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Abstract: In the authors’ earlier work, the SEL Egyptian fraction expansion for any real number
was constructed and characterizations of rational numbers by using such expansion were established.
These results yield a generalized version of the results for the Fibonacci-Sylvester and the Engel series
expansions. Under a certain condition, one of such characterizations also states that the SEL Egyptian
fraction expansion is finite if and only if it represents a rational number. In this paper, we obtain an
upper bound for the length of the SEL Egyptian fraction expansion for rational numbers, and the exact
length of this expansion for a certain class of rational numbers is verified. Using such expansion, not
only is a large class of transcendental numbers constructed, but also an explicit bijection between the
set of positive real numbers and the set of sequences of nonnegative integers is established.
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1. Introduction

It is well known that an Egyptian fraction is a finite sum of distinct unit fractions. The first algorithm
for constructing Egyptian fraction expansion, due to Fibonacci [1] and also Sylvester [2], will be
referred to as the Fibonacci-Sylvester algorithm. Fibonacci expressed any rational number between
zero and one in an Egyptian fraction, and then Sylvester among others rediscovered this algorithm and
extended the work towards the representations of irrational numbers [3–6]. The expansion produced by
this algorithm for any real number A ∈ (0, 1) is called the Fibonacci-Sylvester expansion (or Sylvester
expansion) [2–4, 7, 8], which is of the form

A =
∞∑

n=1

1
an
,

where an ∈ N, a1 ≥ 2, and an+1 ≥ an(an − 1) + 1 for all n ≥ 1. Moreover, a real number A ∈ (0, 1) is
rational if and only if the Fibonacci-Sylvester expansion of A is finite.
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We have seen in [8] that each real number can be uniquely written as an Engel series expansion, and
such expansion is finite if and only if it represents a rational number. In 1973, Cohen [9] rediscovered
this expansion by proving that any real number A can be uniquely represented as an Egyptian fraction
expansion called Engel series expansion, which is of the form

A = a0 +

∞∑
n=1

1
a1a2 · · · an

,

where a0 ∈ Z, an ∈ N, a1 ≥ 2, an+1 ≥ an for all n ≥ 1, and the infinite sequence {an} does not satisfy
an+1 = an for all sufficiently large n (or no term of the sequence appears infinitely often). Moreover, a
real number A is rational if and only if the Engel series expansion of A is finite. Using such
expansion, Cohen [9] obtained a large class of transcendental numbers and established an explicit
bijection between the set of positive real numbers and the set of sequences of nonnegative integers.
For more information on the Engel series expansion (or the Cohen-Egyptian fraction expansion),
see [7, 8, 10, 11].

Recently, the authors [10] have introduced an algorithm for constructing an Egyptian fraction
expansion for any real number, called the SEL Egyptian fraction expansion, and then established
characterizations of rational numbers by using such expansion. These results yield a generalized
version of the results for the Fibonacci-Sylvester expansion and the Engel series expansion. One
result implies that the Fibonacci-Sylvester expansion for any real number A is unique provided that
the infinite sequence {an} does not satisfy an+1 = an(an − 1) + 1 for all sufficiently large n. The
algorithm for constructing the SEL Egyptian fraction expansion is as follows. Given any real number
A, by letting a0 = ⌊A⌋ and A1 = A − a0, we have 0 ≤ A1 < 1. For all n ≥ 1 with An , 0, define

an =

⌈
1
An

⌉
and An+1 = (anAn − 1)αn,

where αn = αn(an) is a positive rational number, which may depend on an. Note that ⌊·⌋ and ⌈·⌉ are the
floor and the ceiling functions, respectively. The following theorem yields the SEL Egyptian fraction
expansion for any real number [10].
Theorem A. If (an − 1)/αn ∈ N for all n ≥ 1, then a real number A can be uniquely represented as an
expansion called the SEL Egyptian fraction expansion, which is of the form

A = a0 +
1
a1
+

∞∑
n=1

1
a1α1 · · · anαnan+1

,

where a0 ∈ Z, an ∈ N, a1 ≥ 2, an+1 ≥ (an − 1)/αn + 1 ≥ 2 for all n ≥ 1, and the infinite sequence {an}

does not satisfy an+1 = (an − 1)/αn + 1 for all sufficiently large n.
Moreover, the following theorems provide characterizations of rational numbers by the SEL

Egyptian fraction expansion [10].
Theorem B. If 1/αn ∈ N for all n ≥ 1, then the corresponding SEL Egyptian fraction expansion of a
real number A is finite if and only if A ∈ Q.
Theorem C. If αn ∈ N for all n ≥ 1, then the SEL Egyptian fraction expansion of a real number A is
finite or periodic if and only if A ∈ Q.

Note that the results for the Fibonacci-Sylvester and Engel series expansions mentioned earlier
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follow immediately from Theorem A and Theorem B by setting αn = 1/an and αn = 1 for all n ≥ 1,
respectively. Moreover, a new expansion called the Lüroth Egyptian fraction expansion, together with
its characterization of rational numbers, is obtained by taking αn = an − 1 in Theorem A and Theorem
C, respectively.

Recall that a rational number a/b with 1 ≤ a < b can be uniquely written as a finite
Fibonacci-Sylvester expansion and a finite Engel series expansion. Let FS(a, b) and E(a, b) denote the
lengths (or the number of terms) in the Fibonacci-Sylvester and Engel series expansions of a/b,
respectively. It is interesting to estimate these lengths by finding bounds in terms of a and b. In 1958,
Erdős, Rényi, and Szüsz [7] proved in the last section that FS(a, b) ≤ a and E(a, b) ≤ a. In 1991,
Erdős and Shallit [12] obtained an improved bound for E(a, b), namely E(a, b) = O(b1/3+ϵ) for all
ϵ > 0, and proved that there exists a constant c > 0 such that E(a, b) > c log b infinitely often. For the
case of the Fibonacci-Sylvester expansion, Tongron, Kanasri, and Laohakosol [13] improved the
upper bound for FS(a, b) mentioned above by showing that

FS(a, b) ≤ a
⌈
b
a

⌉
− b + 1 (1.1)

for all positive integers a and b with a < b and gcd(a, b) = 1. The fact that 1 ≤ a < b implies that
−b = aq + r for some integers q, r with q < 0 and 0 ≤ r < a. Then b = a(−q) − r and 0 < −q = ⌈b/a⌉,
and thus a⌈b/a⌉ − b + 1 = r + 1 ≤ a. They also proved that if {ai} is a sequence of positive integers
defined by a1 = 2 and ai+1 = ai(ai − 1) + 1 for i ≥ 1, then

FS(an+1 − 2, an+1 − 1) = n (n ≥ 1), (1.2)

which yields the exact length of this expansion for a class of rational numbers.
In this work, we are interested in studying the length of the SEL Egyptian fraction expansion for

rational numbers only in the case 1/αn ∈ N. We prove that the upper bound for FS(a, b) in (1.1) is also
an upper bound for the length of the SEL Egyptian fraction expansion for rational numbers. Moreover,
we obtain the exact length of such expansion for a certain class of rational numbers, which is similar
to the one of FS(a, b) in (1.2). In a similar way to the Engel series expansion, the SEL Egyptian
fraction expansion of the real numbers leads us to construct a large class of transcendental numbers
and to obtain an explicit bijection between the set of positive real numbers and the set of sequences of
nonnegative integers.

2. Bounds for the length of the SEL Egyptian fraction expansion

In this section, we assume that 1/αk ∈ N for all k ≥ 1. By Theorem B, the SEL Egyptian fraction
expansion is finite if and only if it represents a rational number. By the algorithm for constructing
the SEL Egyptian fraction expansion, it suffices to consider only the rational numbers in the interval
(0, 1). Let a and b be two natural numbers such that a < b. Let SEL(a, b) denote the length of the SEL
Egyptian fraction expansion for a/b. Then SEL(a, b) = n if and only if

a
b
=

1
a1
+

n−1∑
k=1

1
a1α1 · · · akαkak+1

, (2.1)
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where a1 ≥ 2, αk = αk(ak) ∈ Q+, and ak+1 ≥ (ak − 1)/αk + 1 for all k = 1, 2, . . . , n − 1. Note that if
a/b = c/d with 1 ≤ a < b, 1 ≤ c < d, and gcd(c, d) = 1, then SEL(a, b) = SEL(c, d).

The algorithm of Fibonacci and Sylvester for Egyptian fractions of rationals can be considered as the
iteration of the following lemma, which is a modified version of the classical division algorithm [14].

Lemma 1. (Modified division algorithm) For all a, b ∈ Z with a > 0, there exist unique q, r ∈ Z such
that

b = aq − r with 0 ≤ r < a.

(Note that q = ⌈b/a⌉.)
In the next theorem, we illustrate the use of Lemma 1 to explicitly construct the SEL Egyptian

fraction expansion for any rational number a/b ∈ Q ∩ (0, 1) and then determine an upper bound for
SEL(a, b).

Theorem 1. Let a/b ∈ Q ∩ (0, 1) with gcd(a, b) = 1. If 1/αn ∈ N for all n ≥ 1, then

SEL(a, b) ≤ a
⌈
b
a

⌉
− b + 1.

Proof. Let a/b ∈ Q ∩ (0, 1) with gcd(a, b) = 1 and assume that 1/αn ∈ N for all n ≥ 1. By successively
applying Lemma 1, we find that

b = aq1 − s1, 0 < s1 < a,
b
α1
= s1q2 − s2, 0 < s2 < s1,

b
α1α2

= s2q3 − s3, 0 < s3 < s2,

...

b
α1 · · ·αN−1

= sN−1qN − sN , 0 < sN < sN−1,

b
α1 · · ·αN

= sNqN+1, sN+1 = 0.

The last step occurs since {si} is a sequence of nonnegative integers such that 0 ≤ · · · < s2 < s1 < a.
Writing these equations in the fractional form, we have

a
b
=

1
q1
+

s1

bq1
,

s1

bq1
=

1
q1α1q2

+
s2

bq1q2
,

s2

bq1q2
=

1
q1α1q2α2q3

+
s3

bq1q2q3
,

...

sN−1

bq1 · · · qN−1
=

1
q1α1 · · · qN−1αN−1qN

+
sN

bq1 · · · qN
,
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sN

bq1 · · · qN
=

1
q1α1 · · · qNαNqN+1

.

Combining the first two equations, we obtain

a
b
=

1
q1
+

1
q1α1q2

+
s2

bq1q2
. (2.2)

Similarly, combining the third equation with (2.2), we obtain

a
b
=

1
q1
+

1
q1α1q2

+
1

q1α1q2α2q3
+

s3

bq1q2q3
.

Continuing in this manner, we find that

a
b
=

1
q1
+

1
q1α1q2

+
1

q1α1q2α2q3
+ · · · +

1
q1α1 · · · qNαNqN+1

.

We now prove that SEL(a, b) = N + 1 by showing that q1 ≥ 2 and qk+1 ≥ (qk − 1)/αk + 1 for all
n = 1, 2, . . . ,N. By Lemma 1 and the fact that 1 ≤ a < b, we have q1 = ⌈b/a⌉ ≥ 2. Moreover, for all
i = 1, 2, . . . ,N, it follows from Lemma 1 that

qn =

⌈
b

α1 · · ·αn−1sn−1

⌉
, and thus

1
qn
≤
α1 · · ·αn−1sn−1

b
<

1
qn − 1

.

Then for all i = 1, 2, . . . ,N, we have
1

qn+1
≤
α1 · · ·αnsn

b

=

(
sn

bq1 · · · qn

)
q1α1 · · · qnαn

=

(
sn−1

bq1 · · · qn−1
−

1
q1α1 · · · qn−1αn−1qn

)
q1α1 · · · qn−1αn−1qnαn

=

(
α1 · · ·αn−1sn−1

b
−

1
qn

)
αnqn

<

(
1

qn − 1
−

1
qn

)
qnαn

=
αn

qn − 1
,

yielding qn+1 > (qn−1)/αn. Since (qn−1)/αn ∈ N, we have qn+1 ≥ (qn−1)/αn+1 for all n = 1, 2, . . . ,N.
This shows that SEL(a, b) = N + 1.

Finally, we note that

s1 = aq1 − b = a⌈b/a⌉ − b,

s2 ≤ s1 − 1 = a⌈b/a⌉ − b − 1,
s3 ≤ s2 − 1 ≤ a⌈b/a⌉ − b − 2,
...

0 = sN+1 ≤ sN − 1 ≤ a⌈b/a⌉ − b − N.

The last inequality implies that N ≤ a⌈b/a⌉ − b, and hence SEL(a, b) = N + 1 ≤ a⌈b/a⌉ − b + 1. □
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We conclude this section with the exact length of the SEL Egyptian fraction expansions for a certain
class of rational numbers.

Theorem 2. Let {an} be a sequence of positive integers defined by

a1 = 2 and an+1 = (an − 1)/αn + 1 (n ≥ 1), (2.3)

where αn = αn(an) ∈ Q+ for all n ≥ 1. Then

SEL(a1 · · · an − 1, a1 · · · an) = n (n ≥ 1).

Proof. We first show by induction on n that

1
a1
+

1
a1α1a2

+ · · · +
1

a1α1 · · · an−1αn−1an
=

a1 · · · an − 1
a1 · · · an

(n ≥ 1). (2.4)

For n = 1, we have 1/a1 = 1/2 = (a1 − 1)/a1. By (2.3), we obtain

1
αn
=

an+1 − 1
an − 1

(n ≥ 1). (2.5)

Assume that (2.4) holds for some n ≥ 1. It follows from (2.5) that

1
a1
+

1
a1α1a2

+ · · · +
1

a1α1 · · · an−1αn−1an
+

1
a1α1 · · · anαnan+1

=
a1 · · · an − 1

a1 · · · an
+

1
a1α1 · · · anαnan+1

=
a1 · · · an − 1

a1 · · · an
+

1
a1 · · · an+1

·
a2 − 1
a1 − 1

·
a3 − 1
a2 − 1

· · ·
an − 1

an−1 − 1
·

an+1 − 1
an − 1

=
a1 · · · an − 1

a1 · · · an
+

an+1 − 1
a1 · · · an+1

=
a1 · · · an+1 − an+1 + an+1 − 1

a1 · · · an+1

=
a1 · · · an+1 − 1

a1 · · · an+1
.

Using (2.1) and (2.4), we conclude that SEL(a1 · · · an − 1, a1 · · · an) = n for all n ≥ 1, as desired. □

From Theorem 2, by letting αn = 1/an for all n ≥ 1, we obtain

an+1 − 1 = (an − 1)an (n ≥ 1). (2.6)

Since a1 = 2, it follows from (2.6) that

a1 · · · an − 1
a1 · · · an

=
(a1 − 1)a1a2 · · · an − 1

(a1 − 1)a1a2 · · · an

=
(a2 − 1)a2 · · · an − 1

(a2 − 1)a2 · · · an
...

AIMS Mathematics Volume 7, Issue 8, 15094–15106.



15100

=
(an−1 − 1)an−1an − 1

(an−1 − 1)an−1an

=
(an − 1)an − 1

(an − 1)an

=
an+1 − 2
an+1 − 1

.

This shows that FS(an+1 − 2, an+1 − 1) = n for all n ≥ 1, by Theorem 2.

3. Transcendental numbers arising from SEL Egyptian fraction expansions

A complex number α is called an algebraic number if it is a root of some nonzero polynomial f (x) ∈
Q[x]. Any complex number that is not algebraic is said to be transcendental. Transcendental numbers
were first explicitly constructed by Liouville via the following theorem on rational approximation to
algebraic numbers.
Theorem D. (Liouville’s theorem) [15] Let α be an irrational algebraic number of degree d. Then
there exists a positive constant c depending only on α such that∣∣∣∣∣α − p

q

∣∣∣∣∣ ≥ c
qd

for all rational numbers p/q.
The first number shown to be transcendental by using Liouville’s theorem [15] is

∞∑
n=1

10−n! = 0.1100010000000000000000010000 . . . .

Liouville’s result can be restated as the following theorem.
Theorem E. (Liouville’s theorem restated) [15] Let α be a real number. Suppose that there exists an
infinite sequence of rational numbers pn/qn satisfying the inequality∣∣∣∣∣α − pn

qn

∣∣∣∣∣ < 1
qn

n
.

Then α is transcendental.
Cohen [9] constructed a large class of transcendental numbers by imposing the following restriction

on the sequence {ni}: Let n1 ≥ 2 and let ni+1 satisfy the inequality

ni+1 ≥ (n1 · · · ni)ini + 1 (i ≥ 1). (3.1)

Applying Liouville’s theorem, he found that the resulting real number α with the Engel series
expansion

α =
1
n1
+

1
n1n2

+
1

n1n2n3
+ · · ·

is transcendental.
In this section, we construct a large class of transcendental numbers by using the SEL Egyptian

fraction expansion. The ingredient of the proof consists of the following lemmas used in the proof of
Theorem A.
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Lemma 2. [10] Any infinite series

1
b1
+

∞∑
n=1

1
b1β1 · · · bnβnbn+1

,

where bn ∈ N, b1 ≥ 2, bn+1 ≥ (bn − 1)/βn + 1 ≥ 2, and βn = βn(bn) ∈ Q+ for all n ≥ 1, converges to a
real number B1 such that b1 = 1 + ⌊1/B1⌋.

Lemma 3. [10] For all n ≥ 1, if b1 ≥ 2, bi+1 ≥ (bi − 1)/βi + 1 ≥ 2, and βi = βi(bi) ∈ Q+ for all
i = 1, 2, . . . , n, then

1
bi
≤

1
bi
+

1
biβibi+1

+ · · · +
1

biβi · · · bn−1βn−1bn
<

1
bi − 1

(1 ≤ i ≤ n).

The following two theorems are our second main results.

Theorem 3. Let a1 ≥ 2, αi = αi(ai) ∈ N with (ai − 1)/αi ∈ N, and let ai+1 satisfy the inequality

ai+1 ≥
(a1α1 · · · ai−1αi−1ai)i

αi
+ 1 (i ≥ 1). (3.2)

Then the real number
1
a1
+

∑∞
i=1

1
a1α1 · · · aiαiai+1

is transcendental.

Proof. For all i ≥ 1, we have

ai+1 ≥
(a1α1 · · · ai−1αi−1ai)i

αi
+ 1 ≥

ai

αi
+ 1 >

ai − 1
αi
+ 1 ≥ 2.

By Lemma 2, the series 1/a1 +
∑∞

i=1 1/(a1α1 · · · aiαiai+1) converges to a real number x such that a1 =

1 + ⌊1/x⌋. It follows that 0 < 1/a1 < x ≤ 1/(a1 − 1) ≤ 1. Let n be an arbitrary positive integer and
consider the rational number

pn

qn
=

1
a1
+

n−1∑
i=1

1
a1α1 · · · aiαiai+1

=
α1a2 · · ·αn−1an + · · · + αn−1an + 1

a1α1 · · · an−1αn−1an

with pn, qn ∈ N and gcd(pn, qn) = 1. By Lemma 3, we have

0 <
1
a1
≤

pn

qn
<

1
a1 − 1

≤ 1,

so qn > 1. Note that qn must divide a1α1 · · · an−1αn−1an, implying that qn ≤ a1α1 · · · an−1αn−1an. It
follows from (3.2) that

an+1 − 1 ≥
(a1α1 · · · an−1αn−1an)n

αn
≥

qn
n

αn
. (3.3)

Again, Lemma 2 implies that

1
an+1

<
1

an+1
+

1
an+1αn+1an+2

+ · · · ≤
1

an+1 − 1
.

AIMS Mathematics Volume 7, Issue 8, 15094–15106.



15102

Using Lemma 2, Lemma 3, and (3.3), we finally have

0 <
∣∣∣∣∣x − pn

qn

∣∣∣∣∣ = ∣∣∣∣∣ 1
a1α1 · · · anαnan+1

+
1

a1α1 · · · an+1αn+1an+2
+ · · ·

∣∣∣∣∣
=

1
a1α1 · · · anαn

(
1

an+1
+

1
an+1αn+1an+2

+ · · ·

)
≤

1
a1α1 · · · anαn

(
1

an+1 − 1

)
≤

1
a1α1 · · · anαn

·
αn

qn
n

=
1

a1α1 · · · an−1αn−1an
·

1
qn

n

<

(
1
a1
+

1
a1α1a2

+ · · · +
1

a1α1 · · · an−1αn−1an

)
·

1
qn

n

<
1

a1 − 1
·

1
qn

n

≤
1
qn

n
.

By Theorem E, we conclude that x is transcendental. □

Applying Theorem 3 with αi = 1 for all i ≥ 1, we obtain a class of transcendental numbers, which
also contains the class derived by Cohen [9].

Theorem 4. Let a1 ≥ 2, 1/αi ∈ N with (ai − 1)/αi ∈ N, and let ai+1 satisfy the inequality

ai+1 ≥
(a1 · · · ai)i

αi
+ 1 (i ≥ 1).

Then the real number
1
a1
+

∑∞
i=1

1
a1α1 · · · aiαiai+1

is transcendental.

Proof. For all i ≥ 1, we have

ai+1 ≥
(a1 · · · ai)i

αi
+ 1 >

ai − 1
αi
+ 1 ≥ 2. (3.4)

By Lemma 2, the series 1/a1 +
∑∞

i=1 1/(a1α1 · · · aiαiai+1) converges to a real number x such that a1 =

1 + ⌊1/x⌋. It follows that 0 < 1/a1 < x ≤ 1/(a1 − 1) ≤ 1. Let n be an arbitrary positive integer and
consider the rational number

pn

qn
=

1
a1
+

n−1∑
i=1

1
a1α1 · · · aiαiai+1

with pn, qn ∈ N and gcd(pn, qn) = 1. By Lemma 3, we have

0 <
1
a1
≤

pn

qn
<

1
a1 − 1

≤ 1,
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so qn > 1. Set 1/αi = bi ∈ N (i ≥ 1). Then

pn

qn
=

1
a1
+

b1

a1a2
+

b1b2

a1a2a3
+ · · · +

b1b2 · · · bn−1

a1 · · · an
=

a2 · · · an + b1a3 · · · an + · · · + b1b2 · · · bn−1

a1a2 · · · an
.

Since gcd(pn, qn) = 1, we have qn ≤ a1a2 · · · an. It follows from (3.4) that

an+1 − 1 ≥
(a1a2 · · · an)n

αn
≥

qn
n

αn
= bnqn

n. (3.5)

Using Lemma 2, Lemma 3, and (3.5), we finally have

0 <
∣∣∣∣∣x − pn

qn

∣∣∣∣∣ = ∣∣∣∣∣ 1
a1α1 · · · anαnan+1

+
1

a1α1 · · · an+1αn+1an+2
+ · · ·

∣∣∣∣∣
=

1
a1α1 · · · anαn

(
1

an+1
+

1
an+1αn+1an+2

+ · · ·

)
≤

bn

a1α1 · · · an

(
1

an+1 − 1

)
=

1
a1α1 · · · an−1αn−1an

·
1
qn

n

<

(
1
a1
+

1
a1α1a2

+ · · · +
1

a1α1 · · · an−1αn−1an

)
·

1
qn

n

<
1

a1 − 1
·

1
qn

n

≤
1
qn

n

for all n ≥ 1. It follows from Theorem E that x is transcendental, which completes the proof. □

4. A bijection arising from the SEL Egyptian fraction expansion

We now proceed to the last main result, where we use the SEL Egyptian fraction expansion, we
construct a bijection between the set of positive real numbers and the set of sequences of nonnegative
integers. Let S be the set of sequences of nonnegative integers and x be any positive real number.
Define a function Φ : R+ → S depending on the following cases.
Case I: x ∈ Q. Then x/(x+ 1) can be uniquely represented as a finite SEL Egyptian fraction expansion
of the form

x
x + 1

=
1
a1
+

1
a1α1a2

+ · · · +
1

a1α1 · · · am−1αm−1am
,

where m ∈ N, ai ∈ N, a1 ≥ 2, and ai+1 ≥ (ai − 1)/αi + 1 ≥ 2 for all i = 1, 2, . . . ,m − 1.
If m = 1, then x/(x + 1) = 1/a1, and we define

Φ(x) = {0, a1 − 2, 0, 0, . . .}.

If m > 1 and am > (am−1 − 1)/αm−1 + 1, then we define

Φ(x) = {0, a1 − 2, a2 − (a1 − 1)/α1 − 1, . . . , am − (am−1 − 1)/αm−1 − 1, 0, 0, . . .}.
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If m > 1 and there exist k, a0 ∈ N such that k + a0 = m, ak > (ak−1 − 1)/αk−1 + 1 (if k ≥ 2), and
ak+i = (ak+i−1 − 1)/αk+i−1 + 1 for all i = 1, 2, . . . , a0, then we define

Φ(x) = {a0, a1 − 2, a2 − (a1 − 1)/α1 − 1, . . . , ak − (ak−1 − 1)/αk−1 − 1, 0, 0, . . .}.

Case II: x ∈ Qc. Then x has the infinite SEL Egyptian fraction expansion of the form

x = b0 +
1
b1
+

∞∑
i=1

1
b1α1 · · · biαibi+1

.

Define
Φ(x) = {b0, b1 − 2, b2 − (b1 − 1)/α1 − 1, b3 − (b2 − 1)/α2 − 1, . . .}.

Then the authors’ earlier work [10, Proposition 2.7] implies that the above sequence has infinitely
many positive terms.

We now show that Φ is a bijection. Since the SEL Egyptian fraction expansion of any real number
x is unique, the function Φ is well defined. To show that Φ is surjective, let {a0, a1, a2, . . .} ∈ S and
consider the following two possible cases:
Case 1: {a0, a1, a2, . . .} has infinitely many positive terms. Set b0 = a0, b1 = 2 + a1, and bn+1 =

(bn − 1)/βn + 1 + an+1, where 1/βn ∈ N (n ≥ 1). By Lemma 2, Theorem A, and Theorem B, there
exists x ∈ Qc such that x = b0+1/b1+

∑∞
i=1 1/(b1β1 · · · biβibi+1) is its SEL Egyptian fraction expansion.

Hence, we have

Φ(x) = {b0, b1 − 2, b2 − (b1 − 1)/β1 − 1, b3 − (b2 − 1)/β2 − 1, . . .} = {a0, a1, a2, a3, . . .}.

Case 2: {a0, a1, a2, . . .} has finitely many positive terms with the last positive term ak. We consider the
following four possible subcases.
Subcase 2.1: k = 1 and a0 = 0. Set y = 1/(2 + a1) and x = y/(1 − y). Then y = x/(x + 1), so

Φ(x) = {0, a1, 0, 0, . . .}.

Subcase 2.2: k = 1 and a0 ≥ 1. Set b1 = 2 + a1 and bn+1 = (bn − 1)/βn + 1, where βn = βn(bn) ∈ Q+

and (bn − 1)/βn ∈ N (1 ≤ n ≤ a0). Let y = 1/b1 +
∑a0−1

i=1 1/(b1β1 · · · biβibi+1) and x = y/(1 − y). Then
y = x/(x + 1), and thus

Φ(x) = {a0, b1 − 2, 0, 0, . . .} = {a0, a1, 0, 0, . . .}.

Subcase 2.3: k ≥ 2 and a0 = 0. Set b1 = 2+a1 and bn+1 = (bn−1)/βn+1+an+1, where βn = βn(bn) ∈ Q+

and (bn − 1)/βn ∈ N (1 ≤ n ≤ k − 1). Let y = 1/b1 +
∑k−1

i=1 1/(b1β1 · · · biβibi+1) and x = y/(1 − y). Then
y = x/(x + 1), so

Φ(x) = {0, b1 − 2, b2 − (b1 − 1)/β1 − 1, . . . , bk − (bk−1 − 1)/βk−1 − 1, 0, 0, . . .}
= {0, a1, a2, . . . , ak, 0, 0, . . .}.

Subcase 2.4: k ≥ 2 and a0 ≥ 1. Set b1 = 2 + a1, bn+1 = (bn − 1)/βn + 1 + an+1 (1 ≤ n ≤ k − 1), and
bn+1 = (bn−1)/βn+1 (k ≤ n ≤ k+a0−1), where βn = βn(bn) ∈ Q+ and (bn−1)/βn ∈ N (1 ≤ n ≤ k+a0−1).
Let y = 1/b1 +

∑k+a0−1
i=1 1/(b1β1 · · · biβibi+1) and x = y/(1 − y). Then y = x/(x + 1), so
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Φ(x) = {a0, b1 − 2, b2 − (b1 − 1)/β1 − 1, . . . , bk − (bk−1 − 1)/βk−1 − 1, 0, 0, . . .}
= {a0, a1, a2, . . . , ak, 0, 0, . . .}.

This shows that Φ is surjective.
Finally, we show that Φ is injective. Let x, y ∈ R+ be such that Φ(x) = Φ(y). It is clear that both x

and y are either rational or irrational. We consider the following two possible cases:
Case 1: x ∈ Q+ and y ∈ Q+. Let

x
x + 1

=
1
a1
+

k+a0−1∑
i=1

1
a1α1 · · · aiαiai+1

and
y

y + 1
=

1
b1
+

l+b0−1∑
j=1

1
b1β1 · · · b jβ jb j+1

be SEL Egyptian fraction expansions such that αi = αi(ai) ∈ Q+ (1 ≤ i ≤ k + a0 − 1), β j = α j(b j) ∈
Q+ (1 ≤ j ≤ l+ b0 − 1), a0, b0 ≥ 0, ai+1 = (ai − 1)/αi + 1 (k ≤ i ≤ k + a0 − 1), b j+1 = (b j − 1)/β j + 1 (l ≤
j ≤ l + b0 − 1), ak > (ak−1 − 1)/αk−1 + 1 (if k ≥ 2), and bl > (bl−1 − 1)/βl−1 + 1 (if l ≥ 2). Since
Φ(x) = Φ(y), we have

{a0, a1 − 2, a2 − (a1 − 1)/α1 − 1, . . . , ak − (ak−1 − 1)/αk−1 − 1, 0, 0, . . .}
= {b0, b1 − 2, b2 − (b1 − 1)/β1 − 1, . . . , bl − (bl−1 − 1)/βl−1 − 1, 0, 0, . . .}.

It is clear that k = l and a0 = b0, a1 = b1, . . . , ak = bk. It follows that ai = bi and αi = αi(ai) = αi(bi) =
βi (k + 1 ≤ i ≤ k + a0). This implies that x/(x + 1) = y/(y + 1), and thus x = y.
Case 2: x ∈ Qc and y ∈ Qc. Let

x = a0 +
1
a1
+

∞∑
i=1

1
a1α1 · · · aiαiai+1

and y = b0 +
1
b1
+

∞∑
i=1

1
b1β1 · · · biβibi+1

be SEL Egyptian fraction expansions such that αi = αi(ai) ∈ Q+ and βi = αi(bi) ∈ Q+ for all i ≥ 1.
Since Φ(x) = Φ(y), we have

{a0, a1 − 2, a2 − (a1 − 1)/α1 − 1, . . .} = {b0, b1 − 2, b2 − (b1 − 1)/β1 − 1, . . .},

implying that ai = bi (i ≥ 0). Hence x = y, which completes the proof.
Note that the bijection Φ is a generalization of the bijection constructed by Cohen [9].

5. Conclusions

In this paper, we obtain an upper bound for the length of the SEL Egyptian fraction expansion for
rational numbers. In addition, the exact length of this expansion for a certain class of rational numbers
is verified. Using such expansion, not only do we obtain a large class of transcendental numbers,
but also an explicit bijection between the set of positive real numbers and the set of sequences of
nonnegative integers is established.
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