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1. Introduction

Fixed point results is a well-known and established concept in mathematical analysis and also has
a firm utilization in many mathematical fields. Fixed point results are also used to solve differential
equations, integral equations [3–6, 12, 14, 15].

In 1994, Matthews [7] developed the concept of partial metric space. In 2014, m-metric space was
presented by Asadi et al. [2] which is the extended form of a partial metric space. In 2016, Mlaiki
et al. [10] developed the notion of an mb-metric space which extends m-metric space and also which
is the generalize form of b-metric space (see [13]). In 2018, Mlaiki et al. [9] established the idea
of extended mb-metric spaces. In 2018, Mlaiki et al. [8] presented the concept of controlled metric
space. In 2018, Abdeljawad et al. [1] developed the idea of double controlled metric space by using
two control functions. More details can be found in [16].

In this article, we establish a new double controlled M-metric space, by employing two control
functions α, β : E × E → [1,∞) with the following new double controlled M-metric type triangle
inequality: (

M (ω, ν) − Mω,ν

)
≤ α (ω, µ)

(
M (ω, µ) − Mω,µ

)
+ β (µ, ν)

(
M (µ, ν) − Mµ,ν

)
.
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Further we provide some important examples to validate our work. At last, we present an application
related to our main results for Fredholm type integral equation.

2. Preliminaries

In this part, we discuss some important definitions, which would be useful in understanding this
work.

Definition 2.1. [7] Let E , φ. A function g : E × E → [0,∞) is said to be a partial metric if the
following conditions hold, for all u, v,w ∈ E,

1) u = ν if and only if g(u, u) = g(u, ν) = g(ν, ν);
2) g(u, ν) = g(ν, u);
3) g(u, u) ≤ g(u, ν);
4) g(u, ν) ≤ g(u,w) + g(w, ν) − g(w,w).

Example 2.2. [7] Let E = [0,∞) with g(u, v) = max{u, v}. Then (E, g) is a partial metric space.

We will use the following notations given in [7].

1) mu,ν = mbu,ν = min{m(u, u),m(ν, ν)};
2) Mu,ν = Mbu,ν = max{m(u, u),m(ν, ν)}.

Definition 2.3. [2] Let E , φ. A function m : E×E → [0,∞) is said to be an m-metric if the following
conditions hold, for all u, v,w ∈ E,

1) u = ν⇔ m (u, u) = m (u, ν) = m (ν, ν) ;
2) mu,ν ≤ m (u, ν) ;
3) m (u, ν) = m (ν, u) ;
4)

(
m (u, ν) − mu,ν

)
≤

(
m (u,w) − mu,w

)
+

(
m (w, ν) − mw,ν

)
.

Example 2.4. [2] Let E = [0,∞). Then m(u, v) = u + v on E is an m-metric.

Definition 2.5. [11] Let E , φ. A function mb : E × E → [0,∞) is said be an mb-metric with
coefficient s ≥ 1 if the following conditions hold, for all u, v,w ∈ E,

1) u = ν if and only if mb (u, u) = mb (u, ν) = mb (ν, ν) ;
2) mb u,ν ≤ mb (u, ν);
3) mb (u, ν) = mb (ν, u);
4)

(
mb (u, ν) − mb u,ν

)
≤ s

[(
mb (u,w) − mb u,w

)
+

(
mb (w, ν) − mb w,ν

)]
− mb (w,w) .

Definition 2.6. [9] Let E , φ and α : E2 → [1, ∞) be a function. A function mb : E2 → R+ is said be
an extended mb-metric if the following conditions hold, for all u, v,w ∈ E,

1) u = ν if and only if mb (u, u) = mb (u, ν) = mb (ν, ν) ;
2) mb u,ν ≤ mb (u, ν);
3) mb (u, ν) = mb (ν, u);
4)

(
mb (u, ν) − mbu,ν

)
≤ α (u, ν)

[(
mb (u,w) − mu,w

)
+

(
mb (w, ν) − mbw,ν

)]
.
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The pair (E,mb) is said to be an extended mb-metric space.

Example 2.7. [9] Let E = C([a, b],R) be the set of all continuous real valued functions on [a, b]. We
define the functions

mb : E2 → [0,+∞) and α : E2 → [1,+∞)

by
mb(u(t), v(t)) = supt∈[a,b] |u(t) − v(t)|2 and α(u(t), v(t)) = |u(t) + v(t)| + 2.

Then (E,mb) is an extended mb-metric space with the function α.

3. Main results

Definition 3.1. Let E , φ and α, β : E × E → [1, ∞) be functions. A mapping M : E × E → [0,∞) is
said be a double controlled M-metric if the following conditions hold, for all u, v,w ∈ E,

(1) u = ν if and only if M (u, u) = M (u, ν) = M (ν, ν) ;
(2) Mu,ν ≤ M (u, ν) ;
(3) M (u, ν) = M (ν, u) ;
(4)

(
M (u, ν) − Mu,ν

)
≤ α (u,w)

(
M (u,w) − Mu,w

)
+ β (w, ν)

(
M (w, ν) − Mw,ν

)
.

Example 3.2. Let E = [0, 1] and for distinct u, v and w ∈ E we take

M (u, v) = 18 = M (v, u) , M (1, 1) = 1,
M (u, w) = 6 = M (w, u) , M (2, 2) = 8,
M (w, v) = 7 = M (v, w) , M (3, 3) = 3.

Define α, β : E × E → [1, ∞) by

α (u, v) =

{
2u + 3, if u > v

3v2 + 1, otherwise

and

β (u, v) =

{
8u + 4, if u > v

2v2 + 1, otherwise.

Clearly, (1)–(3) are satisfied. Now for (4)

M (u, v) − Mu,v ≤ α (u, w)
(
M (u,w) − Mu,w

)
+ β (w, v)

(
M (w, v) − Mw,v

)
,

18 − 8 ≤ 7 (3) + 8 (3) ,
10 � 4 + 2 = 6.

Clearly M is not an m-metric space, but if we take

α (u, w) = 4, β (w, v) = 6,

then
10 ≤ (4)(4) + (6)(2) = 28.

Hence the space is not an m-metric space, but it is a double controlled M-metric space
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Example 3.3. Let E = {1, 2, 3} and for distinct u, v and w ∈ E we take

M (u, v) = 16 = M (v, u) , M (1, 1) = 1,
M (u, w) = 4 = M (w, u) , M (2, 2) = 9,
M (w, v) = 5 = M (v, w) , M (3, 3) = 2.

Define α, β : E × E → [1, ∞) by

α (u, v) =

{
u + 1, if u > v
v2, otherwise

and

β (u, v) =

{
3u, if u > v

2v, otherwise.

Clearly, (1)–(3) are satisfied. Now for (4)

M (u, v) − Mu,v ≤ α (u, w)
(
M (u,w) − Mu,w

)
+ β (w, v)

(
M (w, v) − Mw,v

)
,

15 ≤ 7 (3) + 8 (3)

if we take
α (u, w) = 7, β (w, v) = 8.

Also clearly M is not an m-metric space, since

15 � 3 + 3 = 6.

Hence the space is not an m-metric space, but it is a double controlled M-metric space.

Remark 3.4. Observe that if α (u, v) = β (u, v), then M is an extended mb-metric but if α (u, v) =

β (u, v) = 1, then M becomes an m-metric.

Example 3.5. Let E = [0, ∞) and define

M (1, 1) = 7,M (2, 2) = 13,M (3, 3) = 9,M (1, 2) = M (2, 1) = 12

and for distinct u, v and w ∈ E

M (u, v) = 19 = M (v, u) ,
M (u, w) = 8 = M (w, u) ,
M (w, v) = 4 = M (v, w) .

Also, define α, β : E2 → [1, ∞) by

α (u, v) =

{
3u, if u, v > 1

min {u, v} , otherwise

and

β (u, v) =

{
10, if u, v < 1

min {u, v} , otherwise.

Then clearly E is not an m-metric and extended mb-metric space but it is a double controlled M-metric
space.
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Definition 3.6. Let (E,M) be a double controlled M-metric space.
(1) A sequence {un} in E converges at a point u if

lim
n→∞

(
M (un, u) − Mun,u

)
= 0.

(2) A sequence {un} in E is said to be an M-Cauchy sequence if

lim
n,m→∞

(
M (un, um) − Mun,um

)
and lim

n→∞

(
Mun,um − mun,um

)
< ∞.

(3) A double controlled M-metric space is said to be M-complete if every M-Cauchy sequence {un}

converges to a point u, i.e.,

lim
n→∞

(
M (un, u) − Mun,u

)
= 0 and lim

n→∞

(
Mun,u − mun,u

)
= 0.

Theorem 3.7. Let (E,M) be a complete double controlled M-metric space by functions α, µ : E×E →
[1,∞). Suppose that a continuous mapping R : E → E satisfies

M(Ru,Rv) ≤ K
(
M(u, v) + Mu,v

)
(3.1)

for all u, v ∈ E where K ∈ (0, 1). For u0 ∈ E, let un = Rnu0. Assume that

sup
m≥1

lim
i→∞

α(ui+1, ui+2)
α(ui, ui+1)

µ(ui+1, um) <
1
k
. (3.2)

In addition, for each u ∈ E, suppose that

lim
n→∞

α(u, un) and lim
n→∞

µ(un, u) < ∞. (3.3)

Then the mapping R has a unique fixed point.
Proof. Let {un = Rnu0} be a sequence in E satisfying the hypothesis of the theorem. By (3.1), we get

M(un, un+1) ≤ Kn (
M(uo, u1) + Muo,u1

)
for all n ≥ 0. For n,m ∈ Z with n ≤ m, we get
M(un, um) − Mun,um ≤ α(un, un+1)

(
M(un, un+1) − Mun,un+1

)
+ µ(un+1, um)

(
M(un+1, um) − Mun+1,um

)
≤ α(un, un+1)

(
M(un, un+1) − Mun,un+1

)
+ µ(un+1, um)

[
α(un+1, un+2)

(
M(un+1, un+2) − Mun+1,un+2

)
+µ(un+2, um)

(
M(un+2, um) − Mun+2,um

) ]
≤ α(un, un+1)

(
M(un, un+1) − Mun,un+1

)
+µ(un+1, um)α(un+1, un+2)[

(
M(un+1, un+2) − Mun+1,un+2

)
]

+µ(un+1, um)µ(un+2, um)[M(un+2, um) − Mun+2,um],
M(un+2, um) − Mun+2,um ≤ α(un+2, un+3)

(
M(un+2, un+3) − Mun+2,un+3

)
+µ(un+3, um)

(
M(un+3, um) − Mun+3,um

)
and so we have

M(un, um) − Mun,um ≤ α(un, un+1)
(
M(un, un+1) − Mun,un+1

)
AIMS Mathematics Volume 7, Issue 8, 15298–15312.
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+µ(un+1, um)α(un+1, un+2)[
(
M(un+1, un+2) − Mun+1,un+2

)
]

+µ(un+1, um)µ(un+2, um)
[
α(un+2, un+3)

(
M(un+2, un+3) − Mun+2,un+3

)
+µ(un+3, um)

(
M(un+3, um) − Mun+3,um

) ]
≤ α(un, un+1)[M(un, un+1) − Mun,un+1]

+µ(un+1, um)α(un+1, un+2)[
(
M(un+1, un+2) − Mun+1,un+2

)
]

+µ(un+1, um)µ(un+2, um)α(un+2, un+3)[
(
M(un+2, un+3) − Mun+2,un+3

)
]

+µ(un+1, um)µ(un+2, um)µ(un+3, um)[
(
M(un+3, um) − Mun+3,um

)
]

≤
...

≤ α(un, un+1)
(
M(un, un+1) − Mun,un+1

)
+

m−2∑
i=n+1

 i∏
j=n+1

µ(u j, um)

α(ui, ui+1)
[(

M(ui, ui+1) − Mui,ui+1

)]
+

m−1∏
k=n+1

µ(uk, um)[
(
M(um−1, um) − Mum−1,um

)
]

≤ α(un, un+1)kn (
M(uo, u1) + Muo,u1

)
+

m−2∑
i=n+1

 i∏
j=n+1

µ(u j, um)

α(ui, ui+1)ki [(M(u0, u1) − Mu0,u1

)]
+

 m−1∏
i=n+1

µ(ui, um)

 km−1 (
M(uo, u1) + Muo,u1

)
≤ α(un, un+1)kn (

M(uo, u1) + Muo,u1

)
+

m−2∑
i=n+1

 i∏
j=n+1

µ(u j, um)

α(ui, ui+1)ki [(M(u0, u1) − Mu0,u1

)]
+

 m−1∏
j=n+1

µ(ui, um)

 km−1α(um−1, um)
(
M(uo, u1) + Muo,u1

)
= α(un, un+1)kn (

M(uo, u1) + Muo,u1

)
+

m−1∑
i=n+1

 i∏
j=n+1

µ(u j, um)

α(ui, ui+1)ki [(M(u0, u1) − Mu0,u1

)]
≤ α(un, un+1)kn (

M(uo, u1) + Muo,u1

)
+

m−1∑
i=n+1

 i∏
j=0

µ(u j, um)

α(ui, ui+1)ki [(M(u0, u1) − Mu0,u1

)]
.

Letting

sp =

p∑
i=0

 i∏
j=0

µ(u j, um)

α(ui, ui+1)ki,

AIMS Mathematics Volume 7, Issue 8, 15298–15312.
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we have

(M(un, um) − Mun,um) ≤
(
M(uo, u1) + Muo,u1

)
+ [knα(un, un+1) + sm−1 − sn]. (3.4)

By (3.2), the limit of the real sequences exists and so {sn} is Cauchy. Indeed, the ratio test is applied to
the term

ai =

 i∏
j=0

µ(u j, um)

α(ui, ui+1).

Letting n,m tend to∞ in (3.4), we get

lim
n,m→∞

(M(un, um) − Mun,um) = 0,

which implies that {un} is a Cauchy sequence and by using the completeness of M there exists u ∈ E
such that

Mu,Ru ≤ M(u,Ru)

and
M(u,Ru) − Mu,Ru ≤ α(u, ψn)[

(
M(u, ψn) − Mu,ψn

)
] + µ(ψn,Ru)[

(
M(ψn,Ru) − Mψn,Ru

)
].

By the continuity of R and taking the limit, we obtain

M(u,Ru) − Mu,Ru ≤ 0,
M(u,Ru) = Mu,Ru.

Now let

K∗u,Ru = M(u,Ru) where k∗u,Ru = max(M(u, u),M(Ru,Ru)),

K∗
ψn ,Rψn

= M(ψn, ψn) ≤ Kn
(
M(ψo, ψ1) + Mψo,ψ1

)
).

Since K ∈ (0, 1), by applying limit, we get

K∗
ψn ,Rψn

= 0.

Finally, since
M(u,Ru) = Mu,Ru ≤ K∗u,Ru

and
M(Ru,Ru) = Mu,Ru,

Ru = u.
Now suppose R has two fixed points, i.e., Ra = a and Rb = b. Then

M(a, b) = M(Ra,Rb) ≤ K[
(
M(a, b) + Ma,b

)
].

Since M(a, b) = Ma,b, we obtain

M(a, b) ≤ K2M(a, b),
M(a, b)(1 − 2M) ≤ 0,

M(a, b) = 0,

which implies that a = b. �
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Example 3.8. Let E = [0,∞). Consider the double controlled M-metric type defined by M(u, v) = u+v
for all u, v ∈ E and the functions α, µ given by

α(u, v) =

{
8 if u, v ≥ 1

8(u + 2) otherwise

and

µ(u, v) =

{
7 if u, v ≥ 1

7(v + 2) otherwise.

Letting Ru = 1 for all u ∈ E and u0 = 1 and k = 1
4 , we have

sup
m≥1

lim
i→∞

α(ui+1, ui+2)
α(ui, ui+1)

µ(ui+1, um) = 1 < 4 =
1
k
,

that is, (3.2) holds. In addition to that for every u ∈ [0,∞) we have

lim
n→∞

α(u, un) = max(1, u) < ∞ and lim
n→∞

µ(un, u) = max(u, 1) < ∞,

that is, (3.3) holds. All the conditions of the above theorem hold and u = 1 is the unique fixed point.

Theorem 3.9. Let (E,M) be a complete double controlled M-metric type and R : E → E be a continues
mapping. Suppose that there exist ŏ, č ∈ [0,∞) with

lim
n→∞

ŏα(un, un−1)
1 − čµ(un, un+1)

< 1, (3.5)

where un = Rnu0 and for any u ∈ E

ŏα(u,Ru) + čµ(u,Ru) < 1.

If
M(Ru,Rv) ≤ ŏα(u,Ru)M(u,Ru) + čµ(v,Rv)M(v,Rv)

then R has a unique fixed point.

Proof. Let uo ∈ E and define {un} as follow: u1 = Ru0, u2 = Ru1 = R2u0 un = Rnu0. We first prove that

M(un, un+1) ≤ ŏn
n∏

i=o

[
α(ui, ui−1)

1 − čµ(ui, ui+1)

]
M(u0, u1).

To prove this, let n ∈ N. Then

M(un, un+1) = M(Run−1, un)
≤ ŏα(un−1,Run−1)M(un−1,Run−1) + čµ(un,Run)M(un,Run)
≤ ŏα(un−1, un)M(un−1, un) + čµ(un, un+1)M(un, un+1)

and so

M(un, un+1) − čµ(un, un+1)M(un, un+1) ≤ ŏα(un−1, un)M(un−1, un),

AIMS Mathematics Volume 7, Issue 8, 15298–15312.
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M(un, un+1) (1 − čµ(un, un+1)) ≤ ŏα(un−1, un)M(un−1, un).

Hence

M(un, un+1) ≤
ŏα(un−1, un)M(un−1, un)

(1 − čµ(un, un+1))
=

ŏα(un−1, un)
(1 − čµ(un, un+1))

M(Run−1,Run−2)

≤
ŏ2α(un, un−1)α(un−1, un−2)

[(1 − čµ(un, un+1)) (1 − čµ(un−1, un))]
M(un−1, un)

≤ · · · ≤ ŏn
n∏

i=1

[
α(ui, ui−1)

1 − čµ(ui, ui+1)

]
M(u0, u1).

Since

lim
n→∞

ŏα(un, un−1)
1 − čµ(un, un+1)

< 1,

by the ratio test,
∞∑

n=1

ŏn
n∏

i=1

[
α(ui, ui−1)

1 − čµ(ui, xi+1)

]
converges. This implies that M(un, un+1) converges to 0. Further for n,m ∈ N

M(un, um) = M(Run−1,Rum−1) ≤ ŏα(un−1,Run−1)M(un−1,Run−1)
+čµ(um−1,Rum−1)M(um−1,Rum−1)

≤ ŏα(un−1, un)M(un−1, un) + čµ(um−1, um)M(um−1, um).

Using the observation of the above inequality, we obtain that M(un, um) converges to 0. Since

Mun,um = min(M(un, un),M(um, um)) ≤ M(um, um),

we conclude that
lim

n,m→∞

(
M(un, um) − Mun,um

)
= 0.

Also suppose that
k∗un,um

= max(M(un, un),M(um, um)) = M(un, un).

Then

k∗un,um
− Mun,um ≤ k∗un,um

= M(un, un) = M(Run−1,Run−1)
≤ ŏα(un−1, un)M(un−1, un) + čµ(un−1, un)M(un−1, un).

Taking the limit n→ ∞, we obtain

lim
n,m→∞

(k∗un,um
− Mun,um) = 0.

Thus {un} is an M-Cauchy sequence and by using the completeness of M we obtain that {un} converges
to some u ∈ E and so {Run = un+1} converges to u ∈ E. Furthermore by the hypothesis of the

AIMS Mathematics Volume 7, Issue 8, 15298–15312.
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theorem, i.e, R : (E,M) → (E,M) is continues, it is not difficult to show that {Run} converges to Rē.
By [9, Lemma 3.3], we have (

M(ē,Rē) − Mē,Rē
)

= 0

and so

M(ē,Rē) = M(Rē,Rē) ≤ ŏα(ē,Rē)M(ē,Rē) + čµ(ē,Rē)M(ē,Rē)
≤ (ŏα(ē,Rē) + čµ(ē,Rē))M(ē,Rē)
≤ M(ē,Rē).

Hence
M(ē,Rē) = M(Rē,Rē) = 0.

By using the same observation given in the above equality, we get

M(Rē,Rē) = M(R2ē,R2ē) = 0. (3.6)

Since (E,M) is complete, it follows that
RRē = Rē.

Thus we obtain that
ē
′

= Rē

is a fixed point of R.
Next we will show the uniqueness. Suppose there exists v ∈ E such that

M(v, ē
′

) = M(Rv,Rē
′

) ≤ ŏα(v,Rv)M(v,Rv) + čµ(ē
′

,Rē
′

)M(ē
′

,Rē
′

).

By (1.6), we obtain

M(v, ē
′

) ≤ ŏα(v,Rv)M(v,Rv) + 0 = ŏα(v,Rv)M(v,Rv).

Hence

M(v, ē
′

) ≤ ŏα(v,Rv)M(Rv,Rv) ≤ ŏα(v,Rv)[ŏα(v,Rv) + čµ(v,Rv)]M(v,Rv)
≤ · · · ≤ ŏα(v,Rv)[ŏα(v,Rv) + čµ(v,Rv)]nM(v,Rv).

Since
ŏα(v,Rv) + čµ(v,Rv) = ŏα(Rv,R2v) + čµ(Rv,R2v) < 1,

[ŏα(v,Rv) + čµ(v,Rv)]n → 0

and so
M(v, ē

′

) = M(v, v) = 0.

Using (3.6), we obtain
M(v, ē

′

) = M(v, v) = M(ē
′

, ē
′

).

So the mapping R has a unique fixed point. �
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Example 3.10. Let E = {1, 2, 3} and α, µ be defined in Example 3.3. Let

M(u, v) = u + v

and R : E → E be defined by
R(u) =

u
2
.

Then clearly
M(Ru,Rv) ≤ ŏα(u,Ru)M(u,Ru) + čµ(v,Rv)M(v,Rv).

Letting Ru = 1 for uo = 1, we have

lim
n→∞

ŏα(un, un−1)
1 − čµ(un, un+1)

< 1.

That is, (3.5) holds. Since
lim
n→∞

α(u, un) = lim
n→∞

µ(un, u) < ∞,

all the conditions of Theorem 3.9 are satisfied and hence u = 1 is a fixed point.

Theorem 3.11. Let (E,M) be a complete double controlled M-metrc space by functions α, µ : E×E →
[1,∞). Suppose that a continuous mapping R satisfies Bianchini type condition

M(Ru,Rv) ≤ ĥ max{M(u,Ru),M(v,Rv)} (3.7)

for all u, v ∈ E where 0 < ĥ < 1. For u0 ∈ E, choose un = Rnu0. Suppose that

sup
m≥1

lim
i→∞

α(ui+1, ui+2)
α(ui, ui+1)

µ(ui+1, um) <
1

ĥ
. (3.8)

In addition, for each u ∈ E suppose that

lim
n→∞

α(u, un) and lim
n→∞

µ(un, u) < ∞.

Then R has a unique fixed point.

Proof. Let uo and u1 be points as in Theorem 3.7. If for some m, um = um+1 = Rum , then clearly um is
a fixed point of R.

Now suppose un , un+1 for all n. By (3.7), we have

M(un, un+1) = M(Run−1,Run) ≤ ĥ max {M(un, un+1),M(un−1, un)} .

If max {M(un, un+1),M(un−1, un)} = M(un, un+1), then

M(un, un+1) ≤ ĥM(un, un+1),

1 =
M(un, un+1)
M(un, un+1)

≤ ĥ

which is a contradiction since 0 < ĥ < 1.
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If max {M(un, un+1),M(un−1, un)} = M(un−1, un), then

M(un, un+1) ≤ ĥM(un−1, un).

If we proceed it continually, then we come to the conclusion that for each n ≥ 0 we obtain

M(un, un+1) ≤ ĥnM(uo, u1).

Taking the limit on both sides, we get

lim
n→∞

M(un, un+1) = 0,

which implies that {un} is a Cauchy sequence. By the same procedure used in Theorem 3.7, for all
m ≥ n, we may get

M(un, un+1) ≤ α(un, un+1)hn (
M(uo, u1) + Muo,u1

)
+

m−1∑
i=n+1

 i∏
j=0

µ(u j, um)

α(ui, ui+1)hi [(M(uo, u1) − Mu0,u1

)]
.

By using the assumption used in (3.8) and the ratio test to the series derived in the above inequality
as in Theorem 3.7, the sequence {un} is Cauchy. By the completeness of double controlled M-metric
space, there exists u ∈ E such that

lim
n,m→∞

(M(un, um) − Mun,um) = 0.

Thus u is a fixed point of R, which follows from the same procedure as we done in Theorem 3.7. �

Example 3.12. Let E = [0,∞) and R : E → E be defined by R(u) = u
2+2u and M(u, v) =

(u+v)2

2 . Then
M(u,Rv) = M(Ru, v) = (u + v)2. If either one of the elements in the form of Ru or Rv, we get

M(Ru,Rv) =
(Ru + Rv)2

2
,

M(Ru,Rv) =
( λ

2+2λ + λ
2+2λ )2

4
,

M(Ru,Rv) ≤
1
2
×

(u + v)2

2
≤

1
2
× (u + v)2,

M(Ru,Rv) ≤ h max{M(u,Rv),M(Ru, v)}, where h=
1
2
.

Define α(u, v) = µ(u, v) = 1 + u + v. Now by induction it is not difficult to deduce that

λn = f n(λ) =
λ

2n +
(∑n

i=1 2k) λ
for all n ∈ N. Thus

lim
n→∞

α(λ, λn) = lim
n→∞

α(λn, λ) = 1 + λ.

On the other hand,

sup
m≥1

lim
i→∞

α(ui+1,ui+2)
α(ui,ui+1)

µ(ui+1,um) = 1 +
λ

2 + 2λ
≤ 2 =

1
h
.

Hence all the hypothesis of Theorem 3.11 hold. Therefore, f has a unique fixed point in E.
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4. Application

Let E = C([0, 1],R) and

u
′

(p) =

∫ 1

0
G(p, q, u

′

(p)), for p, q ∈ [0, 1], (4.1)

be a Fredholm type integral equation, where G(p, q, u
′

(p)) is a continuous function from [0, 1]×[0, 1]→
R. Now define

M : E × E → R

(u, v) → sup
p∈[0,1]

|u
′

(p) + v(q)|
2

.

Note that (E,M) is a double controlled M-metric type space as already shown in Example 3.2.

Theorem 4.1. Suppose that for all u, v ∈ E
(1)

|G(p, q, u
′

(p))| + |G(p, q, v(p))| ≤ sup
p∈[0,1]

({|u
′

(p)|(v(p)|})(|u
′

(p) + v(p)|)

≤ k( sup
p∈[0,1]

({|u
′

(p)|(v(p)|})(|u
′

(p) + v(p)|) + R|u(p)v(p)|),

where k ∈ [0, 1
(1+supp,q |G(p,q,u′ (p))||G(p,q,v(p))|))2 ] and for some p ∈ [0, 1]

(2)

G
(
p, q,

∫ 1

0
G(p, q, u

′

(p))dq
)
≤ G(p, q, u

′

(p))

for all p, q. Then the above integral integral has a unique solution.

Proof. Let R : E → E be defined by Ru
′

(p) =
∫ 1

0
G(p, q, u

′

(p)). Then

M(R(u),R(v)) = sup
p∈[0,1]

(
|Ru

′

(p) + Rv(p)|
2

)
.

So we get

|Ru
′

(p) + Rv(p)|
2

=

∣∣∣∣∫ 1

0
G(p, q, u

′

(p))dq
∣∣∣∣ +

∣∣∣∣∫ 1

0
G(p, q, v(p))dq

∣∣∣∣
2

≤

∫ 1

0

∣∣∣G(p, q, u
′

(p))
∣∣∣ dq +

∫ 1

0
|G(p, q, v(p))| dq

2

=

∫ 1

0

(∣∣∣G(p, q, u
′

(p))
∣∣∣ + |G(p, q, v(p))|

)
dq

2

≤

∫ 1

0
supp∈[0,1]({|u

′

(p)|(v(p)|})(|u
′

(p) + v(p)|)dq

2
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15311

≤

∫ 1

0
k(supp∈[0,1]({|u

′

(p)|(v(p)|}|u(p) + v(p)|))dq

2
+k(R|u(p)v(p)|) using (1) ,

|Ru(p) + Rv(p)|
2

≤ k(M(u, v) + Mu,v),

M(Ru,Rv) ≤ k(M(u, v) + Mu,v).

Furthermore, let n ∈ N and u ∈ E. Then

Rnu(p) = R(Rn−1u
′

(p) =

∫ 1

0
G(p, q,Rn−1u

′

(p))

=

∫ 1

0
G(p, q,R(Rn−2(u(p)) ≤

∫ 1

0
G(p, q,

∫ 1

0
G(p, q,Rn−2(u

′

(p))ds

≤

∫ 1

0
G(p, q,Rn−2(u

′

(p)))ds = Rn−1u
′

(p).

Thus for all p ∈ [0, 1] we find that the sequences {Rnu
′

(p)} is bounded below and strictly decreasing and
so it converges to some l. Since {Rn}n is monotonic, by using Denis theorem, the sup value converges to
some point l. Observe that M(R(u),R(v)) = supp∈[0,1]

(
|Ru(p)+Rv(p)|

2

)
converges to l. So all the hypothesis

of Theorem 3.7 are satisfied and the Eq (4.1) has a unique solution. �

5. Conclusions

This paper dealt with the achievement of introducing the notion of double controlled m-metric
spaces as a generalization of extended m-b-metric space and studiedg some of its properties and results.
Moreover, some fixed points have been investigated for mapping satisfying different conditions in this
new frame work. This idea can be applied for further investigations in studying fixed points for other
structures in metric spaces.
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