
http://www.aimspress.com/journal/Math

AIMS Mathematics, 7(8): 15212–15233.
DOI:10.3934/math.2022834
Received: 24 April 2022
Revised: 31 May 2022
Accepted: 06 June 2022
Published: 16 June 2022

Research article

Analysis of travelling wave solutions for Eyring-Powell fluid formulated
with a degenerate diffusivity and a Darcy-Forchheimer law
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Abstract: The goal of this paper is to provide analytical assessments to a fluid flowing in a
porous medium with a non-linear diffusion linked to a degenerate diffusivity. The viscosity term is
formulated with an Eyring-Powell law, together with a non-homogeneous diffusion typical of porous
medium equations (as known in the theory of partial differential equations). Further, the equation
is supplemented with an absorptive reaction term of Darcy-Forchheimer, commonly used to model
flows in porous medium. The work starts by analyzing regularity, existence and uniqueness of
solutions. Afterwards, the problem is transformed to study travelling wave kind of solutions. An
asymptotic expansion is considered with a convergence criteria based on the geometric perturbation
theory. Supported by this theory, there exists an exponential decaying rate in the travelling wave
profile. Such exponential behaviour is validated with a numerical assessment. This is not a trivial
result given the degenerate diffusivity induced by the non-linear diffusion of porous medium type and
suggests the existence of regularity that can serve as a baseline to construct numerical or energetic
approaches.
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Nomenclature

K1: Permeability of the medium.
K2: Inertial permeability.
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L: Fluid characteristic length.
M: Hartmann number.
MHD: Magnetohydrodynamics.
PME: Porous Medium Equation.
Re: Reynolds.
U0: Fluid characteristic velocity.
ρ: Fluid density.
µ: Fluid viscosity.
ν: Fluid kinematic viscosity.
B0: Applied magnetic field.
σ: Electrical conductivity in the medium.

1. Introduction

Any kind of material exhibiting pores filled by a flowing fluid leads to a physical interpretation
beyond the Newtonian description related with viscosity and diffusion. Currently, flow in porous
medium is a source of research, not only because of purely mathematical interests, but also because of
their applications in electrochemical, mechanical, geophysical, metallurgical and chemical processes.
In 1856, the observations made by Henry Darcy [1] associated to fluid flow in porous medium led to
the formulation of a physical law to describe the basic dynamic experienced. Such law was intended to
describe the fluid principles for low Reynolds numbers, typical of flows in this kind of porous medium.
Afterwards, Forchheimer in 1901 [2] and Jaeger in 1956 [3] provided an extension of Darcy‘s law to
account for turbulent flows at higher Reynolds numbers. Based on these works, the Darcy‘s law was
renamed as Darcy-Forchheimer‘s law by Mustak in [4] and [5].

It shall be noted that the above mentioned researchers considered the viscosity and diffusive terms
as provided by the classical Newtonian description. Nonetheless and since then, several researchers
have tried to extend the viscosity formulation to increase the modelling accuracy beyond the Newtonian
scope. As a set of representative examples of the described non-Newtonian fluid models, the reader is
referred to the works [6–9] together with references therein. The non-Newtonian fluids are classified
into several classes. It is relevant to highlight that efforts have been made to describe diffusion
phenomena based on the kinetic theory of liquids rather than on experimental or intuitive principles
related with viscosity. Such efforts were conducted with success leading to a kind of non-Newtonian
fluid known as Eyring-Powell. The use of the kinetic theory of liquids to describe viscosity and
diffusive mechanisms makes the Eyring-Powell fluid particularly attractive to model flows given by
electrically conducting particles arising in Magnetohydrodynamics (MHD). In a set of interesting
analysis, Akbar et al. [10] obtained the numerical results for two dimensional MHD Erying-Powell
fluid over stretching surface. Hina et al. [11] analyzed the heat transfer for MHD Erying-Powell fluid
under the slip effect at the boundary. Bhatti et al. [12] considered two dimensional MHD Erying-
Powell fluid under permeable surface and analyzed the heat transfer by converting the equations into
nonlinear ordinary equations and that are solved based on numerical principles. Other interesting
results in non-Newtonian fluids are given in the references [13–18], but particularly there are some
recent achievements in this regards to highlight: In [19] a modified Eyring-Powell model is introduced
to improve predictions related with the Eyring-Powell parameter on flow velocity. In [20], the authors

AIMS Mathematics Volume 7, Issue 8, 15212–15233.



15214

discuss the adequacy of Eyring-Powell models for viscous dissipation in a flow past a convectively
heated stretching sheet. Furthermore, in [21] and [22], an Eyring-Powell fluid is considered to
model Coriolis effects over a non-uniform surfaces together with a discussion on the adequacy of
the formulation. Finally, the reader is referred to [23] and [24] for discussions on other types of fluids
and other types of analysis based on purely numerical schemes respectively.

Other techniques have been of help to describe flows under non-Newtonian approaches. For
instance, some kinds of solutions known as travelling and solitary waves have provided interesting
results from analytical and numerical perspective. In this regard, the reader is referred to the set of
studies [25–27].

As a main research question driving the present study, it shall be mentioned the idea of searching
for appropriate regularity conditions even when the Eyring-Powell viscosity term is formulated with
a degenerate diffusion. Specially but not limited, the question of finding an exponential profile of
solution.

1.1. Model formulation

Let us start by considering a one dimensional Darcy-Forchheimer flow with a diffusion term given
by an Erying-Powell principle. The velocity vector is then V = (v1, 0, 0) where v1(y, t) is the velocity
profile in the x−direction that is dependant on the transversal direction y. The geometry under study is
given by an open porous domain where the flow is developed through the x−direction and is initially
distributed by an initial condition in the y−direction. In addition, the diffusion is further modified to
account for a nonlinear term of the form ∂2vm

1
∂y2 (refer to [28] and [29] for a complete discussion about

this kind of non-linearity and to [14–16] for different applications of particular diffusion terms). Note
that the basic homogeneous problem

∂v1

∂t
=
∂2vm

1

∂y2 , m > 1, (1.1)

is well known as porous medium equation. The PME is a nonlinear parabolic equation with degenerate
diffusivity. Indeed, the diffusivity is given by D(v1) = m vm−1

1 that is null whenever v1 = 0. This
degeneracy leads to the loss of a positive principle for null (or slightly null) solutions, and hence to the
loss of regularity as understood for gaussian diffusion problems.

Based on the exposed principles, the equation under study emerges from the MHD theory and reads

∂v1

∂t
= −

1
ρ

dP
dx

+

(
ν +

1
βd1ρ

)
∂2vm

1

∂y2 −
1

2βd3
1ρ

(
∂v1

∂y

)2
∂2v1

∂y2 −

(
σB2

0

ρ
+

ν

K1

)
v1 −

v2
1

K2
, (1.2)

where m > 1, P is the pressure field acting along the x−direction and β and d1 are the characteristic
constants of the Eyring-Powell fluid model.

To account for a single general equation, introduce the following non-dimensional quantities
(see [30]) as follows

v∗1 =
v1

U0
, x∗ =

x
L
, y∗ =

y
L
, t∗ =

U0t
L
, P∗ =

P
ρU2

0

, A1 =
1

νβρd1

ε =
1

2βρd3
1L3

, A2 =
Lν

U0K1
, A3 =

L
K2
, A4 =

Um−1
0

Re
, (1.3)
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where L is a characteristic length that can be given by the pores dimension. After replacement of the
set of expressions in (1.3) into the Eq (1.2) (ignoring * for simplicity)

∂v1

∂t
= −

1
ρ

dP
dx

+ A4(1 + A1)
∂2vm

1

∂y2 − ε

(
∂v1

∂y

)2
∂2v1

∂y2 −

(
M2

Re
+ A2

)
v1 − A3v2

1, (1.4)

where Re = U0L
ν

is the Reynolds number and and M = B0

√
Lσ
ρ

refers to the Hartmann number. Making
the differentiation of Eq (1.4) with respect to x

−
1
ρ

dP
dx

= A5.

After using the value of dP
dx in Eq (1.4)

∂v1

∂t
= A5 + A4(1 + A1)

∂2vm
1

∂y2 − ε

(
∂v1

∂y

)2
∂2v1

∂y2 −

(
M2

Re
+ A2

)
v1 − A3v2

1. (1.5)

In addition, consider the following initial generalized condition

v1(y, 0) = v0(y) ∈ L1(R) ∩ L∞(R), (1.6)

where v0(y) is the initial velocity that represents any kind of non-homogeneous distribution with the
only requirement to be bounded in L∞−norm and under a finite flowing mass quantity, i.e., a bound
in L1−norm. In addition, note that this initial condition allows modelling any kind of irregularities or
discontinuities that may exist in the porous medium involved.

2. Regularity, existence and uniqueness of solutions

Given the degeneracy in the diffusivity introduced by the non-linear term ∂2vm
1

∂y2 and given the
generalized initial velocity distribution, solutions are analyzed based on a weak formulation. To this
end, assume the existence of a test function Ω ∈ C∞(R) with compact support (or at least with a
decreasing behaviour over R) such that for 0 < τ < t < T

∫
R

v1(t)Ω(t)dy =

∫
R

v1(τ)Ω(τ)dy +

∫ t

τ

∫
R

v1(t)
∂Ω

∂s
dyds + A5

∫ t

τ

∫
R

Ωdyds

+ A4 (1 + A1)
∫ t

τ

∫
R

vm
1
∂2Ω

∂y2 dyds +
ε

3

∫ t

τ

∫
R

(
∂v1

∂y

)3
∂Ω

∂y

−

(
M2

Re
+ A2

) ∫ t

τ

∫
R

v1Ωdyds − A3

∫ t

τ

∫
R

Ωv2
1dyds. (2.1)

Given a finite r0, admit the following ball Br centered in r0 and with radium r >> r0, such that the
following equation is defined

v1(t)
∂Ω

∂s
+ A5Ω + A4 (1 + A1) vm

1
∂2Ω

∂y2 +
ε

3

(
∂v1

∂y

)3
∂Ω

∂y
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−

(
M2

Re
+ A2

)
v1Ω − A3Ωv2

1 = 0, (2.2)

in Br × [0,T ] , with the following boundary like and initial conditions

0 <
∂Ω

∂y
= Ω << 1, v1(y, 0) = v0(y) ∈ L1(R) ∩ L∞(R). (2.3)

Firstly, the following theorem expresses the regularity properties of any solution to (1.5), i.e., solutions
exist globally.

Theorem 2.1. Given v0(y) ∈ L1(R)∩L∞(R), then any non-negative solution (v1 ≥ 0) to (1.2) is bounded
for all (y, t) ∈ Br × [0,T ] with r >> 1.

Proof. Consider λ ∈ R+, the following supporting cut-off function is defined as

ψλ ∈ C∞0 , 0 ≤ ψλ ≤ 1,
ψλ = 1 in Br−λ, ψλ = 0 in R − Br−λ,

such that ∣∣∣∣∣∂ψλ∂λ

∣∣∣∣∣ =
Cc

λ
.

Multiplying Eq (2.2) by ψλ and integrating over Br × [τ,T ]∫ t

τ

∫
Br

v1
∂Ω

∂s
ψλdyds + A5

∫ t

τ

∫
R

Ωψλdyds = −A4 (1 + A1)
∫ t

τ

∫
R

vm
1
∂2Ω

∂y2 ψλdyds

−
ε

3

∫ t

τ

∫
R

(
∂v1

∂y

)3
∂Ω

∂y
ψ5dyds +

(
M2

Re
+ A2

) ∫ t

τ

∫
R

v1Ωψλdyds + A3

∫ t

τ

∫
R

Ωv2
1ψλdyds.

(2.4)

Based on some results in [28] and [29], for some large r >> r0 > 1 the following holds∫ t

τ

v1ds ≤
∫ t

τ

vm
1 ds ≤ C1(τ)r

2m
m−1 , (2.5)

and ∫ t

τ

v2
1ds ≤ C1(τ)r4. (2.6)

Considering the spatial variable y close to ∂Br, it can be assumed y ∼ r. Then∫ t

τ

(
∂v1

∂y

)3

ds ≤
8m3

m − 1
C3

1(τ)r
3m+3
m−1 . (2.7)

After using the expression (2.4) and after integration in the nonlinear diffusion term, the following
holds

−A4 (1 + A1)
∫ t

τ

∫
Br

vm
1
∂2Ω

∂y2 ψλdyds

≤ A4 (1 + A1) C1(τ)r
2m

m−1

((
∂Ω

∂y
ψλ

)
∂Br

−

∫
Br

∂Ω

∂y
∂ψλ
∂y

dyds
)
.
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Since r >> 1 and since Ω is sufficiently small and regular in the asymptotic approach, it is possible to
choose Ω in such a way ∂Ω

∂y ψλ << 1 in the proximity of the boundary ∂Br. Then, the above expression
becomes

−A4 (1 + A1)
∫ t

τ

∫
Br

vm
1
∂2Ω

∂y2 ψλdyds ≤ −A4 (1 + A1) C1(τ)
∫

Br

r
2m

m−1
∂Ω

∂y
∂ψλ
∂y

dyds

≤ A4 (1 + A1) C1(τ)
∫

Br

r
2m

m−1
∂Ω

∂y
∂ψλ
∂y

dyds.

(2.8)

Based on (2.7), the following integral holds

−
ε

3

∫
Br

∫ t

τ

(
∂v1

∂y

)3
∂Ω

∂y
ψλdyds ≤

8εm3

3(m − 1)3 C3
1(τ)

∫
Br

r
3m+3
m−1 Ω

∂ψλ
∂y

dy. (2.9)

After using the expressions (2.5), (2.6), (2.8) and (2.9) into (2.4), the following holds∫ t

τ

∫
Br

v1
∂Ω

∂s
ψλdyds + A5

∫ t

τ

∫
R

Ωψλdyds ≤ A4 (1 + A1) C1(τ)
∫

Br

r
2m

m−1
∂Ω

∂y
∂ψλ
∂y

dy

+
8εm3

3(m − 1)3 C3
1(τ)

∫
Br

r
3m+3
m−1 Ω

∂ψλ
∂y

dy

+

(
M2

Re
+ A2

)
C1(τ)

∫
Br

r
2m

m−1 Ωψλdy

+ A3C1(τ)
∫

Br

r4Ωψλdy

≤ A4 (1 + A1) C1(τ)
∫

Br

r
2m

m−1
∂Ω

∂y
Cc

λ
dy

+
8εm3

3(m − 1)3 C3
1(τ)

∫
Br

r
3m+3
m−1 Ω

Cc

λ
dy

+

(
M2

Re
+ A2

)
C1(τ)

∫
Br

r
2m

m−1 Ωψλdy

+ A3C1(τ)
∫

Br

r4Ωψλdy,

which implies that∫ t

τ

∫
Br

v1
∂Ω

∂s
dyds + A5

∫ t

τ

∫
R

Ωdyds ≤ A4 (1 + A1) CcC1(τ)
∫

Br

r
m+1
m−1
∂Ω

∂y
dy

+
8εm3

3(m − 1)3 CcC3
1(τ)

∫
Br

r
2m+4
m−1 Ωdy

+

(
M2

Re
+ A2

)
C1(τ)

∫
Br

r
2m

m−1 Ωdy

+ A3C1(τ)
∫

Br

r4Ωdy. (2.10)
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Consider a test function Ω ∈ C∞(R) of the form

Ω(r, s) = e−ls
(
1 + r2

)−α
. (2.11)

Choose α in a way that the expression (2.10) is convergent, therefore∫ t

τ

∫
Br

v1
∂Ω

∂s
dyds + A5

∫ t

τ

∫
R

Ωdyds ≤ 2A4 (1 + A1) CcC1(τ)
∫

Br

e−lsr
2

m−1−2αdy

+
8εm3

3(m − 1)3 CcC3
1(τ)

∫
Br

e−lsr
2m+4
m−1 −2αdy

+

(
M2

Re
+ A2

)
C1(τ)

∫
Br

e−lsr
2m

m−1−2αdy

+ A3C1(τ)
∫

Br

e−lsr4−2αdy. (2.12)

For convergence, take α > m+2
m−1 and r → ∞, so that the expression (2.12) becomes

0 ≤
∫ t

τ

∫
Br

v1
∂Ω

∂s
dyds + A5

∫ t

τ

∫
R

Ωdyds ≤ Υ, (2.13)

where Υ is a suitable value obtained for each Br and is sufficiently small for r → ∞; hence, a finite
value of Υ holds. Note that Ω and v1 are not negative, then the integrals in the expression (2.13) are
finite in τ < s < t ≤ T, which shows that the solution v1 is bounded in R × [0,T ] .

�

Now, it is the aim to show additional regularity results, in particular that ∂v1
∂y is bounded.

Theorem 2.2. Assume that v1(y) is a non-negative solution to Eq (1.5), then ∂v1
∂y is bounded for all

(y, t) ∈ R × [0,T ] .

Proof. Multiplying Eq (1.5) by v1 and applying integration by parts, the following holds

1
2

d
dt

∫
R
|v1|

2 dy = A5

∫
R

v1dy − mA4 (1 + A1)
∫

R
vm−1

1

(
∂v1

∂y

)2

dy

+
ε

3

∫
R

(
∂v1

∂y

)4

dy −
(

M2

Re
+ A2

) ∫
R

v2
1dy − A3

∫
R

v3
1dy,

which implies that∫
R

(
∂v1

∂y

)2  ε3
(
∂v1

∂y

)2

− mA4 (1 + A1) vm−1
1

 dy =
1
2

d
dt

∫
R
|v1|

2 dy − A5

∫
R

v1dy

+

(
M2

Re
+ A2

) ∫
R

v2
1 + A3

∫
R

v3
1dy.

Now, applying the integration done∫ t

0

∫
R

(
∂v1

∂y

)2  ε3
(
∂v1

∂y

)2

− mA4 (1 + A1) vm−1
1

 dyds =
1
2

∫
R
|v1|

2 dy −
∫

R
|v0(y)|2 dy
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−A5

∫ t

0

∫
R

v1dyds +

(
M2

Re
+ A2

) ∫ t

0

∫
R

v2
1dyds + A3

∫
R

v3
1dyds.

(2.14)

The Theorem 2.1 established the bound properties of non-negative solutions, as a consequence the
right hand side of Eq (2.14) is bounded. Choose a finite bounding constant A5 such that∫ t

0

∫
R

(
∂v1

∂y

)2  ε3
(
∂v1

∂y

)2

− mA4 (1 + A1) vm−1
1

 dyds ≤ A5,

leading to conclude on the bound of ∂v1
∂y .

�

The degeneracy introduce by the non-linear diffusion term may lead to the loss of uniqueness of
non-negative solutions. Hence, a result about uniqueness of solutions is required to be shown.

Theorem 2.3. Let us consider two non-negative solutions to the Eq (1.5), v11(y, t) and v12(y, t). Then,
if both solutions have the same initial distribution, uniqueness holds, i.e., v11(y, t) = v12(y, t).

Proof. First of all, define a test function Ψ(y, t) ∈ C∞ (QT ), where QT = R × [0,T ]. The weak
formulations for both solutions v11 and v22 are given as∫

R
v11(y, t)Ψ(y, t)dy =

∫
R

v11(y, 0)Ψ(y, 0)dy +

∫ t

0

∫
R

v11
∂Ψ

∂s
dyds

+ A4 (1 + A1)
∫ t

0

∫
R

vm
11
∂2Ψ

∂y2 dyds + A5

∫ t

0

∫
R

Ψdydt

+
ε

3

∫ t

0

∫
R

(
∂v11

∂y

)4
∂Ψ

∂y
dyds −

(
M2

Re
+ A2

) ∫ t

0

∫
R

v11Ψdydt

− A3

∫ t

0

∫
R

v2
11Ψdydt, (2.15)

and ∫
R

v12(y, t)Ψ(y, t)dy =

∫
R

v12(y, 0)Ψ(y, 0)dy +

∫ t

0

∫
R

v12
∂Ψ

∂s
dyds

+ A4 (1 + A1)
∫ t

0

∫
R

vm
12
∂2Ψ

∂y2 dyds + A5

∫ t

0

∫
R

Ψdydt

+
ε

3

∫ t

0

∫
R

(
∂v12

∂y

)4
∂Ψ

∂y
dyds −

(
M2

Re
+ A2

) ∫ t

0

∫
R

v12Ψdydt

− A3

∫ t

0

∫
R

v2
12Ψdydt. (2.16)

Assume v11 ≥ v12. After substraction, the following holds∫
R

(v11 − v12) (y, t)Ψ(y, t)dy =

∫ t

0

∫
R

(v11 − v12) (y, t)
∂Ψ

∂s
dyds
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+ A4 (1 + A1)
∫ t

0

∫
R

(
vm

11 − vm
12
)

(y, t)
∂2Ψ

∂y2 dyds

+
ε

3

∫ t

0

∫
R

(∂v11

∂y

)4

−

(
∂v12

∂y

)4 ∂Ψ

∂y
dyds

−

(
M2

Re
+ A2

) ∫ t

0

∫
R

(v11 − v12) (y, t)Ψ(y, t)dydt

− A3

∫ t

0

∫
R

(
v2

11 − v2
12

)
(y, t)Ψ(y, t)dydt. (2.17)

For v11(y, t) > v12(y, t), the following holds

vm
11 − vm

12 ≤ mvm−1
11 (v11 − v12) ≤ mCm−1

2 (v11 − v12), (2.18)

where C2 = max(y,t)∈QT (v11). Now, consider(∂v11

∂y

)4

−

(
∂v12

∂y

)4 =

(
∂v11

∂y
−
∂v12

∂y

) (
∂v11

∂y
+
∂v12

∂y

) (∂v11

∂y

)2

+

(
∂v12

∂y

)2
≤ C3

(
∂v11

∂y
−
∂v12

∂y

)
, (2.19)

where C3 is a suitable bounding constant that can be defined supported by the regularity results shown
in Theorem 2.2.

Based on the expressions (2.18) and (2.19), the Eq (2.17) becomes∫
R

(v11 − v12) (y, t)Ψ(y, t)dy =

∫ t

0

∫
R

(v11 − v12) (y, t)
∂Ψ

∂s
dyds

+

(
mCm−1

2 A4 (1 + A1) −
εC3

3

) ∫ t

0

∫
R

(v11 − v12) (y, t)
∂2Ψ

∂y2 dyds

−

(
M2

Re
+ A2 − 2A3C2

) ∫ t

0

∫
R
(v11 − v12)(y, t)Ψdyds. (2.20)

Assume the following smooth shape test function defined as

Ψ(y, s) = e−as
(
1 + y2

)−γ1
, (2.21)

where γ1 can be chosen such that ∫
R

Ψ(y, t)dy < ∞. (2.22)

For simplicity ∫
R

Ψ(y, t)dy = 1. (2.23)

For |y| → ∞, the integral mass shall be null. Then, for R >> 1∫
||y|−R|→∞

Ψ(y, t)dy = 0. (2.24)
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In the asymptotic approximation |y| → ∞

|y|2γ1 |y| → 0, (2.25)

then

γ1 >
1
2
. (2.26)

Now, define ∫
R
ψ(y, s)dy = e−as

∫
R

1(
1 + y2)γ1

dy = e−asχ(y), (2.27)

where

χ(y) =

∫
y→∞

1(
1 + y2)γ1

dy. (2.28)

The integral (2.28) is finite under the condition for γ1 in (2.26).
Now, differentiate (2.21) with respect to y, so that

∂2Ψ

∂y2 =
4γ1(γ1 + 1)y2e−as(

1 + y2)γ1+2 −
2γ1(

1 + y2)γ1+1

≤
4γ1(γ1 + 1)e−as(

1 + y2)γ1

= 4γ1(γ1 + 1)Ψ.

After integration ∫
R

∂2Ψ

∂y2 ≤ C4(γ1)Ψ = C4(γ1)e−asχ(y),

where C4(γ1) = 4γ1(γ1 + 1).
Now, the intention is to assess each of the integrals involved in the right hand side of Eq (2.20)∫ t

0

∫
R

(v11 − v12) (y, t)
∂Ψ

∂s
dyds = −a

∫ t

0

∫
R

(v11 − v12) (y, t)Ψdyds

≤ a
∫ t

0

∫
R

(v11 − v12) (y, t)Ψdyds

≤ a sup |v11 − v12| χ(y)
∫ t

0
e−asds

= a sup |v11 − v12| χ(y)
(
1 − e−as) . (2.29)

(
mCm−1

2 A4 (1 + A1) −
εC3

3

) ∫ t

0

∫
R

(v11 − v12) (y, t)
∂2Ψ

∂y2 dyds

≤

(
mCm−1

2 A4 (1 + A1) −
εC3

3

)
sup |v11 − v12|C4(γ1)χ(y)

∫ t

0

∫
R

Ψ(y, t)dyds
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=

(
mCm−1

2 A4 (1 + A1) −
εC3

3

)
sup |v11 − v12|C4(γ1)χ(y)

∫ t

0
e−asds

=

(
mCm−1

2 A4 (1 + A1) −
εC3

3

)
sup |v11 − v12|C4(γ1)χ(y)

(
1 − e−at) , (2.30)

and similarly

−

(
M2

Re
+ A2 − 2A3C2

) ∫ t

0

∫
R
(v11 − v12)(y, t)Ψdyds

≤

(
M2

Re
+ A2 − 2A3C2

)
sup |v11 − v12| χ(y)

(
1 − e−at) . (2.31)

Combining the assessments in (2.29), (2.30) and (2.31) with the Eq (2.20), the following holds∫
R

(v11 − v12) (y, t)Ψ(y, t)dy ≤ a sup |v11 − v12| χ(y)
(
1 − e−as)

+

(
mCm−1

2 A4 (1 + A1) −
εC3

3

)
sup |v11 − v12|C4(γ1)χ(y)

(
1 − e−at)

+

(
M2

Re
+ A2 − 2A3C2

)
sup |v11 − v12| χ(y)

(
1 − e−at) .

(2.32)

Since |χ(y)| < ∞ and for t > 0, with sup |v11 − v12| → 0∫
R

(v11 − v12) (y, t)Ψ(y, t)dy ≤ 0,

which implies that v11 ≤ v12. This result contradicts the initial assumption v11 ≥ v12. As a consequence,
the only compatible result is to consider v11 = v12, leading to conclude on solutions uniqueness.

�

3. Travelling waves analysis

The travelling wave profiles of solutions are given as per the following definitions: v1(y, t) = k(ζ),
where ζ = y − a1t, a1 denotes travelling wave speed and the profile k : R → (0,∞) belongs to L∞(R).
The Eq (1.5) is then transformed in terms of the travelling wave profile as

−a1k′ = A5 + A4 (1 + A1) (km)′′ − εk′k′′ −
(

M2

Re
+ A2

)
k − A3k2. (3.1)

Let us introduce the following new variables

Y = k(ζ), Z = (km)′ , (3.2)

such that the Eq (3.1) can be analyzed in a phase space driven by the following set of equations

Y ′ =
1
m

Y1−mZ
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Z′ =
m3

[
−

a1
m Y1−mZ +

ε(1−m)
m3 Y2−3mZ3 − A5 +

(
M2

Re
+ A2

)
Y + A3Y2

]
m3 + A4 (1 + A1) − εY3−3mZ2 . (3.3)

Making Y ′ = 0 and Z′ = 0 to determine the critical points, the following is obtained

Y2 +

(
M2

A3Re
+

A2

A3

)
Y −

A5

A3
= 0. (3.4)

with solutions

Y1 = −
1
2

(
M2

Re
+

A2

A3

)
+

1
2

√(
M2

A3Re
+

A2

A3

)2

+
4A5

A3
(3.5)

and

Y2 = −
1
2

(
M2

Re
+

A2

A3

)
−

1
2

√(
M2

A3Re
+

A2

A3

)2

+
4A5

A3
. (3.6)

Consequently, the system critical points are given by (Y1, 0) and (Y2, 0). The next intention is to
characterize such critical points together with the bundles of orbits in their proximity.

3.1. Geometric perturbation theory

The Geometric perturbation theory is used to show the asymptotic behavior of specifically defined
manifolds in the proximity of the system critical points. Firstly, assume the following manifold I0

defined as

I0 = [ (Y,Z) / Y ′ =
1
m

Y1−mZ;

Z′ =
m3

[
−

a1
m Y1−mZ +

ε(1−m)
m3 Y2−3mZ3 − A5 +

(
M2

Re
+ A2

)
Y + A3Y2

]
m3 + A4 (1 + A1) − εY3−3mZ2 ],

with the system critical points (Y1, 0) and (Y2, 0).
A perturbed manifold Iβ close to I0 in the critical point (Y1, 0) is defined as

Iβ =
[
(Y,Z) / Y ′ = βZ; Z′ = C5β (Y − Y2)

]
, (3.7)

where β denotes a perturbation parameter close to the equilibrium (Y1, 0) and C5 is a suitable constant
obtained after root factorization. For the coming assessments, assume Y3 = Y − Y2.

The intention is to apply the Fenichel invariant manifold theorem [31] as formulated in [32]
and [33]. To this end, it shall be shown that I0 is a normally hyperbolic manifold, i.e., the eigenvalues
associated to I0 in the linear frame proximal to the critical points, and transversal to the tangent space,
have non-zero real part. This is shown based on the following equivalent linear flow associated to Iβ.

[
Y ′3
Z′

]
=

[
0 β

C5β 0

] [
Y3

Z

]
.
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The related eigenvalues are both real. Consequently, I0 is a hyperbolic manifold. Now, it is shown that
the manifold Iβ is locally invariant under the flow (3.3), so that the manifold I0 can be shown as an
asymptotic approach to Iβ. For this basis, consider the functions

ψI0 =
m3

[
−

a1
m Y1−mZ +

ε(1−m)
m3 Y2−3mZ3 − A5 +

(
M2

Re
+ A2

)
Y + A3Y2

]
m3 + A4 (1 + A1) − εY3−3mZ2 ,

ψIβ = C5βY3,

which are Ci (R × [0, δ1]) , i ≥ 1, in the proximity of the critical point (Y1, 0) . In this case, δ1 is
determined based on the following flows that are considered to be measurable a.e. in R∥∥∥ψIβ − ψI0

∥∥∥ ≤ ‖C5βY3 − ε0‖ ≤ C5β ‖Y3‖ ≤ δ1β,

where ε0 is the infinitesimal distance between the critical point (Y1, 0) and the flow ψI0 , which exists
given the normal hyperbolic condition of I0. As the solutions have been shown to be bounded, it is
possible to conclude on a finite δ1. So the distance between the manifolds holds the normal hyperbolic
condition for δ1 ∈ (0,∞) and β sufficiently small in the proximity of the critical point (Y1, 0) .

Now, consider a perturbed manifold Iγ associated to I0, but for the critical point (Y2, 0) and defined
as

Iγ =
[
Y,Z/Y ′ = γZ; Z′ = C6γ (Y − Y1)

]
, (3.8)

where γ denotes a perturbation parameter in the proximity of the equilibrium (Y2, 0) and C6 is a suitable
constant obtained after root factorization. Suppose Y4 = Y − Y1, then the following flow associated to
Iγ is given by

[
Y ′4
Z′

]
=

[
0 γ

C6γ 0

] [
Y4

Z

]
.

The associated eigenvalues are both real, leading to state that I0 is, indeed, a hyperbolic manifold. Now,
it is shown that the manifold Iγ is locally invariant under the flow (3.3), so that the manifold I0 can be
shown as an asymptotic approach to Iγ. For this basis consider the functions

ψI0 =
m3

[
−

a1
m Y1−mZ +

ε(1−m)
m3 Y2−3mZ3 − A5 +

(
M2

Re
+ A2

)
Y + A3Y2

]
m3 + A4 (1 + A1) − εY3−3mZ2 ,

ψIγ = C6γY4,

which are Ci (R × [0, δ1]) , i ≥ 1, in the proximity of the critical point (Y2, 0) . In this case, δ1 is
determined based on the following flows that are considered to be measurable a.e. in R :∥∥∥ψIγ − ψI0

∥∥∥ ≤ ‖C6γY4 − ε1‖ ≤ C6γ ‖Y4‖ ≤ δ1β,

where ε1 is the infinitesimal distance between the critical point (Y2, 0) and the flow ψI0 , which exists
given the normal hyperbolic condition of I0. As the solutions are bounded, δ1 is finite. Hence, the
distance between the manifolds holds the normal hyperbolic condition for δ1 ∈ (0,∞) and γ sufficiently
small, in the proximity of the critical point (Y2, 0) .
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3.2. Construction of travelling wave profiles

Since the manifold I0 has been shown to satisfy the normal hyperbolic condition under the
flow (3.3), it is possible to obtain asymptotic profiles operating in the linearized flows Iβ and Iγ.

For this purpose, consider the Eq (3.3) such that a family of trajectories in the phase plane (Y,Z) can
be obtained by

dZ
dY

=
m4

[
−

a1
m Y1−mZ +

ε(1−m)
m3 Y2−3mZ3 − A5 +

(
M2

Re
+ A2

)
Y + A3Y2

]
Y1−mZ

[
m3 + A4 (1 + A1) − εY3−3mZ2] = H(Y,Z).

(3.9)

For Y � 1, the function H > 0 while for 0 < Y � 1, the function H < 0. In addition, as the function
H is singular for Z = 0, a trajectory in the proximity of the critical condition (Y1, 0) shall require

−
a1

m
Y1−m

1 Z1 +
ε(1 − m)

m3 Y2−3m
1 Z3

1 − A5 +

(
M2

Re
+ A2

)
Y1 + A3Y2

1 = 0. (3.10)

After using the Eq (3.3) into Eq (3.10), the following holds

ε(1 − m)
(
Y ′1

)3
− a1Y1Y ′1 − A5Y1 +

(
M2

Re
+ A2

)
Y2

1 + A3Y3
1 = 0. (3.11)

Typically, the flow velocity in a porous medium permits the hypothesis U0 � 1. In addition, in the
assumption of a sufficiently large characteristic length, L � 1, the parameter ε � 1 (see (1.3)) for
typical fluid densities. As a consequence, such ε is considered to construct a solution as an asymptotic
expansion in terms of the mentioned parameter ε, understood as a perturbation and as given in (1.3).
The selection of this parameter permits to account for a physical nuisance as ε is related with some of
the constants involved in the fluid problem. Then, the following expansion holds for suitable regular
functions Y1 j, j = 0, 1, 2...

Y1 = Y10 + εY11 + ε2Y12 + ... (3.12)

After using (3.12) into (3.11), the following holds

ε(1 − m)
(
Y ′10 + εY ′11 + ε2Y ′12 + ...

)3
= a1

(
Y10 + εY11 + ε2Y12 + ...

) (
Y ′10 + εY ′11 + ε2Y ′12 + ...

)
+ A5

(
Y10 + εY11 + ε2Y12 + ...

)
−

(
M2

Re
+ A2

) (
Y10 + εY11 + ε2Y12 + ...

)2

− A3

(
Y10 + εY11 + ε2Y12 + ...

)3
. (3.13)

Comparing the terms of orders ε0 and ε1

Y ′10 = −
A5

a1
+

(
M2

Rea1
+

A2

a1

)
Y10 +

A3

a1
(Y10)2 , (3.14)
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and

Y ′11 +

(
Y ′10

Y10
+

A5

a1Y10
−

2M2

Rea1
+

2A2

a1
−

3A3Y10

a1

)
Y11 =

(1 − m)
(
Y ′10

)3

a1Y10
. (3.15)

The standard resolution of (3.14) leads to

Y10 =
1

1 − e−
2A3b

a1
ζ

[ ( M2

2A3Re
+

A2

2A3

)
+

√(
M2

2A3Re
+

A2

2A3

)2

+
A5

A3

+


(

M2

2A3Re
+

A2

2A3

)
−

√(
M2

2A3Re
+

A2

2A3

)2

+
A5

A3

 e−
2A3

√(
M2

2A3Re
+

A2
2A3

)2
+

A5
A3

a1
ζ
]
.

(3.16)

Differentiate (3.16) to get

Y ′10 −

(
M2

A3Re
+ A2

A3

) 2A3

√(
M2

2A3Re
+

A2
2A3

)2
+

A5
A3

a1
e−

2A3

√(
M2

2A3Re
+

A2
2A3

)2
+

A5
A3

a1
ζ1 − e−

2A3

√(
M2

2A3Re
+

A2
2A3

)2
+

A5
A3

a1
ζ


2 . (3.17)

Upon substitution of (3.16) and (3.17) in (3.15), it holds

Y ′11 +

− 2abe−bζ(
1 − e−bζ) (c + de−bζ) +

A5

(
1 − e−bζ

)
a1

(
c + de−bζ) + f −

3A3

(
c + de−bζ

)
a1

(
1 − e−bζ)

 Y11

= −
(1 − m)8a3b3e−3bζ

a1
(
c + de−bζ) (1 − e−bζ)5 , (3.18)

where a =
(

M2

2A3Re
+ A2

2A3

)
, b =

2A3

√(
M2

2A3Re
+

A2
2A3

)2
+

A5
A3

a1
, c =

(
M2

2A3Re
+ A2

2A3

)
+

√(
M2

2A3Re
+ A2

2A3

)2
+

A5
A3
,

d =
(

M2

2A3Re
+ A2

2A3

)
−

√(
M2

2A3Re
+ A2

2A3

)2
+

A5
A3

and f = − 2M2

Rea1
+ 2A2

a1
.

After solving the Eq (3.18)

Y11 =

(
1 − e−bζ

)C3(
c + de−bζ)C1 eC2ζ

[
cC1−1e(C2−1)ζ

C2 − 3
+

cC1[cC3 + C1d − d + 5]e(C2−b−3)ζ

C2 − b − 3
+ ...

]
, (3.19)

where C1 = 2a
d−c −

2A3A5(c+d)
a1bcd , C2 =

A5
c +

3(2A3a+a1b)
2a1

+ f and C3 = 2a
d−c −

12aA3
a2

1b .

Introducing the expressions (3.16) and (3.19) into (3.12), the following holds

Y1 =
1

1 − e−
2A3b

a1
ζ

[ ( M2

2A3Re
+

A2

2A3

)
+

√(
M2

2A3Re
+

A2

2A3

)2

+
A5

A3
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+


(

M2

2A3Re
+

A2

2A3

)
−

√(
M2

2A3Re
+

A2

2A3

)2

+
A5

A3

 e−
2A3

√(
M2

2A3Re
+

A2
2A3

)2
+

A5
A3

a1
ζ
]
.

+
ε
(
1 − e−bζ

)C3(
c + de−bζ)C1 eC2ζ

[
cC1−1e(C2−1)ζ

C2 − 3
+

cC1[cC3 + C1d − d + 5]e(C2−b−3)ζ

C2 − b − 3
+ ...

]
+ O(ε2),

(3.20)

which implies that

v1(y, t) =
1

1 − e−
2A3b

a1
(y−a1t)

[ ( M2

2A3Re
+

A2

2A3

)
+

√(
M2

2A3Re
+

A2

2A3

)2

+
A5

A3

+


(

M2

2A3Re
+

A2

2A3

)
−

√(
M2

2A3Re
+

A2

2A3

)2

+
A5

A3

 e−
2A3

√(
M2

2A3Re
+

A2
2A3

)2
+

A5
A3

a1
(y−a1t)

]

+
ε
(
1 − e−b(y−a1t)

)C3(
c + de−b(y−a1t))C1 eC2(y−a1t)

[cC1−1e(C2−1)(y−a1t)

C2 − 3
+

cC1[cC3 + C1d − d + 5]e(C2−b−3)(y−a1t)

C2 − b − 3

+ ...
]

+ O(ε2). (3.21)

The Eq (3.21) shows the existence of an exponential decaying under the travelling wave profile
asymptotic expansion. This results is not trivial in this case given the degeneracy in the diffusivity
under the non-linear diffusion of porous medium kind.

Now, the intention is to show that the defined supporting manifold Iβ preserves the exponential
behavior shown in the proximity of the associated critical point. For this purpose, consider the
expression (3.7), so that

dZ
dY

=
C5(Y − Y2)

Z
. (3.22)

After solving (3.22)

Z = −
√

C5(Y − Y2). (3.23)

Introducing the expression (3.7) into (3.23), the following holds

Y ′ = −β
√

C5(Y − Y2), (3.24)

such that a solution is

Y = Y2 + e−β
√

C5ζ , (3.25)

which implies that

v1(y, t) =
1
2

(
M2

Re
+

A2

A3

)
+

1
2

√(
M2

A3Re
+

A2

A3

)2

+
4A5

A3
+ e−β

√
C5(y−a1t) (3.26)
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This last expression shows the conservation of the exponential profile in the proximity of the critical
point kept by the asymptotic manifold Iβ.

The existence and exact assessments of an orbit in the proximity of the critical point (Y2, 0) follows
the same procedure as discussed above for the point (Y1, 0). Indeed, a trajectory in the phase plane is
given as

ε(1 − m)
(
Y ′2

)3
− a1Y2Y ′2 − A5Y2 +

(
M2

Re
+ A2

)
Y2

2 + A3Y3
2 = 0. (3.27)

Solving the Eq (3.27) leads to obtain

Y2 =
1

1 − e−
2A3b

a1
ζ

[ ( M2

2A3Re
+

A2

2A3

)
+

√(
M2

2A3Re
+

A2

2A3

)2

+
A5

A3

+


(

M2

2A3Re
+

A2

2A3

)
−

√(
M2

2A3Re
+

A2

2A3

)2

+
A5

A3

 e−
2A3

√(
M2

2A3Re
+

A2
2A3

)2
+

A5
A3

a1
ζ
]

+
ε
(
1 − e−bζ

)C3(
c + de−bζ)C1 eC2ζ

[
cC1−1e(C2−1)ζ

C2 − 3
+

cC1[cC3 + C1d − d + 5]e(C2−b−3)ζ

C2 − b − 3
+ ...

]
+ O(ε2),

(3.28)

where a =
(

M2

2A3Re
+ A2

2A3

)
, b =

2A3

√(
M2

2A3Re
+

A2
2A3

)2
+

A5
A3

a1
,

c =
(

M2

2A3Re
+ A2

2A3

)
+

√(
M2

2A3Re
+ A2

2A3

)2
+

A5
A3
,

d =
(

M2

2A3Re
+ A2

2A3

)
−

√(
M2

2A3Re
+ A2

2A3

)2
+

A5
A3

,

f = − 2M2

Rea1
+ 2A2

a1
, C1 = 2a

d−c −
2A3A5(c+d)

a1bcd , C2 =
A5
c +

3(2A3a+a1b)
2a1

+ f and C3 = 2a
d−c −

12aA3
a2

1b .

As a consequence, a solution is given by the following expression

v1(y, t) =
1

1 − e−
2A3b

a1
(y−a1t)

[ ( M2

2A3Re
+

A2

2A3

)
+

√(
M2

2A3Re
+

A2

2A3

)2

+
A5

A3

+


(

M2

2A3Re
+

A2

2A3

)
−

√(
M2

2A3Re
+

A2

2A3

)2

+
A5

A3

 e−
2A3

√(
M2

2A3Re
+

A2
2A3

)2
+

A5
A3

a1
(y−a1t)

]

+
ε
(
1 − e−b(y−a1t)

)C3(
c + de−b(y−a1t))C1 eC2(y−a1t)

[cC1−1e(C2−1)(y−a1t)

C2 − 3
+

cC1[cC3 + C1d − d + 5]e(C2−b−3)(y−a1t)

C2 − b − 3

+ ...
]

+ O(ε2). (3.29)

Again, the intention now is to show that the defined supporting manifold Iγ preserves the exponential
behavior in the proximity of the critical point (Y2, 0). For this purpose, consider the expression (3.8) so
that

dZ
dY

=
C5(Y − Y1)

Z
. (3.30)
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After solving (3.30), the following holds

Z = −
√

C5(Y − Y1). (3.31)

Introducing the expression (3.8) into (3.31)

Y ′1 = −γ
√

C6(Y − Y1), (3.32)

such that a solution is given by

Y = Y1 + e−γ
√

C6ζ , (3.33)

which implies that

v1(y, t) = −
1
2

(
M2

Re
+

A2

A3

)
+

1
2

√(
M2

A3Re
+

A2

A3

)2

+
4A5

A3
+ e−γ

√
C6(y−a1t). (3.34)

This last expression permits to show the conservation of the exponential profile in the proximity of the
critical point under study by the asymptotic manifold Iγ.

4. Numerical validation

According to expressions (3.25) and (3.33), the analytical assessments have provided an exponential
tail in the proximity of the system critical points. To validate the assessments, it is the intention
to compare such analytical exponential tail with a numerical simulation of the Eq (2.1). Note that
the numerical exploration is not intended to introduce a wide parametrical analysis with each of the
involved fluid constants, on the contrary the objective is to provide evidences on the accuracy of the
analytical process followed. In addition, for the validation exercise the expression (3.33) has been
considered, under the form Y − Y1 = e−γ

√
C6ζ . The numerical assessment is executed with the bvp4c in

Matlab (refer to [34] for further details on this software tool).
The Re number has been considered as a free parameter to establish the accuracy of solutions. In

addition, the following particular values in the other fluid constant have been considered for the sake
of simplicity, but with no impact in the conclusions

0 < A5 � 1,U0 = 1, A1 = 1, 0 < ε � 1,M = 1, ν = 1,K1 = 1,K2 = 1. (4.1)

Note that L = 1000 as the domain of integration has been considered as (−500, 500). This domain
has been selected after some numerical trials and provides an efficient compromise between low impact
of the collocation methods at the borders and a moderate computational time. In addition, the global
absolute error allowed is of 10−4.

Note that the Re in porous media is typically low, hence the considered values are Re = 1; 100.
As it can be noticed from Figures 1 and 2, the analytical asymptotic solution (3.33) based on the

geometric perturbation theory and the numerical solution to (2.1) fit an exponential behaviour with an
order deficiency in the decreasing rate. Nonetheless, solutions are very close for increasing values of ζ,
this is in the asymptotic approach where the analytical solution has been obtained. This is not a trivial
conclusion for the degenerate diffusion given in (2.1) and represents a finding to remark.
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Figure 1. Solutions for Re = 1. The left hand figure is a global representation. Both
solutions preserves the exponential behaviour. The picture on the right represents a zoom in
the interval [3, 5]. The reader can observe a certain order deficiency between the analytical
and numerical assessments. Nonetheless, both solutions are close, the distance is of the order
10−7.

Figure 2. Idem for Re = 100. For ζ ≥ 2, the distance between the analytical and numerical
solution is of order 10−4.

AIMS Mathematics Volume 7, Issue 8, 15212–15233.
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5. Conclusions

The set of assessments and discussions presented in this paper have provided evidences on the
regularity of solutions to a kind of fluid flow with degenerate diffusivity and formulated with Darcy-
Forchheimer porosity principles and Eyring-Powell viscosity terms. Afterwards, asymptotic travelling
waves solutions have been explored based on a perturbation technique. Particularly, the Geometric
Perturbation Theory has shown that an exponential decreasing rate holds even when the equation
discussed presents a degenerate diffusivity. Furthermore, two linearized manifolds in the proximity of
the critical points have been shown to hold and an exponential behaviour has been obtained accordingly.
Eventually, a numerical exercise has been introduced to account for the validation of the analytical
assessments done.
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