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Abstract: This paper develops the combined effects of free convection magnetohydrodynamic (MHD)
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1. Introduction

The study on flow of fluids which are electrically conducting is known as magnetohydrodynamics
(MHD). The magnetohydrodynamics have important applications in the polymer industry and
engineering fields (Garnier [1]). Heat transfer caused by hydromagnetism was discussed by
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Chakrabarthi and Gupta [2]. Using an exponentially shrinking sheet, Nadeem et al. [3] investigated
the MHD flow of a Casson fluid. Krishnendu Bhattacharyya [4] examined the effect of thermal
radiation on MHD stagnation-point Flow over a Stretching Sheet.

Mixed convection magnetohydrodynamics flow is described by Ishak on a vertical and on a
linearly stretching sheet [5–7]. Hayat et al. [10] examine a mixed convection flow within a stretched
sheet of Casson nanofluid. Subhas Abel and Monayya Mareppa, examine magnetohydrodynamics
flow on a vertical plate [11]. Shen et al. [12], examined a vertical stretching sheet which was
non-linear. Ishikin Abu Bakar [13] investigates how boundary layer flow is affected by slip and
convective boundary conditions over a stretching sheet. A vertical plate oscillates with the influence
of slip on a free convection flow of a Casson fluid [14].

Nasir Uddin et al. [15] used a Runge-Kutta sixth-order integration method. Barik et al. [16]
implicit finite distinction methodology of Crank Sir Harold George Nicolson sort Raman and
Kumar [17] utilized an exact finite distinction theme of DuFort–Frankel. Mondal et al. [18] used a
numerical theme over the whole vary of physical parameters. With the laplace transform method, we
can determine the magnetohydrodynamic flow of a viscous fluid [19]. Thamizh Suganya et al. [20]
obtained that the MHD for the free convective flow of fluid is based on coupled non-linear differential
equations. In this study, the analytical approximation of concentration profiles in velocity,
temperature and concentration using homotopy perturbation method (HPM).

2. Mathematical construction of the problem

The governing differential equations in dimensionless form [19] as follows:

d2u
dy2 − Hu + Grθ + Gmφ = 0, (2.1)

1
F

d2θ

dy2 = 0, (2.2)

1
S c

d2φ

dy2 − S r
∂2φ

∂y2 − γφ = 0. (2.3)

The dimensionless boundary conditions given by:

u = 0, θ = 1, φ = 0 at y = 0 (2.4)

and
u = 0, θ = 0, φ = 0 at y→ ∞. (2.5)

3. Solutions of steady-state concentration profile using the Homotopy Perturbation Method

He [21, 22] established the homotopy perturbation method, which waives the requirement of small
parameters. Many researchers have used HPM to obtain approximate analytical solutions for many
non-linear engineering dynamical systems [23, 24]. The basic concept of the HPM as follows:

d2u
dy2 − Hu + Grθ + Gmφ = 0 (3.1)
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1
F

d2θ

dy2 = 0 (3.2)

1
S c

d2φ

dy2 − S r
∂2φ

∂y2 − γφ = 0 (3.3)

with initial and boundary conditions given by:

y = 0 at u = 0, θ = 1,C = 1
y→ ∞ as u = 0, θ = 1, φ = 0. (3.4)

Homotopy for the above Eqs (3.1) to (3.4) can be constructed as follows:

(1 − p)
[
d2u
dy2 − Hu + Grθ + Gmφ

]
+ p

[
d2u
dy2 − Hu + Grθ + Gmφ

]
= 0 (3.5)

(1 − p)
[

1
F

d2θ

dy2 − θ

]
+ p

[
1
F

d2θ

dy2 − θ + θ

]
= 0 (3.6)

(1 − p)
[

1
S c

d2φ

dy2 − γφ

]
+ p

[
1

S c
d2φ

dy2 − S r
∂2θ

∂y2 − γφ

]
= 0 (3.7)

The approximate solution of the Eqs (3.5) to (3.7) are

u = u0 + pu1 + p2u2 + p3u3 + ... (3.8)
θ = θ0 + pθ1 + p2θ2 + p3θ3 + ... (3.9)
φ = φ0 + pφ1 + p2φ2 + p3φ3 + ... (3.10)

Substitution Eqs (3.5) to (3.7) in Eqs (3.8) to (3.10) respectively. We obtain the following equations

(1 − p)
[
d2(u0 + pu1 + p2u2 + p3u3 + ...)

dy2 − H(u0 + pu1 + p2u2 + p3u3 + ...)

+Gr(θ0 + pθ1 + p2θ2 + p3θ3 + ...) + Gm(φ0 + pφ1 + p2φ2 + p3φ3 + ...)
]

+ p
[
d2(u0 + pu1 + p2u2 + p3u3 + ...)

dy2 − H(u0 + pu1 + p2u2 + p3u3 + ...)

+Gr(θ0 + pθ1 + p2θ2 + p3θ3 + ...) + Gm(φ0 + pφ1 + p2φ2 + p3φ3 + ...)
]

= 0 (3.11)

and

(1 − p)
[

1
F

d2(θ0 + pθ1 + p2θ2 + p3θ3 + ...)
dy2 − (θ0 + pθ1 + p2θ2 + p3θ3 + ...)

]
+ p

[
1
F

d2(θ0 + pθ1 + p2θ2 + p3θ3 + ...)
dy2 − (θ0 + pθ1 + p2θ2 + p3θ3 + ...)

+(θ0 + pθ1 + p2θ2 + p3θ3 + ...)
]

= 0, (3.12)

and

(1 − p)
[

1
S c

d2(φ0 + pφ1 + p2φ2 + p3φ3 + ...)
dy2 − γ(φ0 + pφ1 + p2φ2 + p3φ3 + ...)

]
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+ p
[

1
S c

d2(φ0 + pφ1 + p2φ2 + p3φ3 + ...)
dy2 − S r

∂2(θ0 + pθ1 + p2θ2 + p3θ3 + ...)
∂y2

−γ(φ0 + pφ1 + p2φ2 + p3φ3 + ...)
]

= 0. (3.13)

Equating the coefficient of p on both sides, we get the following equations

P0 :
d2u0

dy2 − Hu0 + Grθ0 + Gmφ0 = 0; (3.14)

p0 :
1
F

d2θ0

dy2 − θ0 = 0; (3.15)

P1 :
1
F

d2θ0

dy2 − θ0 + θ1 = 0; (3.16)

P1 :
1

S c
d2φ0

dy2 − γφ0 = 0; (3.17)

P1 :
1

S c
d2φ0

dy2 − S r
∂2θ0

∂y2 − γφ0 = 0. (3.18)

The boundary conditions are

u0 = 0, θ0 = 1, φ0 = 1 at y = 0
u0 = 0, θ0 = 1, φ0 = 1 at y→ ∞. (3.19)

and

u1 = 0, θ1 = 0, φ1 = 0 at y = 0
u1 = 0, θ1 = 0, φ1 = 0 at y→ ∞. (3.20)

Solving the Eqs (3.9)–(3.14), we obtain

u0(t) =
Gr√
1
F + H

[
e−y
√

1
F − e−y

√
H
]

+
Gm

√
γS c + H

[
e−y
√
γS c − e−y

√
H
]

; (3.21)

θ0(y) = e−y
√

1
F ; (3.22)

φ0(y) = e−y
√
γS c; (3.23)

φ1(y) =
S cS r

√
F + FγS c

[
e−y
√

1
F − e−y

√
γS c

]
. (3.24)

Considering the iteration, we get,

u(t) =
Gr√
1
F + H

[
e−y
√

1
F − e−y

√
H
]

+
Gm

√
γS c + H

[
e−y
√
γS c − e−y

√
H
]

; (3.25)

θ(y) = e−y
√

F; (3.26)

φ(y) = e−y
√
γS c +

S cS r
√

F + FγS c

[
e−y
√

1
F − e−y

√
γS c

]
. (3.27)
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4. Approximate analytical solutions for the skiin friction, Nusselt and Sherwood numbers

From the Eqs (3.25)–(3.27), we obtain

C f = −

(
∂u
∂y

)
y=0

=

(
Gm
√
γS c −Gm

√
H + Gr(γS c + H)

√
1 + R

Pr + GmH
√
γS c + (−Gm −Gr)H

3
2 − γGr

√
HS c

)
(√

1 + R
Pr + H(γS c + H)

) ; (4.1)

Nu = −

(
∂θ

∂y

)
y=0

=

√
1 + R

Pr
; (4.2)

S h = −

(
∂φ

∂y

)
y=0

=

S cS r(1 + R)
√

1 + R
Pr −

√
γS c

(
(−R − 1)

√
1 + R

Pr + ((1 + R)S c − Prγ)S c
)

(1 + R)
√

1 + R
Pr PrγS c

(4.3)

5. Results and discussion

The combined impacts of transient MHD free convective flows of an incompressible viscous fluid
through a vertical plate moving with uniform motion and immersed in a porous media are examined
using an exact approach. The approximate analytical expressions for the velocity u, temperature θ,
and concentration profile φ are solved by using the homotopy perturbation method for fixed values of
parameters is graphically presented.

Velocity takes time at first, and for high values of y, it takes longer, and the velocity approaches zero
as time increases. The velocity of fluid rises with Gr increasing, as exposed in Figure 1.

The variations of parameter Gm are depicted in Figure 2. It has been established that as the value
of increases, neither does the concentration. Gm. This is because increasing the number of ‘Gm’
diminishes the slog energy, allow the fluid to transfer very rapidly.The dimensionless Prandtl number
is a number which combines the viscosity of a fluid with its thermal conductivity. For example, Figure
3 shows how a decrease in ‘Pr’increases the concentration of velocity profile.

The Figure 4 shows how a decrease in concentration occurs when the value of H increases.As
shown in Figure 5, when the Schmidt number Sc increases, the concentration of velocity profiles
decreases, while the opposite is true for the Soret number Sr, as shown in Figures 6, 7 and 8, represented
the radiation parameter R, chemical reaction parameter γ is increasing when it implies a decrease in
concentration.

Based on Figure 9, it is evident that the thickness of the momentum boundary layer increases for
fluids with Pr < 1. When Pr < 0.015, the heat diffuses rapidly in comparison to the velocity.

Figure 10 depicts the impact of the radiation parameter R on temperature profiles. The temperature
profiles θ, which are a decreasing function of R, are found to decrease the flow and lower fluid velocity.
As the radiation parameter R is increased, the fluid thickens, temperatures and thermal boundary layer
thickness to decrease.

This statement is justified because the thermal conductivity of a fluid declines by the growing
Prandtl number Pr and hence the thickness of thermal boundary layers and temperature profiles
decrease as well. Based on Figure 9, we see an increase in fluid concentration with large Prandtl
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numbers Pr. Radiation parameter R and temperature profiles are illustrated in Figure 10. The
temperature profiles θ, which are a decreasing function of R, are initiate to reduction the flow and
decline the fluid velocity. Radiation parameter R increases as fluid thickness increases, temperature
increases, and thickness of thermal boundary layer decreases.

Figure 1. An illustration of velocity profiles for different values of Gr.

Figure 2. An illustration of velocity profiles for different values of Gm.
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Figure 3. An illustration of velocity profiles for different values of Pr.

Figure 4. An illustration of velocity profiles for different values of H.

Figure 5. An illustration of velocity profiles for different values of Sc.

AIMS Mathematics Volume 7, Issue 8, 15182–15194.



15189

Figure 6. An illustration of velocity profiles for different values of Sr.

Figure 7. An illustration of velocity profiles for different values of γ.

Figure 8. An illustration of velocity profiles for different values of R.
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Figure 9. An illustration profile of Temperature for various values of Pr.

Figure 10. An illustration profile of Temperature for various values of R.

The influence of Pr, R, γ, Sc, and Sr on the concentration profiles φ is shown in Figures 11–15. The
fluid concentration rises on highest values of Pr, as shown in Figure 11. The profile of temperature is
affected by the radiation parameter R which is shown in Figure 12. As a function of R, the concentration
profiles reduce the flow and decrease fluid velocity.

The growing values of γ and Sc lead to falling in the concentration profiles, is described from
Figures 13 and 15. The concentration profiles increase as the number of sorts (Sr) increases, as shown
in Figure 14.

AIMS Mathematics Volume 7, Issue 8, 15182–15194.
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Figure 11. Profile of concentration for distinct values of Pr.

Figure 12. Profile of concentration for distinct values of R.

Figure 13. Profile of concentration for distinct values of Sc.
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Figure 14. Profile of concentration for distinct values of Sr.

Figure 15. Profile of concentration for distinct values of γ.

6. Conclusions

A free convection magnetohydrodynamic (MHD) flow past a vertical plate embedded in a porous
medium was offered in this paper. Homotopy perturbation method is used to find approximate
analytical solutions for the concentration of species. The effects of system parameters on temperature
and velocity profiles were investigated using these analytical expressions. The graphic representation
of the impact of several physical parameters attempting to control the velocity, temperature, and
concentration profiles and a brief discussion. Analytical expressions were also developed for the
Skin-friction and Nusselt and Sherwood numbers.
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