim ——ds=0

Thus, we obtain

1
f AP
RN re’

Using Holder inequality, we get

(
RN

.7
Therefore, (3.73) becomes

1
f AP—dx
RN re”

and

Applying the integration by parts,

f VIV - (04 )T ® )] ——dx
RV re

AIMS Mathematics

dx =

%
f p—dx.
RN FE"

1
—dx)" 1, 1
re’

Y
f Pidx = f n—dx+
Ry re’ RN Fe’
4

2wy < ( f I ) f
re’ RN ¥eE"
dx)” < ( f —dx)( f —dx)"".

re’

1
-

1 (f n+p
2N [ rdx)r ! Jpw

-1

1 [Ta+DH T (f n+pd)y.
27N (N =2)in2 gV e’
” 62 (n + p)uiu

8x,~0xj

dx)”

re”

we obtain

LN re’

2 2
(n +p)V2[— + = +Z)e"dx > 0.
RV r r2

)

(3.70)

(3.71)

(3.72)

(3.73)

(3.74)

(3.75)

(3.76)

)dx = f (n+ p)v2(ir)”dx
RN re

(3.77)
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Therefore, we obtain

£ [ ra+y 7
ﬁH(t) > > l(N EpY H (1), (3.78)
where H(t) = fRN %dx. Using integration by parts and (3.7), we obtain
’ d V *
Ho = 5[ S [ Ty,
dt Jgn  re” RN re’
N
i1 i 1 Vi
= —f 4oy ity oo [ (LD, g )
RN 45 rore r RN r‘e
Therefore,
’ ’ t dz ’
H((t)=H )+ f d_zH(s)dS > H (0) > 0. (3.80)
0 S
Multiplying the both sides of (3.78) by 2H (¢), we obtain
Y I (i +%) T“ :
H@)?) > 2 (1) . 3.81
(7 ) 2711 +y) [(N =22 () G581
Integrate over [0, 7], we obtain
y-1 2
Hop 2 [T T g (if s +p)dx) o
T 27 (1L +y) (N - 2)ind dt Jan  re’ .
-1
1 ra+5 7
H"N0). 3.82
2711 +y) [(N = 2)In> © (5:52)
Applying the assumption (3.7), we obtain
) d 2 y+1
H@ > CH™*(0)+ (d_ f (n+p) dx) o — C2 ( f (”’Lrpo)dx)
t Jgy  reE RV re
> C;H™ (1), (3.83)
_ | ra+y) 7!
Therefore,
H (1) > CoH'™ (1). (3.84)
By integrating over [0, t], we obtain
" dH
[ = (3.85)
0 H'Z(s)
Therefore, 5
- = (H”E'(r) - H-T(O)) > Cot, (3.86)
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which means that ,

y-1 -1 =
H() > (H-z(O) _7 Cot) . (3.87)
From (3.6), we have
f MR s 0. (3.88)
RN 1€

Applying the mass conservation, we obtain

1
H(p) = f TP < f +/Od + —f (no + po)dx, (3.89)
RN Te" By, re’ o

where B, is the N-dimensional ball centered at the origin with any given radius ry.

-1
When ¢ — 240 i3 H(t) cannot be bounded. Therefore, we obtain that fr <r0(” + p)(t, r)rdr cannot

ey
(y-1) . L

be bounded as t — 23 (?i) cz , hence the solutions will blow up on or before the finite time r — Zg (2) cz .

The proof is finished. O

In the following, we will prove Theorem 3.3.

Proof of Theorem 3.3. We consider the solution (n,p, i) satisfies the conditions in Theorem 3.3.
From (3.67), we obtain
l’ltt + ptt = AP + V ' [V * ((l’l +p)1/_l)® IZ)]. (3.90)

Then, multiplying Eq (3.90) by K(r) and taking the integration over R? to obtain
d2
— f (n + p)Ko(r)dx = f APKy(r)dx + f V-[V-((n+p)ii®i)]Kyr)dx. (3.91)
d[Z R2 R2 R2

Using the same method as that we obtain from (3.69) to (3.73), we obtain from Lemma 3.5 that

f APKy(r)dx = f (n” + p")Ko(r)dx
R? R?
y
> ! — (f (n +p)Ko(r)dx) . (3.92)
21 ([, Ko(rydx) — \WJe

Using the integration by parts, we obtain

2
f V[V ((n+p)i® D)Ko(Hdx = f 6 ({n + Pl ”’)Ko(r)dx
R2 R2 ax,
= f (n+ p)VZKg; (r)dx > 0. (3.93)
RZ
Therefore,
LN ! G (1) (3.94)
ar 21 ([ Kordx) ™
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where G(t) = [[,(n + p)(1, )Ko(r)dx.
Using integration by parts, (1.1);, (1.1), and (3.11), we obtain

G (0)

d
7 Lz(” + p)Ko(r)dxli=o

2

- [ vt oK = [ o ok Fa
R2 R2

i=1

2

Xi ’ Xi ,
f E (n+p)—VKy(r)—dxl— = f (n + p)VK,(r)dxl—o
R2 P r r R2

f (no + po)VoKy(r)dx > 0.
RZ

Similarly, we obtain G (¢) > 0.
Multiplying both sides of (3.94) by 2G (), we obtain

1
211+ 9) ([ Ko(r)dx) ™

Integrate over [0, ¢] and using the assumption (3.11), we obtain

’

(G = (6™ 0)

2
G@? > CfGY+1(t)+(%f(n +p)Ko(r)dx) o — C2G7*1(0)
R2

> C:G"(0),

-1

where C| = /m (fRZ Ko(r)dx)_T.

Therefore,

G (1) = C,G* (1)

" dG
f HY(S) > (Cit.
0 G (5)

_ Ll (¢ Fw-670)zcn

By integrating over [0, #], we obtain

Therefore,

which means that ,

-7

Y

G(1) > (G”z"(O) _ ; 1C1t)

f (no +p0)Ko(}")dX > 0.
R2

Applying the mass conservation, we obtain

From (3.10), we have

G@) = f (n+ p)Ko(r)dx < f (n + p)Ko(r)dx + max Ky(r) f (np + po)dx,
R2 Bro rzro R2

(3.95)

(3.96)

(3.97)

(3.98)

(3.99)

(3.100)

(3.101)

(3.102)

(3.103)
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where B, is the 2-dimensional ball centered at the origin with any given radius ry.

ol
When t — Z(Gy(f)i) CT , G(t) cannot be bounded. Thus, the solutions will blow up on or before the finite

_rt
time t — zg(?i)czl . Therefore, we conclude that the solutions of the two-phase model in R? will blow

up. O

4. Conclusions

In this paper, we study the blowup results of solutions to the two-phase model in RY. Our method
depends on the energy integration method and a quasi-linear wave equation about p, the singularity of
the two-phase model will form in finite time.
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