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1. Introduction

Although there is a large body of literature on limit cycles, a very limited number of studies are
devoted to their exact and explicit formula. This fact is not surprising since the problem is to find
solutions of nonlinear differential equations that are in general not explicitly integrable. A salient
example is the Van der Pol equation [1, 2]

ẍ + β(x2 − 1)ẋ + x = 0, (1.1)

where overdot means differentiation with respect to time, and β is a constant. The exact solution is
currently unknown. The Van der Pol equation belongs to the class of Lienard equation

ẍ + f (x)ẋ + g(x) = 0, (1.2)

where f (x) and g(x) are functions of x. The conditions for the existence of a stable and unique limit
cycle for Eq (1.1) primarily [1–3] require that g(x) be odd, g(0) = 0, xg(x) > 0 for | x |> 0 and f (x) be
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even and f (0) < 0, are well known for many years. The periodic solutions of a more generalized form
of Eq (1.2) in the form

ẍ + h(x, ẋ)ẋ + g(x) = 0, (1.3)

called the mixed Lienard-type differential equation or Lienard-Levinson-Smith system [3, 4], where
h(x, ẋ) is function of its arguments, are known to be difficult to exactly calculate. Accordingly, this type
of equation is mainly investigated using qualitative theory of differential equations and approximate
analytical techniques [1–7]. The conditions for the existence of at least one limit cycle for Eq (1.3)
primarily require [1–4, 6, 7] as in the previous case, that
(i) g(0) = 0, xg(x) > 0 when | x |> 0,
(ii) h(0, 0) < 0,
(iii) there exists x0 > 0 such that h(x, ẋ) ≥ 0 for | x |≥ x0.
The conditions g(0) = 0, xg(x) > 0 for | x |> 0 ensure the existence of a single equilibrium point at the
origin [1]. Equation (1.3) or its equivalent planar dynamical system

ẋ = y, ẏ = −yh(x, y) − g(x), (1.4)

has been additionally subject to a rich literature for counting the maximum number of limit cycles
when h(x, y) and g(x) are polynomials using averaging theory in connection with the second part of the
Hilbert 16th problem [5]. The hybrid Rayleigh-Van der Pol oscillator

ẍ + β(ẋ2 + x2 − 1)ẋ + x = 0, (1.5)

is the typical example of equations of the form (1.3), where β is a constant. Equation (1.5) has the exact
harmonic solution cost and exhibits in the (x, y = ẋ) phase plane the algebraic limit cycle of degree 2
given by

x2 + y2 − 1 = 0. (1.6)

However, we have seen now in the literature that in many cases, qualitative and approximation
theories of nonlinear differential equations are not satisfactory to predict the existence of periodic and
nonperiodic solutions. Thus, the search for differential equations with exact and explicit solutions is
of utmost importance. In other words, the knowledge of exact and explicit solutions is an
irreplaceable necessity for practical applications. Even when it is sometimes possible to calculate an
exact periodic solution, this often consists of a complicated expression in terms of special functions
that are not always easy to implement in practical applications. Conversely, the mathematical
properties of sinusoidal functions are well known and well mastered for their implementation in
engineering and industrial practices. Therefore, one can understand the vital importance of a
nonlinear differential equation with an exact sinusoidal solution. On the other hand, one can say that
nonlinear equations having many terms with the exact harmonic periodic solution are not extensively
investigated in the literature. Thus, it is necessary to investigate in a significant and intensive way
such equations that can be exploited for numerical simulation of oscillations in nonlinear dynamic
systems and test of the effectiveness and reliability of numerical methods implemented in the ODE
solvers. The present study fails within this perspective. Now, note that the problem of finding exact
algebraic limit cycles for equations of type (1.3) has been considered in recent papers [8–11]. The
works additionally show the existence of classes of polynomial and nonpolynomial differential
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equations that can exhibit many equations with exact algebraic limit cycles [8–11]. In [12], the
authors proved that the equation

ẍ + x(ẋ2 + x2 − 1)ẋ + x = 0, (1.7)

has the exact harmonic periodic solution. In this regard, the question is to ask if one can modify
Eq (1.7) to build interesting classes of equations that can generate many equations with exact
harmonic periodic solutions and limit cycles. From this perspective, the objective is to formulate
some classes of polynomial differential equations of type (1.3) that can generate many conservative
and nonconservative equations with exact harmonic solutions and algebraic limit cycles by
conveniently modifying Eq (1.7). Therefore, we can prove the following result.

Theorem 1.1. Consider the equation

ẍ + x

ẋ2 + ẋ
n∑
ℓ=0

x2ℓ + x2 − 1

 ẋ + x2n+3 = 0, (1.8)

where n ≥ 0 is an integer. Then, Eq (1.8) has the exact harmonic solution

x(t) = cost, (1.9)

for n = 0, 1, 2, ... .

Remark 1. Let

h(x, ẋ) = x

ẋ2 + ẋ
n∑
ℓ=0

x2ℓ + x2 − 1

 . (1.10)

Then, h(0, 0) = 0, and Eq (1.8) does not satisfy the classical theorem for the existence of at least one
periodic solution for n = 0, 1, 2, .... Figures 1–3 show the phase portraits and vector field of Eq (1.8)
exhibiting closed trajectories corresponding to periodic solutions when n = 0, 1 and 2, respectively.
We can also prove the following theorem.

Figure 1. Phase portrait and vector field of Eq (1.8) for n = 0.
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Figure 2. Phase portrait and vector field of Eq (1.8) for n = 1.

Figure 3. Phase portrait and vector field of Eq (1.8) for n = 2.

Theorem 1.2. Consider the equation

ẍ + (xẋ2 + ẋ + x3 − x)ẋ + x + x2 − 1 = 0. (1.11)

Then, Eq (1.11) has the exact harmonic solution

x(t) = cost. (1.12)

Remark 2. Let
h(x, ẋ) = xẋ2 + ẋ + x3 − x, (1.13)

and
g(x) = x + x2 − 1. (1.14)

Then, h(0, 0) = 0, and condition (ii) is not satisfied. g(0) = −1 , 0 and g(x) is not odd and condition
(i) is not satisfied. Thus Eq (1.11) does not satisfy the Lienard-Levinson-Smith theorem [1–4, 6, 7] for
the existence of at least one limit cycle. But, Figure 4 exhibits the phase portrait and vector field of
Eq (1.11) showing the existence of an algebraic limit cycle of degree 2 given by

x2 + y2 − 1 = 0. (1.15)
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Figure 4. Phase portrait and vector field of Eq (1.11).

Consider now the following obtained result.

Theorem 1.3. Let

ẍ +

xẋ2 + ẋ

1 + n∑
ℓ=0

x2ℓ+1

 + x3 − x

 ẋ + x2n+3 + x2 − 1 = 0, (1.16)

where n ≥ 0 is an integer. Then, Eq (1.16) has the exact harmonic solution

x(t) = cost, (1.17)

for n = 0, 1, 2, ... .

Remark 3. Let

h(x, ẋ) =

xẋ2 + ẋ

1 + n∑
ℓ=0

x2ℓ+1

 + x3 − x

 , (1.18)

and

g(x) = x2n+3 + x2 − 1. (1.19)

Then, h(0, 0) = 0, is not negative, and condition (ii) is not satisfied. g(x) is not odd, and g(0) = −1 , 0 ,
and condition (i) is not satisfied. Consequently, Eq (1.16) does not satisfy the Lienard-Levinson-Smith
theorem for the existence of at least one limit cycle. However, Figures 5–7 show the phase portraits and
vector field of Eq (1.16) exhibiting algebraic limit cycles of degree 2 given by Eq (1.15) for n = 0, 1
and 2.
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Figure 5. Phase portrait and vector field of Eq (1.16) for n = 0.

Figure 6. Phase portrait and vector field of Eq (1.16) for n = 1.

Figure 7. Phase portrait and vector field of Eq (1.16) for n = 2.

Theorem 1.4. Consider the equation

ẍ +

(x + 1)ẋ2 + ẋ
n∑
ℓ=0

x2ℓ+1 + x3 + x2 − x − 1

 ẋ + x2n+3 = 0, (1.20)
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where n ≥ 0 is an integer. Then, Eq (1.20) has the exact harmonic solution

x(t) = cost, (1.21)

for n = 0, 1, 2, ... .

Remark 4. It is easy to note that Eq (1.20) does not satisfy the Lienard-Levinson-Smith theorem [1–
4, 6, 7]. In this regard let

h(x, ẋ) =

(x + 1)ẋ2 + ẋ
n∑
ℓ=0

x2ℓ+1 + x3 + x2 − x − 1

 .
Then h(x, ẋ) ⪰ 0 for ẋx

∑n
ℓ=0 x2ℓ ⪰ 0 or ẋx ⪰ 0 that is for ±x

√
1 − x2 ⪰ 0 under Theorem 1.4 that is

under x2 + y2 − 1 = 0, with y = ẋ, such that x0 = 0, and condition (iii) is not satisfied. Thus Eq (1.20)
does not satisfy the Lienard-Levinson-Smith theorem. Figures 8–10 exhibit the phase portraits and
vector field of Eq (1.20) showing the existence of algebraic limit cycles of degree 2 given by Eq (1.15)
for n = 0, 1 and 2, respectively.

Figure 8. Phase portrait and vector field of Eq (1.20) for n = 0.

Figure 9. Phase portrait and vector field of Eq (1.20) for n = 1.
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Figure 10. Phase portrait and vector field of Eq (1.20) for n = 2.

Let us consider the following theorems.

Theorem 1.5. Let

ẍ +

xẋ2 + x3 − x + ẋ

1 + n∑
l=0

x2l+2

 ẋ + x2n+4 + x − 1 = 0, (1.22)

where n ⪰ 0 is an integer. Then, Eq (1.22) posseses the exact harmonic solution

x(t) = cos t. (1.23)

Remark 5. Equation (1.22) is of type (1.3) such that

h(x, ẋ) = xẋ2 + x3 − x + ẋ

1 + n∑
l=0

x2l+2

 , (1.24)

and

g(x) = x2n+4 + x − 1. (1.25)

Since h(0, 0) = 0 is not negative and g(x) is not odd, with g(0) = −1 , 0, therefore conditions (ii) and
(i) are not respectively satisfied by h(x, ẋ) and g(x). In this way, Eq (1.22) does not satisfy the classical
theorems for the existence of at least one periodic solution. As an example of illustration, Eq (1.22)
can be reduced to

ẍ +
[
xẋ2 + x3 − x + ẋ

(
1 + x2

)]
ẋ + x4 + x − 1 = 0, (1.26)

when n = 0. Figure 11 shows the phase paths and vector field of Eq (1.26).
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Figure 11. Phase portrait and vector field of Eq (1.22) for n = 0.

Theorem 1.6. Let us consider

ẍ +

xẋ2 + x3 − x + ẋ

1 − ẋ2n+2 − x2
n∑

l=0

ẋ2l

 ẋ + x = 0, (1.27)

where n ⪰ 0 is an integer. Then, Eq (1.27) admits the exact and explicit harmonic solution

x(t) = cos t. (1.28)

Remark 6. Equation (1.27) has the form of the mixed Lienard-type Eq (1.3) where

h(x, ẋ) = xẋ2 + x3 − x + ẋ

1 − ẋ2n+2 − x2
n∑

l=0

ẋ2l

 , (1.29)

such that h(0, 0) = 0 is not negative. Thus condition (ii) is not satisfied and Eq (1.27) does not satisfy
the classical theorems for the existence of at least one periodic solution. For example, when n = 0,
Eq (1.27) leads to

ẍ +
[
xẋ2 + x3 − x + ẋ

(
1 − ẋ2 − x2

)]
ẋ + x = 0. (1.30)

Figure 12 exhibits the phase portrait and vector field of Eq (1.30).

Figure 12. Phase portrait and vector field of Eq (1.27) for n = 0.
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Theorem 1.7. Consider the equation

ẍ +

x ẋ2 + x2 − 1 + x
n∑

l=0

ẋ2l+1

 + ẋ2n+3

 ẋ + x2 + x − 1 = 0, (1.31)

where n ⪰ 0 is an integer. Then, Eq (1.31) has the exact solution

x(t) = cos t. (1.32)

Remark 7. From Eq (1.31), according to Eq (1.3), we can have

h(x, ẋ) = x

ẋ2 + x2 − 1 + x
n∑

l=0

ẋ2l+1

 + ẋ2n+3, (1.33)

and
g(x) = x2 + x − 1. (1.34)

Thus h(0, 0) = 0 is not negative and g(0) = −1. Additionally g(x) is not odd. In this way, Eq (1.31)
does not satisfy the classical theorems for the existence of at least one periodic solution. We can reduce
Eq (1.31) to

ẍ + [x(ẋ2 + x2 − 1 + xẋ) + ẋ3]ẋ + x2 + x − 1 = 0, (1.35)

when n = 0 as an example. The phase portrait and vector field of Eq (1.35) is represented in Figure 13.

Figure 13. Phase portrait and vector field of Eq (1.31) for n = 0.

Theorem 1.8. Let us consider

ẍ +

ẋ2 + x2 − 1 + ẋ2n+3 + x2
n∑

l=0

ẋ2l+1

 ẋ + x2 + x − 1 = 0, (1.36)

where n ⪰ 0 is an integer. Then, Eq (1.36) possesses the exact sinusoidal solution

x(t) = cos t. (1.37)
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Remark 8. From Eq (1.36), we can write

h(x, ẋ) = ẋ2 + x2 − 1 + ẋ2n+3 + x2
n∑

l=0

ẋ2l+1, (1.38)

and

g(x) = x2 + x − 1. (1.39)

It is obvious that Eq (1.36) does not satisfy the classical theorems for the existence of at least one
periodic solution since g(0) = −1 , 0 and g(x) is not odd. Figure 14 exhibits the phase portrait and
vector field of Eq (1.36) for n = 0.

Figure 14. Phase portrait and vector field of Eq (1.36) for n = 0.

In the sequel of this work, we prove the above theorems. Therefore, we prove Theorem 1.1 (section
2), Theorem 1.2 (section 3), Theorem 1.3 (section 4) and Theorem 1.4 (section 5). Finally, we prove
Theorem 1.5 (section 6), Theorem 1.6 (section 7), Theorem 1.7 (section 8) and Theorem 1.8 (section
9) and give a conclusion for the work.

2. Proof of Theorem 1.1

From Eq (1.9)

ẋ(t) = − sin t, (2.1)

and

ẍ(t) = −cost. (2.2)

Substituting Eqs (1.9), (2.1) and (2.2) into Eq (1.8) and taking into account

cos2t + sin2t = 1, (2.3)
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leads to

ẍ + x(ẋ2 + ẋ
n∑

l=0

x2l + x2 − 1)ẋ + x2n+3

= − cost − costsint(sin2t − sint
n∑

l=0

cos2lt + cos2t − 1) + cos2n+3t

= − cost + costsin2t
n∑

l=0

cos2lt + cos2n+3t

= − cost + cost(1 − cos2t)
n∑

l=0

cos2lt + cos2n+3t

= − cost + cost
n∑

l=0

cos2lt − cos3t
n∑

l=0

cos2lt + cos2n+3t

= − cost + cost(1 +
n∑

l=1

cos2lt) − cos3t
n∑

l=0

cos2lt + cos2n+3t

=cost
n∑

l=1

cos2lt −
n∑

l=1

cos2l+1t − cos2n+3t + cos2n+3t

=0,

(2.4)

proving Theorem 1.1. In the following, we prove Theorem 1.2.

3. Proof of Theorem 1.2

Consider Eqs (1.9), (2.1)–(2.3). Then, Eq (1.11) involves

− cost + [(cost)sin2t − sint + cos3t − cost](−sint) + cost + cos2t − 1
= − cost + [(cost)(1 − cos2t) − sint + cos3t − cost](−sint) + cost + cos2t − 1
= − cost + [cost − cos3t − sint + cos3t − cost](−sint) + cost + cos2t − 1
= − cost + sin2t + cost + cos2t − 1
= − cost + 1 − cos2t + cost + cos2t − 1
=0.

(3.1)

Therefore, the proof of Theorem 1.2 is performed.

4. Proof of Theorem 1.3

Applying Eqs (1.9), (2.1)–(2.3) we can obtain
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[
xẋ2 + ẋ(1 +

n∑
l=0

x2l+1) + x3 − x
]
ẋ

= − costsin3t + sin2t(1 +
n∑

l=0

cos2l+1t) − sintcos3t + sintcost

= − cost(1 − cos2t)sint + (1 − cos2t)(1 +
n∑

l=0

cos2l+1t) − sintcos3t + sintcost

=(1 − cos2t) + (1 − cos2t)
n∑

l=0

cos2l+1t

=1 − cos2t + cost +
n∑

l=1

cos2l+1t −
n∑

l=1

cos2l+1t − cos2n+3t

=1 − cos2t + cost − cos2n+3t.

(4.1)

Therefore, we immediately obtain

ẍ +
[
xẋ2 + ẋ(1 +

n∑
l=0

x2l+1) + x3 − x
]
ẋ + x2n+3 + x2 − 1 = 0, (4.2)

and Theorem 1.3 is verified.

5. Proof of Theorem 1.4

Applying Eqs (1.9), (2.1)–(2.3), Eq (1.20) becomes

ẍ + [(1 + x)ẋ2 + ẋ
n∑

l=0

x2l+1 + x3 + x2 − x − 1]ẋ + x2n+3

= − cos t − sin3 t (1 + cos t) +
(
1 − cos2 t

) n∑
l=0

cos2l+1 t − sin t cos3 t − sin t cos2 t + sin t cos t + sin t

+ cos2n+3 t

= − cos t − sin t cos t
(
cos2 t + sin2 t − 1

)
− sin t

(
sin2 t + cos2 t − 1

)
+

n∑
l=0

cos2l+1 t − cos2 t
n∑

l=0

cos2l+1 t

+ cos2n+3 t

= − cos t +
n∑

l=0

cos2l+1 t − cos2 t
n∑

l=0

cos2l+1 t + cos2n+3 t

= − cos t + cos t +
n∑

l=1

cos2l+1 t − cos2 t
(
cos t + cos3 t + cos5 t + ... + cos2(n−1)+1 t + cos2n+1 t

)
+ cos2n+3 t

=

n∑
l=1

cos2l+1 t −
(
cos3 t + cos5 t + cos7 t + ... + cos2n+1 t + cos2n+3 t

)
+ cos2n+3 t
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=

n∑
l=1

cos2l+1 t −
(
cos3 t + cos5 t + cos7 t + ... + cos2n+1 t

)
=

n∑
l=1

cos2l+1 t −
n∑

l=1

cos2l+1 t

=0. (5.1)

Theorem 1.4 is proved.

6. Proof of Theorem 1.5

Using Eqs (1.9), (2.1)–(2.3), Eq (1.22) becomes

ẍ +

xẋ2 + x3 − x + ẋ

1 + n∑
l=0

x2l+2

 ẋ + x2n+4 + x − 1

= − cos t +

cos t sin2 t + cos3 t − cos t − sin t

1 + n∑
l=0

cos2l+2 t

 (− sin t) + cos2n+4 t + cos t − 1

= − cos t sin t
(
1 − cos2 t

)
− sin t cos3 t + sin t cos t +

(
1 − cos2 t

)
+
(
1 − cos2 t

) n∑
l=0

cos2l+2 t

+ cos2n+4 t − 1

= − sin t cos3 t +
n∑

l=0

cos2l+2 t − cos2 t
n∑

l=0

cos2l+2 t + cos2n+4 t − 1 − sin t cos t + sin t cos3 t + sin t cos t

+ 1 − cos2 t

= cos2 t +
n∑

l=1

cos2l+2 t − cos2 t
(
cos2 t + cos4 t + ... + cos2(n−1)+2 t + cos2n+2 t

)
+ cos2n+4 t − cos2 t

=

n∑
l=1

cos2l+2 t −
(
cos4 t + cos6 t + ... + cos2n+2 t

)
− cos2n+4 t + cos2n+4 t

=

n∑
l=1

cos2l+2 t −
n∑

l=1

cos2l+2 t

=0,
(6.1)

proving Theorem 1.5.

7. Proof of Theorem 1.6

Using Eqs (1.9), (2.1)–(2.3), Eq (1.27) leads to

ẍ +

xẋ2 + x3 − x + ẋ

1 − ẋ2n+2 − x2
n∑

l=0

ẋ2l

 ẋ + x
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= − cos t − cos t sin3 t − sin t cos3 t + sin t cos t + sin2 t

1 − sin2n+2 t −
(
1 − sin2 t

) n∑
l=0

sin2l t

 + cos t

= − sin t cos t
(
sin2 t + cos2 t − 1

)
+ sin2 t − sin2n+4 t −

n∑
l=0

sin2l+2 t + sin4 t
n∑

l=0

sin2l t

= sin2 t − sin2n+4 t − sin2 t −
n∑

l=1

sin2l+2 t + sin4 t
(
1 + sin2 t + sin4 t + sin6 t + ... + sin2(n−1) t + sin2n t

)
= − sin2n+4 t − sin2 t

n∑
l=1

sin2l t +
(
sin4 t + sin6 t + sin8 t + ... + sin2n+2 t + sin2n+4 t

)
= − sin2 t

n∑
l=1

sin2l t +
(
sin4 t + sin6 t + sin8 t + ... + sin2n+2 t

)
= − sin2 t

n∑
l=1

sin2l t +
n∑

l=1

sin2l+2 t

=0. (7.1)

Theorem 1.6 is proved.

8. Proof of Theorem 1.7

Taking into account Eqs (1.9),(2.1)–(2.3), Eq (1.31) yields

ẍ +

x ẋ2 + x2 − 1 + x
n∑

l=0

ẋ2l+1

 + ẋ2n+3

 ẋ + x2 + x − 1

= − cos t +

cos t

sin2 t + cos2 t − 1 − cos t
n∑

l=0

sin2l+1 t

 − sin2n+3 t

 (− sin t) + cos2 t + cos t − 1

= sin t
(
1 − sin2 t

) n∑
l=0

sin2l+1 t + sin2n+4 t − sin2 t

= sin t

sin t +
n∑

l=1

sin2l+1 t

 − sin3 t
(
sin t + sin3 t + sin5 t + ... + sin2(n−1)+1 t + sin2n+1 t

)
+

sin2n+4 t − sin2 t

= sin t
n∑

l=1

sin2l+1 t −
(
sin4 t + sin6 t + sin8 t + ... + sin2n+2 t

)
− sin2n+4 t + sin2n+4 t

= sin t
n∑

l=1

sin2l+1 t −
n∑

l=1

sin2l+2 t

=0. (8.1)

Theorem 1.7 is proved.
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9. Proof of Theorem 1.8

Substituting Eqs (1.9),(2.1)–(2.3), into Eq (1.36) yields

ẍ +

ẋ2 + x2 − 1 + ẋ2n+3 + x2
n∑

l=0

ẋ2l+1

 ẋ + x2 + x − 1

= − cos t +

sin2 t + cos2 t − 1 − sin2n+3 t − cos2 t
n∑

l=0

sin2l+1 t

 (− sin t) + cos2 t + cos t − 1

= − cos t + sin2n+4 t +
(
1 − sin2 t

) n∑
l=0

sin2l+2 t + cos2 t + cos t − 1

= sin2n+4 t +
n∑

l=0

sin2l+2 t − sin2 t
n∑

l=0

sin2l+2 t − sin2 t

= sin2n+4 t + sin2 t +
n∑

l=1

sin2l+2 t − sin2 t
(
sin2 t + sin4 t + sin6 t + ... + sin2(n−1)+2 t + sin2n+2 t

)
− sin2 t

= sin2n+4 t +
n∑

l=1

sin2l+2 t −
(
sin4 t + sin6 t + sin8 t + ... + sin2n+2 t

)
− sin2n+4 t

=

n∑
l=1

sin2l+2 t −
n∑

l=1

sin2l+2 t

=0.
(9.1)

In this context, Theorem 1.8 is proved.
Therefore, a conclusion can be carried out for the work.

10. Conclusions

In this contribution, we have succeeded in highlighting the existence of classes of polynomial mixed
Lienard-type differential equations that can generate many, that is (n+1) equations with exact harmonic
and isochronous periodic solutions and limit cycles in contrast to the predictions of classical existence
theorems.
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