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Abstract: The 2-tuple linguistic m-polar fuzzy sets (2TLmFSs) are acknowledged to represent the
multi-polar information owing to the practical structure of m-polar fuzzy sets with the help of linguistic
terms. The TOPSIS and ELECTRE series are efficient and widely used methods for solving multi-
attribute decision-making problems. This paper aim to augment the literature on multi-attribute group
decision making focusing on the the strategic approaches of TOPSIS and ELECTRE-I methods for the
2TLmFSs. In the 2TLmF-TOPSIS method, the relative closeness index is used to rank the alternatives.
For the construction of concordance and discordance sets, the superiority and inferiority of alternatives
over each other are accessed by using the score and accuracy functions. In the 2TLmF ELECTRE-I,
selection of the best alternative is made by the means of an outranking decision graph. At the final
step of the 2TLmF ELECTRE-I method, a supplementary approach is developed for the linear ranking
of alternatives based on the concordance and discordance outranking indices. The structure of the
proposed techniques are illustrated by using a system flow diagram. Finally, two case studies are used
to demonstrate the correctness, transparency, and effectiveness of the proposed methods for selecting
highway construction project manager and the best textile industry.
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1. Introduction

Decision-making is a technique of making choices by identifying decisions, gathering information,
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and solving difficulties to choose the best alternative. Multiple-attribute decision making (MADM)
is a branch of operations research in which satisfactory solutions are selected based on various key
aspects of competing criteria that may be selected as decision problems. This technique can often be
used to solve many real-world problems related to the fields of social sciences, economics, medicine,
and engineering. MADM is divided into single-expert decision-making vs group decision-making
according to the number of experts. Multi-attribute group decision-making (MAGDM) is a technique
in which a group of experts presents their preferences to achieve better outcomes than individuals.
In general, MAGDM is preferable because the aggregation matrix is developed by using the crowd’s
decision on the final result. This study is inclined to explore the TOPSIS [1] and ELECTRE [2]
methods thoroughly.

To address MADM and MAGDM problems the technique of order preferences by similarity to the
ideal solution named (TOPSIS) is widely adopted. The TOPSIS approach works on the fundamental
principle to select the best alternative that is closest to the positive ideal solution (PIS) and farthest
from the negative ideal solution (NIS). In 1981, Hwang and Yoon [1] developed the TOPSIS technique
to cope with decision-making issues. The classical TOPSIS approach only uses crisp data to tackle
real-life issues. But, it is very rare in real-life decision-making to find crisp and precise data. The
theory of fuzzy sets (FSs), pioneered by Zadeh [3], aimed to capture the ambiguous information to
address the inherent fuzziness of real life situations. Firstly, Chen [4] merged the theories of TOPSIS
method and FSs to develop new authentic technique to address the inconsistent data. In addition, Shen
et al. [5] and Amiri [6] applied the fuzzy TOPSIS technique to pick suppliers and projects in oil field
development, respectively. A significant contribution to FS theory was made by Atanassov [7] who
introduced the concept of intuitionistic fuzzy set (IFS) that incorporated the non-membership ν and
hesitation π degrees with the membership value µ, bounded by the condition µ+ ν ≤ 1. Boran et al. [8]
proposed a decision-making approach based on TOPSIS method employing the adaptable structure
of IFSs. Aloini et al. [9] also contributed to the IF-TOPSIS technique. Yager [10, 11] introduced
the concept of Pythagorean fuzzy sets (PFSs) with membership µ, non-membership ν and hesitation
π =

√
1 − µ2 − ν2, which relaxed the IFS condition µ+ν ≤ 1 to µ2+ν2 ≤ 1. Further, Zhang and Xu [12]

extended the TOPSIS framework for PFSs. Further, Akram et al. [13] provided a modified version of
PF-TOPSIS method for group decision-making along with explanatory numerical examples. Yucesan
and Gul [14] unfolded the application of PF-TOPSIS method in the field of medical.

The FS IFS and PFS were incompetent in dealing with imprecise and inconsistent multi-polar
information. To overcome this limitation, Chen et al. [15] proposed the m-polar fuzzy set (mFS) that
can deal with the multi-information for decision-making issues. Jana and Pal [16] presented some
basic mF operations and utilized this idea for multi-attribute decision-making. Akram [17] is
accredited to introduce the concept of mF graphs. Adeel et al. [18] extended the TOPSIS technique in
mF environment for multi-attribute decision making. Akram and Adeel [19] introduced the hesitant
m-polar fuzzy TOPSIS method for group decision making.

Various aspects of daily life activities can not be evaluated accurately in a quantitative form but
possibly in a qualitative one. Most people would like to express their opinions in dialogues, as good
or bad. In this way, the quantification burden can be replaced by the qualitative concept. By utilizing
the linguistic preferences, Liu et al. [20] and Akram et al. [21] contributed for group decision making.
Xu et al. [22] and Zhu et al. [23] have made a significant contribution for linguistic preferences of
data in decision analysis. Further, we can obtain more accurate results by using the 2-tuple linguistic
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(2TL) concept in decision-making. Firstly, Herrera and Martı́nez [24] introduced words processing by
using a 2-tuple fuzzy linguistic representation model. For further contribution in 2TL environment, the
reader can consult [25–27]. Akram et al. [28] introduced the combined concept of a 2-tuple linguistic
and m-polar fuzzy set for decision analysis. In addition, Wei [29] provided the TOPSIS approach for
multiple attribute group decision-making based on 2-tuple linguistic fuzzy information.

Benayoun et al. [2] initiated the family of ELimination and Choice translating reality (ELECTRE)
methods by presenting ELECTRE-I method. Figueira et al. [30] addressed the variants of ELECTRE
strategies. The ELECTRE-I technique in fuzzy environment was first extended by Hatami-Marbini
and Tavana [31]. Further, the fuzzy ELECTRE technique was applied for academic staff selection by
Rouyendegh and Erkan [32]. For analyzing mobile payment business models, Asghari et al. [33] used
the fuzzy ELECTRE technique. Kheirkhah and Dehghani [34] employed the fuzzy ELECTRE
technique to assess the quality of public transportation. Chen and Wu [35] put forward the
ELECTRE-I approach for the practical and competent framework of IFSs. Akram et al. [36]
presented the ELECTRE-I method for multi-criteria group decision making in Pythagorean fuzzy
environment. Further, Akram et al. [37] presented the extended version of the ELECTRE-I method in
m-polar fuzzy environment. Adeel et al. [38] introduced mHF ELECTRE-I and HmF ELECTRE-I
method for multi-criteria decision-making. Adeel et al. [39] contributed to group decision-making by
presenting the m-polar fuzzy linguistic ELECTRE-I method. For the related work, the readers are
suggested to [40–45].

We now turn to the motivation and key significance of the planned research effort. All existing
decision-making processes are successful and appropriate when the decision data are in precise or
vaguely imprecise form, but they cannot be exploited when the decision problem contains multipolar
imprecise data and 2-tuple linguistic information. We are inspired to extend the proposed MAGDM
method based on 2TLmF information for the following reasons.

• The 2TLmF set has a wide range of applications because it combines the advantages of 2TL
and m-polar fuzzy sets. However, handling 2-tuple linguistic methods, especially the 2TLmF
MAGDM method, in the multi-pole fuzzy case remains a hurdle for us, which we address in this
work.
• Existing strategies to solve the MAGDM problem are limited to dealing with m-polar ambiguous

information. These methods cannot account for 2-tuple linguistic data. Therefore, information
may be lost, leading to undesirable consequences. However, existing technical limitations can be
addressed using the newly proposed work.
• The limited literature on 2TLmFS is a major incentive of our research as there is no known

decision method, based on TOPSIS or ELECTRE approach, for processing 2TLmF data.
Therefore, 2TLmF-TOPSIS and 2TLmF ELECTRE-I models are developed to address this
research gap, which combine multi-polarity and 2-tuple linguistic terminology without adding
any complexity.

In this article, we offer two strategies, 2TLmF-TOPSIS and 2TLmF ELECTRE-I, based on the
2TLmF information as well as the combined flowchart for proposed work, to extract motivation from
the 2TLmFS. These two methods collect the information both linguistically and multi-polar numeric
values, which contribute to produce more reliable results. In 2TLmF-TOPSIS, we evaluate the
normalized Euclidean distance to access the distance among alternatives by using 2TLmF aggregated
weighted decision matrix, 2TLmFPIS, and 2TLmFNIS respectively. Finally, we rank the alternatives

AIMS Mathematics Volume 7, Issue 8, 14557–14594.



14560

by using the relative closeness index. Nevertheless, in the 2TLmF ELECTRE-I method, we can
compare the 2TLmF numbers by using their 2TLmF score and 2TLmF accuracy function. Firstly, we
obtain the 2TLmF-concordance and 2TLmF-discordance sets by comparing the superiority and
inferiority of every alternative over the other. Then, by utilizing these concordance and discordance
sets we can obtain the concordance and discordance matrices. Further, we can construct the 2TLmF
concordance dominance and 2TLmF discordance dominance matrix by comparing concordance and
discordance levels with 2TLmF-concordance and 2TLmF-discordance indices. Ultimately, we use the
outranking graph to select the most suitable alternative.

The rest of the proposed research article is organized as: Section 2 reviews some basic concepts
about 2-tuple linguistic (2TL) representation models, m-polar fuzzy sets (mF) and 2TLmFS. In
Section 3, we introduce the mathematical model of the 2TLmF-TOPSIS approach for MAGDM. In
Section 4, two numerical examples related to selection of highway construction project managers and
the textile industry are taken into account by using the 2TLmF-TOPSIS approach. In Section 5, we
present the 2TLm ELECTRE-I approach with a combined flowchart for 2TLmF-TOPSIS and 2TLm
ELECTRE-I approaches. Section 6 addresses the same practical difficulties already discussed in
Section 3, solved by using the 2TLmF ELECTRE-I method. Furthermore, in Section 7, we conduct a
comparative study to examine the effectiveness of the proposed method. The Section 8 contains the
contributions and limitations of the proposed work. The Section 9 gives conclusions and future
directions.

2. 2-tuple linguistic m-polar fuzzy sets

This section contains basic definitions that are necessary for this paper.

Definition 2.1. [24] Let ℘ = {c j | j = 0, . . . , σ} be a set of linguistic terms and ψ ∈ [0, σ] be a number
value illustrating the aggregation result of linguistic symbolic. Then the 2-tuple linguistic information
equivalent to ψ is obtained by using function Λ defined as

Λ : [0, σ]→ ℘ × [−0.5, 0.5),

Λ(ψ) =

c j, j = round(ψ)
ϱ = ψ − j, ϱ ∈ [−0.5, 0.5).

(2.1)

Definition 2.2. [24] Let ℘ = {c j| j = 0, . . . , σ} be a set of linguistic terms and (c j, ϱ j) be a 2-tuple, then
the function Λ−1 which restore the 2-tuple value to its equivalent numerical value ψ ∈ [0, σ] ⊂ R is
defined as

Λ−1 : ℘ × [−0.5, 0.5)→ [0, σ],
Λ−1(c j, ϱ) = j + ϱ = ψ. (2.2)

Definition 2.3. [24, 25] Consider (ct, ϱ1) and (cu, ϱ2) be two 2TL values. Then,

(1) For t < u, we have, (ct, ϱ1) < (cu, ϱ2).
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(2) If t=u, then
a) For ϱ1 = ϱ2 → (ct, ϱ1) and (cu, ϱ2) both are same.
b) For ϱ1 < ϱ2 → (ct, ϱ1) is less than (cu, ϱ2).
c) For ϱ1 > ϱ2 → (ct, ϱ1) is greater than (cu, ϱ2).

Definition 2.4. [15] An mF set Ç̂ on non-empty set Y is a mapping Ç̂ : Y → [0, 1]m. The membership
value for every element y ∈ Y is represented as

Ç̂ = (p1 ◦ Ç(y), p2 ◦ Ç(y), . . . , pm ◦ Ç(y)).

Here pi ◦ Ç : [0, 1]m → [0, 1] is the i−th projection mapping.
Where,

• The m-th power of [0, 1] is a poset with the point-wise order ≤, where m is any arbitrary ordinal
number (For convince, m = {n|n < m} when m > 0), ≤ is defined by x ≤ y ⇔ pi(x) ≤ pi(y) for
each i ∈ m ( x, y ∈ [0, 1]m).
• In the [0, 1]m, the greatest value is 1 = (1, 1, . . . , 1) and the smallest value is 0 = (0, 0, . . . , 0).
• For convince the mF number is represented as, Ç̂ = (p1 ◦ Ç, . . . , pm ◦ Ç).

Definition 2.5. [15] Let Ç̂1 = (p1 ◦ Ç1, . . . , pm ◦ Ç1), and Ç̂2 = (p1 ◦ Ç2, . . . , pm ◦ Ç2) be two m-polar
fuzzy numbers. Then by using score S and accuracy function H we have:

(1) If S(Ç̂1) < S(Ç̂2), than Ç̂1 < Ç̂2.
(2) If S(Ç̂1) > S(Ç̂2), than Ç̂1 > Ç̂2.
(3) If S(Ç̂1) = S(Ç̂2) and H(Ç̂1) = H(Ç̂2), than Ç̂1 = Ç̂2.
(4) If S(Ç̂1) = S(Ç̂2) but H(Ç̂1) < H(Ç̂2), than Ç̂1 < Ç̂2.
(5) If S(Ç̂1) = S(Ç̂2) but H(Ç̂1) > H(Ç̂2), than Ç̂1 > Ç̂2.

Definition 2.6. [28] A 2TLmF set Φ̂ on a nonempty set X is defined as

Φ̂ = {< x, ((cϕ1(x), ϱ1(x)), (cϕ2(x), ϱ2(x)), . . . , (cϕm(x), ϱm(x))) >: x ∈ X},

where, the membership degree is denoted as, (cϕi(x), ϱi(x)) with the conditions cϕi(x) ∈ Φ̂, ϱi(x) ∈
[−0.5, 0.5), 0 ≤ Λ−1(cϕi(x), ϱi(x)) ≤ σ, i = 1, 2, . . . ,m.

Conveniently, we say χ = ((cϕ1 , ϱ1), (cϕ2 , ϱ2), . . . , (cϕm , ϱm)), a 2-tuple linguistic m-polar fuzzy
number.

Definition 2.7. [28] The score function S of a 2TL m-polar fuzzy number,
χ̂ = ((cϕ1 , ϱ1), (cϕ2 , ϱ2), . . . , (cϕm , ϱm)), is defined as

S(χ̂) = Λ
(σ
m

m∑
r=1

(
Λ−1(cϕr , ϱr)

σ
)
)
, Λ−1(S(χ̂)) ∈ [0, σ].

Definition 2.8. [28] The accuracy function H of a 2TL m-polar fuzzy
number, χ̂ = ((cϕ1 , ϱ1), (cϕ2 , ϱ2), . . . , (cϕm , ϱm)), is defined as

H(χ̂) = Λ
(σ
m

m∑
r=1

(−1)r((
Λ−1(cϕr , ϱr)

σ
) − 1)

)
, Λ−1(H(χ̂)) ∈ [0, σ].
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Definition 2.9. [28] Let χ1 = ((cϕ1
1
, ϱ1

1), (cϕ1
2
, ϱ1

2), . . . , (cϕ1
m
, ϱ1

m)), and
χ2 = ((cϕ2

1
, ϱ2

1), (cϕ2
2
, ϱ2

2), . . . , (cϕ2
m
, ϱ2

m)), be two 2TLmF numbers. we define the following operations on
2TLmF numbers as:

(1) ρχ =
(
Λ
(
σ(1 − (1 − Λ

−1(cϕ1 ,ϱ1)
σ

)ρ)
)
, . . . ,Λ

(
σ(1 − (1 − Λ

−1(cϕm ,ϱm)
σ

)ρ)
))

, ρ > 0,

(2) χρ =
(
Λ
(
σ(Λ

−1(cϕ1 ,ϱ1)
σ

)ρ
)
, . . . ,Λ

(
σ(Λ

−1(cϕm ,ϱm)
σ

)ρ
))

, ρ > 0,

(3) χ1 ⊕ χ2 =
(
Λ(σ(

Λ−1(c
ϕ1

1
,ϱ1

1)

σ
+
Λ−1(c

ϕ2
1
,ϱ2

1)

σ
−
Λ−1(c

ϕ1
1
,ϱ1

1)

σ
.
Λ−1(c

ϕ2
1
,ϱ2

1)

σ
)
)
, . . . ,(

Λ(σ(
Λ−1(c

ϕ1
m
,ϱ1

m)

σ
+
Λ−1(c

ϕ2
m
,ϱ2

m)

σ
−
Λ−1(c

ϕ1
m
,ϱ1

m)

σ
.
Λ−1(c

ϕ2
m
,ϱ2

m)

σ
))
)
,

(4) χ1 ⊗ χ2 =
(
Λ(σ(

Λ−1(c
ϕ1

1
,ϱ1

1)

σ
.
Λ−1(c

ϕ2
1
,ϱ2

1)

σ
)), . . . ,Λ(σ(

Λ−1(c
ϕ1

m
,ϱ1

m)

σ
.
Λ−1(c

ϕ2
m
,ϱ2

m)

σ
))
)
.

Definition 2.10. Let χ1 = ((cϕ1
1
, ϱ1

1), (cϕ1
2
, ϱ1

2), . . . , (cϕ1
m
, ϱ1

m)), and χ2 = ((cϕ2
1
, ϱ2

1), (cϕ2
2
, ϱ2

2), . . . , (cϕ2
m
, ϱ2

m)),
be two 2TLmF sets. Then the normalized Euclidean distance between χ1 and χ2 is defined as

D(χ1, χ2) =

√
1
m

[(
Λ−1(cϕ1

1
, ϱ1

1)

σ
−
Λ−1(cψ2

1
, ϱ2

1)

σ

)2

+ . . . +

(
Λ−1(cϕ1

m
, ϱ1

m)
σ

−
Λ−1(cϕ2

m
, ϱ2

m)
σ

)2]
.

3. Structure of 2TLmF-TOPSIS method for MAGDM

In this section, we construct a mathematical tool to interact with the 2TLmF TOPSIS approach for
multi-attribute group decision making (MAGDM). In this approach, we consider
ℜ = {ℜ1,ℜ2, . . . ,ℜv} the set of decision makers who are recruited for decision-making. where each
expert (ℜu, u=1,2,. . . ,v) assigns a suitable rating to every attribute by observing its impact on
alternative and the ratings values must be in the form of 2TLmF numbers. The developed
2TLmF-TOPSIS method is used to evaluate the most desirable alternative which is closest to the
positive ideal solution (PIS) and farthest from negative ideal solution (NIS). Let 𭟋 = {𭟋1, 𭟋2, . . . , 𭟋k} be
the set of alternatives against the 2TLmF information from which the best one is selected based on
some attributes denoted as, ζ = {ζ1, ζ2, . . . , ζt}. let q, (q = 1, 2, . . . ,m) be the number of poles
according to m characteristics and (cϕq(x), ϱq(x)), q = 1, 2, . . . ,m be the number of membership values
to each pole. The weight vector for attributes is represented as, φ = {φ1, φ2, . . . , φt}, where φ ∈ [0, 1]
and Σt

p=1φp = 1. The main ambition is the evaluation of most desirable alternative as the solution of
this MAGDM problem. We present the proposed 2TLmF-TOPSIS method step by step as follows:

Step 1: In this step, a group of experts are responsible for assessing 2TLm-polar fuzzy information of
k distinct alternatives, and the appropriate ratings of alternatives are determined according to all
experts that are evaluated in terms of m various qualities. Tabular depiction of 2TLmF decision
matrix, Z(u) = (z(u)

i j )k×t = ((c(u)

ϕ
i j
1

, ϱ
i j(u)

1 ), (c(u)

ϕ
i j
2

, ϱ
i j(u)

2 ), . . . , (c(u)

ϕ
i j
m
, ϱ

i j(u)

m ))k×t, of predicted ratings under the group

of u decision-makers according to their choice is given below:
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Z(u) =

𭟋1

𭟋2

.

.

.

𭟋k



ζ1

((c(u)
ϕ11

1
, ϱ11(u)

1 ), (c(u)
ϕ11

2
, ϱ11(u)

2 ), . . . , (c(u)
ϕ11

m
, ϱ11(u)

m ))

ζ2

((c(u)
ϕ12

1
, ϱ12(u)

1 ), (c(u)
ϕ12

2
, ϱ12(u)

2 ), . . . , (c(u)
ϕ12

m
, ϱ12(u)

m ))
. . .
. . .

ζt

((c(u)
ϕ1t

1
, ϱ1t(u)

1 ), (c(u)
ϕ1t

2
, ϱ1t(u)

2 ), . . . , (c(u)
ϕ1t

m
, ϱ1t(u)

m ))

((c(u)
ϕ21

1
, ϱ21(u)

1 ), (c(u)
ϕ21

2
, ϱ21(u)

u2 ), . . . , (c(u)
ϕ21

m
, ϱ21(u)

m )) ((c(u)
ϕ22

1
, ϱ22(u)

1 ), (c(u)
ϕ22

2
, ϱ22(u)

2 ), . . . , (c(u)
ϕ22

m
, ϱ22(u)

m )) . . . ((c(u)
ϕ2t

1
, ϱ2t(u)

1 ), (c(u)
ϕ2t

2
, ϱ2t(u)

2 ), . . . , (c(u)
ϕ2t

m
, ϱ2t(u)

m ))

...
...

...
...

((c(u)
ϕk1

1
, ϱk1(u)

1 ), (c(u)
ϕk1

2
, ϱk1(u)

2 ), . . . , (c(u)
ϕk1

m
, ϱk1(u)

m )) ((c(u)
ϕk2

1
, ϱk2(u)

1 ), (c(u)
ϕk2

2
, ϱk2(u)

2 ), . . . , (c(u)
ϕk2

m
, ϱk2(u)

m )) . . . ((c(u)
ϕkt

1
, ϱkt(u)

1 ), (c(u)
ϕkt

2
, ϱkt(u)

2 ), . . . , (c(u)
ϕkt

m
, ϱkt(u)

m ))


.

Step 2: The weight vector for DMs denoted as ϖ = {ϖ1, ϖ1, . . . , ϖv}, depending on their importance
and weight vector satisfying ϖu ∈ [0, 1],

∑v
u=1 ϖu = 1. By utilizing the group decision making given

in matrix, Z(u) we drive the aggregated 2TLmF decision matrix
Z = (zi j)k×t = ((cϕi j

1
, ϱ

i j
1 ), (cϕi j

2
, ϱ

i j
2 ), . . . , (cϕi j

m
, ϱ

i j
m))k×t, by using 2TLmF weighted average operator

(2TLmFWA)defined as

zi j = 2T LmFWAϖ(z(1)
i j , z

(2)
i j , . . . , z

(v)
i j ),

= ϖ1z(1)
i j ⊕ϖ2z(2)

i j ⊕ . . . ⊕ϖnz(v)
i j ,

=

(
Λ(σ(1−

v∏
u=1

(1−
Λ−1(c(u)

ϕ
i j
1

,ϱ
i j(u)

1 )

σ
)ϖu)),Λ(σ(1−

v∏
u=1

(1−
Λ−1(c(u)

ϕ
i j
2

,ϱ
i j
2 )

σ
)ϖu)), . . . ,Λ(σ(1−

v∏
u=1

(1−
Λ−1(c(u)

ϕ
i j
m
,ϱ

i j
m)

σ
)ϖu))

)
.

The aggregated 2TLmF decision matrix which obtained by using the 2TLmFWA operator can be
displayed as:

Z =

𭟋1

𭟋2

.

.

.

𭟋k



ζ1

((c
ϕ11

1
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m ))
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1
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ϕ12

2
, ϱ12

2 ), . . . , (c
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m
, ϱ12

m ))
. . .
. . .

ζt
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ϕ1t

1
, ϱ1t

1 ), (c
ϕ1t

2
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2 ), . . . , (c
ϕ1t

m
, ϱ1t

m ))

((c
ϕ21

1
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1 ), (c
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2
, ϱ21
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m
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m )) ((c
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1
, ϱ22
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2
, ϱ22

2 ), . . . , (c
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m
, ϱ22

m )) . . . ((c
ϕ2t

1
, ϱ2t

1 ), (c
ϕ2t

2
, ϱ2t

2 ), . . . , (c
ϕ2t

m
, ϱ2t

m ))

.

.

.
.
.
.

.

.

.
.
.
.

((c
ϕk1

1
, ϱk1

1 ), (c
ϕk1

2
, ϱk1

2 ), . . . , (c
ϕk1

m
, ϱk1

m )) ((c
ϕk2

1
, ϱk2

1 ), (c
ϕk2

2
, ϱk2

2 ), . . . , (c
ϕk2

m
, ϱk2

m )) . . . ((c
ϕkt

1
, ϱkt

1 ), (c
ϕkt

2
, ϱkt

2 ), . . . , (c
ϕkt

m
, ϱkt

m))


.

Step 3: All of the attributes may not be equally significant. The decision-makers assigned the weights
to each attribute based on their relevance for the alternatives. Let φ = {φ1, φ2, . . . , φt}, be the weight
vector for attributes, it must satisfy the normality condition as, Σt

p=1φp = 1 where φ ∈ [0, 1].

Step 4: Compute the aggregated weighted 2TLmF decision matrix.

Ẑ = (ẑi j)k×t = ((ĉϕi j
1
, ϱ̂

i j
1 ), (ĉϕi j

2
, ϱ̂

i j
2 ), . . . , (ĉϕi j

m
, ϱ̂

i j
m))k×t,

where,

ẑi j = zi j ⊗ φp,

=

(
Λ(σ(1 − (1 −

Λ−1(c
ϕ

i j
1
,ϱ

i j
1 )

σ
)φ1)), . . . ,Λ

(
σ(1 − (1 −

Λ−1(c
ϕ

i j
m
,ϱ

i j
m)

σ
)φn)

))
, φp > 0, p = 1, 2, . . . , t.

AIMS Mathematics Volume 7, Issue 8, 14557–14594.



14564

The 2TLmF aggregated weighted decision matrix can be evaluated as

Ẑ =

𭟋1

𭟋2

.

.

.

𭟋k
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m
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 .

Step 5: Calculate the 2TLmF positive ideal solution (2T LmFPIS ) and 2TLmF negative ideal solution
(2T LmFNIS ) as

2T LmFPIS = ((ĉϕi j
1
, ϱ̂

i j
1 )+, (ĉϕi j

2
, ϱ̂

i j
2 )+, . . . , (ĉϕi j

m
, ϱ̂

i j
m)+),

=

{(
maxi(ĉϕi j

q
, ϱ̂

i j
q )| j ∈ I

)
,

(
mini(ĉϕi j

q
, ϱ̂

i j
q )| j ∈ J

)
|i = 1, 2, . . . , k

}
, q = 1, 2, . . . ,m

and

2T LmFNIS = ((ĉϕi j
1
, ϱ̂

i j
1 )−, (ĉϕi j

2
, ϱ̂

i j
2 )−, . . . , (ĉϕi j

m
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i j
m)−),

=

{(
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q
, ϱ̂

i j
q )| j ∈ I

)
,

(
maxi(ĉϕi j

q
, ϱ̂

i j
q )| j ∈ J

)
|i = 1, 2, . . . , k

}
, q = 1, 2, . . . ,m

where I and J are the benefit and cost criterions respectively.

Step 6: Compute the separation of each alternative lk, (i = 1, 2, . . . , k) from 2T LmFPIS and
2T LmFNIS , respectively, by using normalized Euclidean distance formula given as follows:

D̂(li, 2T LmFPIS ) =

√
1

mt

∑t
j=1

[(
Λ−1(c

ϕ
i j
1
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1 )

σ
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i j
m
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i j
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i j
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σ

)2]
,

D̂(li, 2T LmFNIS ) =

√
1

mt

∑t
j=1

[(
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ϕ
i j
1
,ϱ

i j
1 )

σ
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ϕ
i j
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i j
1 )−

σ

)2

+ . . . +

(
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ϕ
i j
m
,ϱ

i j
m)

σ
−
Λ−1(ĉ

ϕ
i j
m
,ϱ̂

i j
m)−

σ

)2]
.

Step 7: Compute the relative 2TLmF closeness index of each alternative which is defined as

Êi =
D̂(li, 2T LmFNIS )

D̂(li, 2T LmFPIS ) + D̂(li, 2T LmFNIS )
, i = 1, 2, . . . , k.

Step 8: Rank the objects based on their index values. The alternative which have the highest 2TLmF
closeness index will be the desired alternative.

4. Application

In this section, we apply the 2TLmF-TOPSIS method to select the meritable manager for the
project of highway construction and best textile industry which, transparently elaborate the proposed
model.
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4.1. Numerical Example I: Selection of highway construction project manager

Construction project management needs varieties of skills including the ability to interface with a
diverse range of agencies and groups of people to lead the project from idea to building. A manager
needs to follow the management principles during each phase of management and plays a crucial role
to make project planning, coordination, budgeting, and supervision of the construction project.
Construction planning is a challenging task in the management of projects. As the manager supervises
the project from an initial and makes decisions to define, the bidding process, contractor selection,
and project delivery method. Highway construction project managers are responsible for all aspects
related to building materials. They must look with engineers and architects to develop plans,
especially determining labor and material cost also, responsible for ensuring the project must
complete within budget and on time. Generally, project management is the resources management
over the life cycle of a project through different tools and methodologies to control cost, time and
quality, etc. The main objective is to develop a systematic method for identifying the best among the
candidates in the process of construction project manager selection. Let 𭟋 = {𭟋1, 𭟋2, 𭟋3, 𭟋4, 𭟋5, 𭟋6} be
the set of managers as an alternatives. The proposed work is examined by using a case study in a
project-based organization for selecting the most suitable project construction manager, in which six
candidates under four different criteria ζ = {ζ1, ζ2, ζ3, ζ4} are evaluated and prioritized by
decision-makers, ℜ = {ℜ1,ℜ2,ℜ3} with weight vector ϖ = {0.3571, 0.3455, 0.2974}. The hired
experts express their assessments using linguistic terms as, ℘={c0=extremely poor, c1=very poor,
c2=poor, c3=fair, c4=good, c5=very good, c6=extremely good}. However, if we continue to use these
linguistic terms, we may end up using the same linguistic term for various alternatives, making it
impossible to rank the options to draw conclusions. Therefore, we solve this problem using
zero-symbol translation, which transforms linguistic term data into 2TL data and allows us to rank
alternatives based on symbol translation. The decision-maker select the best one manager under the
following criteria:
ζ1: Basic requirements.
ζ2: Management Skills.
ζ3: Project management skills.
ζ4:Interpersonal skills.
Each criterion has been divided into four components to form a 2TL4-polar fuzzy set.

• Basic requirements: To select the best manager for a construction project, the decision-makers
must have a look at the basic needs for project management. Thus to make the 2TL4-polar fuzzy
set, we consider four factors of basic requirements as qualification, experience, communication
skills, and computer skills.
• Management skills: Construction management is a complex issue, so deal with management

skills involve the allocation of resources, cost management, risk management, and human
resources. Here we take the four factors of management skills as time management, budget
management, resources management, and Quality management.
• Project management skills: From the initial phase of the project, it is the responsibility of the

project manager to plan the entire process. staffing, creating benchmarks is the essential duty of
the project manager. It is used to evaluate and regulate project health. To make a 2TL4-polar
fuzzy set we consider four characteristics of Project management skills like planning, organizing,
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controlling, and monitoring progress
• Interpersonal skills: Interpersonal skills play a crucial role in project management skills. The

manager can eye on their team and address the issues that might arise. Take four factors as
problem-solving, decision-making, team development, and leadership skills. The subdivision of
criterion is elaborated in Figure 1.

• Basic 
requirements 

• Management 
skills

• Project 
management 

skills

•
Interpersonal 
skills

Criterion 
Ç1

Criterion 
Ç2

Criterion 
Ç3

Criterion 
Ç4

1. Time management
2. Budget management
3. Resources management
4. Quality management

1. Planning 
2. Organizing
3. Controlling
4. Monitor ing progress

1. Problem solving
2. Decision making
3. Team development 
4. Leadership skills

1.Qualification
2. Exper ience
3.Communication skills
4. Computer  skills 

Figure 1. Representation of criterion subdivision for 2TL4-polar fuzzy set.

We apply our proposed 2TLmF-TOPSIS method to solve MAGDM problem.

(1) The 2TLmF preference ratings of decision makersℜ1,ℜ2 andℜ3 are arranged in Tables 1, 2 and
3, respectively.

Table 1. 2TL4F decision matrix provided by first expertℜ1.

Alternatives Ç1 Ç2 Ç3 Ç4

𭟋1 ((c4, 0), (c2, 0), (c3, 0), (c4, 0)) ((c4, 0), (c3, 0), (c4, 0), (c5, 0)) ((c3, 0), (c5, 0), (c5, 0), (s4, 0)) ((c4, 0), (c3, 0), (c3, 0), (c4, 0))
𭟋2 ((c4, 0), (c5, 0), (c5, 0), (c4, 0)) ((c5, 0), (c4, 0), (c5, 0), (c4, 0)) ((c4, 0), (c5, 0), (c5, 0), (c4, 0)) ((c5, 0), (c6, 0), (c4, 0), (c3, 0))
𭟋3 ((c5, 0), (c6, 0), (c5, 0), (c5, 0)) ((c5, 0), (c5, 0), (c6, 0), (c4, 0)) ((c4, 0), (c5, 0), (c5, 0), (c5, 0)) ((c6, 0), (c5, 0), (c6, 0), (c5, 0))
𭟋4 ((c4, 0), (c3, 0), (c5, 0), (c3, 0)) ((c3, 0), (c5, 0), (c4, 0), (c4, 0)) ((c5, 0), (c2, 0), (c3, 0), (c5, 0)) ((c3, 0), (c4, 0), (c4, 0), (c4, 0))
𭟋5 ((c4, 0), (c3, 0), (c3, 0), (c3, 0)) ((c4, 0), (c3, 0), (c4, 0), (c3, 0)) ((c3, 0), (c4, 0), (c3, 0), (c4, 0)) ((c4, 0), (c3, 0), (c4, 0), (c4, 0))
𭟋6 ((c5, 0), (c5, 0), (c6, 0), (c5, 0)) ((c3, 0), (c4, 0), (c5, 0), (c4, 0)) ((c6, 0), (c4, 0), (c5, 0), (c5, 0)) ((c6, 0), (c5, 0), (c6, 0), (c5, 0))

Table 2. 2TL4F decision matrix provided by second expertℜ2.

Alternatives Ç1 Ç2 Ç3 Ç4

𭟋1 ((c4, 0), (c4, 0), (c3, 0), (c4, 0)) ((c4, 0), (c3, 0), (c5, 0), (c4, 0)) ((c3, 0), (c4, 0), (c5, 0), (s5, 0)) ((c4, 0), (c3, 0), (c4, 0), (c3, 0))
𭟋2 ((c5, 0), (c4, 0), (c5, 0), (c4, 0)) ((c4, 0), (c5, 0), (c4, 0), (c5, 0)) ((c4, 0), (c5, 0), (c4, 0), (c5, 0)) ((c4, 0), (c5, 0), (c5, 0), (c4, 0))
𭟋3 ((c5, 0), (c6, 0), (c5, 0), (c5, 0)) ((c5, 0), (c4, 0), (c6, 0), (c4, 0)) ((c5, 0), (c6, 0), (c5, 0), (c6, 0)) ((c5, 0), (c6, 0), (c5, 0), (c5, 0))
𭟋4 ((c4, 0), (c5, 0), (c4, 0), (c3, 0)) ((c4, 0), (c5, 0), (c5, 0), (c4, 0)) ((c4, 0), (c3, 0), (c4, 0), (c3, 0)) ((c4, 0), (c3, 0), (c4, 0), (c4, 0))
𭟋5 ((c3, 0), (c4, 0), (c3, 0), (c5, 0)) ((c5, 0), (c4, 0), (c3, 0), (c4, 0)) ((c4, 0), (c5, 0), (c4, 0), (c5, 0)) ((c3, 0), (c4, 0), (c3, 0), (c5, 0))
𭟋6 ((c6, 0), (c4, 0), (c6, 0), (c5, 0)) ((c4, 0), (c5, 0), (c4, 0), (c3, 0)) ((c6, 0), (c5, 0), (c5, 0), (c6, 0)) ((c6, 0), (c5, 0), (c4, 0), (c6, 0))
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Table 3. 2TL4F decision matrix provided by third expertℜ3.

Alternatives Ç1 Ç2 Ç3 Ç4

𭟋1 ((c5, 0), (c3, 0), (c4, 0), (c3, 0)) ((c4, 0), (c3, 0), (c4, 0), (c4, 0)) ((c3, 0), (c5, 0), (c5, 0), (s5, 0)) ((c4, 0), (c3, 0), (c5, 0), (c4, 0))
𭟋2 ((c4, 0), (c5, 0), (c4, 0), (c4, 0)) ((c5, 0), (c4, 0), (c5, 0), (c5, 0)) ((c4, 0), (c4, 0), (c5, 0), (c6, 0)) ((c3, 0), (c5, 0), (c3, 0), (c4, 0))
𭟋3 ((c5, 0), (c6, 0), (c5, 0), (c4, 0)) ((c4, 0), (c5, 0), (c6, 0), (c5, 0)) ((c4, 0), (c6, 0), (c5, 0), (c6, 0)) ((c4, 0), (c5, 0), (c6, 0), (c5, 0))
𭟋4 ((c4, 0), (c3, 0), (c3, 0), (c5, 0)) ((c5, 0), (c4, 0), (c4, 0), (c3, 0)) ((c4, 0), (c3, 0), (c4, 0), (c3, 0)) ((c4, 0), (c3, 0), (c3, 0), (c5, 0))
𭟋5 ((c4, 0), (c3, 0), (c4, 0), (c5, 0)) ((c4, 0), (c3, 0), (c3, 0), (c4, 0)) ((c3, 0), (c4, 0), (c4, 0), (c5, 0)) ((c3, 0), (c4, 0), (c4, 0), (c5, 0))
𭟋6 ((c6, 0), (c4, 0), (c5, 0), (c6, 0)) ((c4, 0), (c5, 0), (c5, 0), (c5, 0)) ((c6, 0), (c5, 0), (c6, 0), (c5, 0)) ((c6, 0), (c4, 0), (c5, 0), (c6, 0))

(2) The aggregated 2TL4F decision matrix as given in Table 4.

Table 4. Aggregated 2TL4-polar decision matrix by using 2TLmFWA operator.

Alternatives Ç1 Ç2

𭟋1 ((c4, 0.37256), (c3, 0.11000), (c3, 0.34079), (c4,−0.2563)) ((c4, 0.00000), (c3, 0.00000), (c4, 0.42592), (c4, 0.43853))
𭟋2 ((c4, 0.42592), (c5,−0.2705), (c5,−0.2289), (c4, 0.00000)) ((c5,−0.2705), (c4, 0.42592), (c5,−0.2705), (c5,−0.2808))
𭟋3 ((c5, 0.00000), (c6, 0.00001), (c5, 0.00000), (c5,−0.2289)) ((c5,−0.2289), (c5,−0.2705), (c6, 0.00000), (c4, 0.37256))
𭟋4 ((c4, 0.00000), (c4,−0.0524), (c4, 0.23842), (c4,−0.1638)) ((c4, 0.11901), (c5,−0.2289), (c4, 0.42592), (c4,−0.2563))
𭟋5 ((c4,−0.3007), (c3, 0.39215), (c3, 0.34079), (c5, 0.00000)) ((c4, 0.42592), (c3, 0.39215), (c3, 0.40439), (c4,−0.3115))
𭟋6 ((c6, 0.00000), (c4, 0.43853), (c6, 0.00000), (c6, 0.00000)) ((c4,−0.3115), (c5,−0.2808), (c5,−0.2705), (c4, 0.12783))

Alternatives Ç3 Ç4

𭟋1 ((c3, 0.00000), (c5,−0.2705), (c5, 0.00000), (c5,−0.2808)) ((c4, 0.00000), (c3, 0.00000), (c4, 0.11901), (c4,−0.3007))
𭟋2 ((c4, 0.00000), (c5,−0.22892), (c5,−0.2705), (c6, 0.00000)) ((c4, 0.23842), (c6, 0.00000), (c4, 0.22420), (c4,−0.3115))
𭟋3 ((c4, 0.42592), (c6, 0.00000), (c5, 0.00001), (c6, 0.00000)) ((c6, 0.00001), (c6, 0.00000), (c6, 0.00000), (c5, 0.00000))
𭟋4 ((c4, 0.43853), (c3,−0.3245), (c4,−0.3115), (c4,−0.0264)) ((c4,−0.3115), (c3, 0.40439), (c4,−0.2563), (c4, 0.37256))
𭟋5 ((c3, 0.39215), (c4, 0.39215), (c4,−0.3115), (c5,−0.2808)) ((c3, 0.00000), (c4, 0.00000), (c3, 0.34079), (c5,−0.2808))
𭟋6 ((c6, 0.00000), (c5,−0.2808), (c6, 0.00000), (c6, 0.00000)) ((c6, 0.00000), (c5,−0.2289), (c6, 0.00000), (c6, 0.00000))

(3) Suppose the decision makers assign the following weights to the each attribute.

φ=(φ1,φ2,φ3,φ4)=(0.3,0.2,0.4,0.1).

(4) The aggregated weighted 2TL4F decision matrix as given in Table 5.

Table 5. Aggregated weighted 2TL4-polar decision matrix.

Alternatives Ç1 Ç2

𭟋1 ((c2,−0.05655), (c1, 0.18079), (c1, 0.29963), (c2,−0.47430)) ((c1, 0.18355), (c1,−0.22330), (c1, 0.40880), (c1, 0.41618))
𭟋2 ((c2,−0.01617), (c2, 0.23376), (c2, 0.27124), (c2,−0.31533)) ((c2,−0.39867), (c1, 0.40880), (c2,−0.3986), (c2,−0.40575))
𭟋3 ((c2, 0.49485), (c6, 0.00000), (c2, 0.494851), (c2, 0.271240)) ((c2,−0.36944), (c2,−0.39867), (c6, 0.00000), (c1, 0.37808))
𭟋4 ((c2,−0.3153), (c2,−0.3489), (c2,−0.15409), (c2,−0.41848)) ((c1, 0.24228), (c2,−0.36944), (c1, 0.40880), (c1, 0.06597))
𭟋5 ((c1, 0.499431), (c1, 0.32705), (c1, 0.29963), (c2, 0.49485)) ((c1, 0.40880), (c1,−0.07898), (c1,−0.07421), (c1, 0.04203))
𭟋6 ((c6, 0.00000), (c2,−0.006501), (c6, 0.00000), (c6, 0.00000)) ((c1, 0.04203), (c2,−0.40575), (c2,−0.39867), (c1, 0.24676))

Alternatives Ç3 Ç4

𭟋1 ((c1, 0.45285), (c3,−0.22472), (c3, 0.06984), (c3,−0.23511)) ((c1,−0.37575), (c0, 0.40180), (c1,−0.34287), (c1,−0.45158))
𭟋2 ((c2, 0.13363), (c3,−0.18200), (c3,−0.22472), (c6, 0.00000)) ((c1,−0.30794), (c6, 0.00000), (c1,−0.31221), (c1,−0.45415))
𭟋3 ((c2, 0.486812), (c6, 0.00000), (c3, 0.06984), (c6, 0.00000)) ((c6, 0.00000), (c6, 0.00001), (c6, 0.00000), (c1,−0.01575))
𭟋4 ((c2, 0.48681), (c6, 0.00000), (c3, 0.069841), (c6, 0.00000)) ((c6, 0.00000), (c6, 0.00001), (c6, 0.00000), (c1,−0.01575))
𭟋5 ((c2,−0.29935), (c2, 0.48681), (c2,−0.0969), (c3,−0.2351)) ((c0, 0.40180), (c1,−0.37575), (c0, 0.4689), (c1,−0.14145))
𭟋6 ((c6, 0.00000), (c3,−0.23511), (c6, 0.00000), (c6, 0.00000)) ((c6, 0.00000), (c1,−0.12022), (c6, 0.00000), (c6, 0.00000))
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(6) The 2TL4F positive ideal solution (2T L4FPIS ) is given as

2T L4FPIS =

{(
(c6, 0.00000), (c6, 0.00000), (c6, 0.00000), (c6, 0.00000)

)
,(

(c2,−0.3694), (c2,−0.3694), (c6, 0.0000), (c2,−0.4057)
)
,(

(c6, 0.00000), (c6, 0.00000), (c6, 0.00000), (c6, 0.00000)
)
,(

(c6, 0.0000), (c6, 0.00000), (c6, 0.0000), (c6, 0.00000)
)}
.

(7) The 2TL4F negative ideal colution (2T L4FNIS ) is given below:

2T L4FNIc =

{(
(c1, 0.49943), (c1, 0.18079), (c1, 0.29963), (c2,−0.47430)

)
,(

(c1, 0.04203), (c1,−0.22330), (c1,−0.07421), (c1, 0.04203)
)
,(

(c1, 0.45285), (c1, 0.26210), (c2,−0.09690), (c2, 0.11324)
)
,(

(c0, 0.40180), (c0, 0.40180), (c0, 0.46890), (c1,−0.45415)
)}
.

(8) The 2TL4F distances of each alternatives from 2T L4FPIS and 2T L4FNIS are given in Table 6.

Table 6. 2TL4F distances of alternatives from 2T L4FPIS and 2T L4FNIS .

2T L4FPIS 2T L4FNIS

D̂( f1, 2T L4FPIS )=0.687770 D̂( f1, 2T L4FNIS )=0.090819
D̂( f2, 2T L4FPIS )=0.594904 D̂( f2, 2T L4FNIS )=0.306214
D̂( f3, 2T L4FPIS )=0.383263 D̂( f3, 2T L4FNIS )=0.569076
D̂( f4, 2T L4FPIS )=0.697161 D̂( f4, 2T L4FNIS )=0.068759
D̂( f5, 2T L4FPIS )=0.695246 D̂( f5, 2T L4FNIS )=0.075106
D̂( f6, 2T L4FPIS )=0.354904 D̂( f6, 2T L4FNIS )=0.605143

(9) Relative 2TL4F closeness coefficients are given in Table 7.

Table 7. Relative closeness index.

Êi Closeness index values
Ê1 0.116646
Ê2 0.339816
Ê3 0.597555
Ê4 0.089773
Ê5 0.097496
Ê6 0.630326
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(10) Ranking of objects based on their index values.

𭟋6 > 𭟋3 > 𭟋2 > 𭟋1 > 𭟋5 > 𭟋4.

Thus, 𭟋6 is a best alternative.

4.2. Numerical Example II: Selection of the best textile industry

The industry is considered as the fundamental element for the economic development of any
country, especially the textile industry contributes significantly to the country gross domestic products
(GDP’s), exports as well as employment. The textile industry is concerned, with the design,
production, and distribution of yarn and clothing. It is the largest manufacturing industry, in fact the
backbone of Pakistan’s economy. In 1947, there were only 6 spinning factories in Pakistan, which
have now grown to figure 503. Pakistan is the world’s fourth-largest cotton grower, with the
third-largest spinning capacity in Asia after China and India, 5 percent of worldwide spinning
capacity, and the eighth-largest exporter of textile products. There are currently 1,221 ginning units,
442 spinning units, 124 big spinning units, and 425 small spinning units manufacturing textiles. This
sector generates 9.5 percent of GDP and employs around 15 million people or roughly 30 percent of
the country’s 49 million workers. The development of a textile industry that makes full use of
Pakistan’s enormous cotton resources has been a priority area for the industrialization of Pakistan,
which was formerly one of the world’s leading producers of cotton. The main ambition is to develop a
systematic scheme for identifying the best textile industry by using the proposed approach. Let
L = {L1,L2,L3,L4,L5,L6} be the set of alternatives as an textile industries. The decision-makers,
ℵ = {ℵ1,ℵ2,ℵ3} with weight vector ω̆ = {0.391, 0.362, 0.247} express their assessments using
linguistic terms as, ℘̂={ℏ0=very un-preferable , ℏ1= un-preferable, ℏ2=medium un-preferable,
ℏ3=medium, ℏ4= medium preferable, ℏ5=preferable, ℏ6=very preferable, ℏ7=very very preferable,
ℏ8=extremely preferable}.

The decision-maker select the best textile industry under the following criterion:
T1: Financial Condition and Performance,
T2: Industrial Information,
T3: ESG Unification.
Each criterion has been divided into six components to form a 2TL6-polar fuzzy set.

• Financial condition and performance: The high financial performance is attractive for investors.
Financial analysis not only helps you to understand your company’s financial conditions, helping
you to understand its creditworthiness, profitability, and ability to generate wealth but will also
provide you with a more in-depth look at how well it operates internally. It plays a crucial role
to evaluate economic trends and setting financial policies to build long-term plans for business
activity. Financial reporting and taxation frameworks apply to textile companies like other sectors.
These include budgeting and forecasting, financing, and treasury options. To make a 2TL6-polar
fuzzy set we take Gross profit margin, net profit margin, inventory turnover, return on assets,
return on equity, debt-to-equity ratio.
• Industrial information: In the evaluation of industrial development, industrial development

information is an important factor. we take six factors of industrial information as industrial
history, innovation capability, availability of resources or technology options, service offering,
fabric care or fabric selection, new sustainable policies.
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• ESG unification: The ESG integration is the collection of economic, social, and governmental
factors which plays pivotal role for the industrial burgeoning. To make a 2TL6-polar fuzzy set, we
consider six factors of ESG as energy-efficient designs, pollution prevention, regulatory standards,
renewable energy sources, waste treatment and hazardous engineering processes.The subdivision
of criterion is elaborated in Figure 2.

Selection of best textile industry

T1 : Financial Condition and 
Performance

T2 : Industrial Information T3 : ESG Unification

Energy efficient 
designs

Pollution 
prevention

Regulatory 
standards

Renewable 
energy sources 

Waste treament

Hazardous 
engineering 
processes

Gross profit 
margin 

Industrial history

Availability of 
resources or 
technology 

options

Innovation 
capability

Service offering

Fabric care or 
fabric selection

New sustainable 
policies

Debit to equity 
ratio

Return on equity

Return on assets

Inventory turnover

Net profit margin

Figure 2. Representation of criterion subdivision for 2TL6F set.

(1) The 2TLmF preference ratings of decision makers ℵ1, ℵ2 and ℵ3 are arranged in Tables 8, 9 and
10, respectively.

Table 8. 2TL6F decision matrix provided by first expert ℵ1.

Alternatives T1 T2 T3

L1 ((ℏ4, 0), (ℏ4, 0), (ℏ5, 0), (ℏ4, 0), (ℏ5, 0), (ℏ4, 0)) ((ℏ3, 0), (ℏ4, 0), (ℏ5, 0), (ℏ6, 0), (ℏ5, 0), (ℏ6, 0)) ((ℏ5, 0), (ℏ4, 0), (ℏ5, 0), (ℏ3, 0), (ℏ5, 0), (ℏ4, 0))

L2 ((ℏ5, 0), (ℏ6, 0), (ℏ4, 0), (ℏ5, 0), (ℏ7, 0), (ℏ6, 0)) ((ℏ4, 0), (ℏ5, 0), (ℏ4, 0), (ℏ6, 0), (ℏ5, 0), (ℏ7, 0)) ((ℏ6, 0), (ℏ5, 0), (ℏ7, 0), (ℏ5, 0), (ℏ7, 0), (ℏ6, 0))

L3 ((ℏ4, 0), (ℏ2, 0), (ℏ5, 0), (ℏ4, 0), (ℏ3, 0), (ℏ5, 0)) ((ℏ2, 0), (ℏ4, 0), (ℏ5, 0), (ℏ3, 0), (ℏ5, 0), (ℏ3, 0)) ((ℏ4, 0), (ℏ3, 0), (ℏ5, 0), (ℏ4, 0), (ℏ3, 0), (ℏ5, 0))

L4 ((ℏ5, 0), (ℏ7, 0), (ℏ4, 0), (ℏ5, 0), (ℏ4, 0), (ℏ7, 0)) ((ℏ5, 0), (ℏ4, 0), (ℏ6, 0), (ℏ8, 0), (ℏ4, 0), (ℏ5, 0)) ((ℏ7, 0), (ℏ5, 0), (ℏ4, 0), (ℏ6, 0), (ℏ5, 0), (ℏ6, 0))

L5 ((ℏ5, 0), (ℏ6, 0), (ℏ5, 0), (ℏ4, 0), (ℏ4, 0), (ℏ5, 0)) ((ℏ5, 0), (ℏ6, 0), (ℏ4, 0), (ℏ5, 0), (ℏ5, 0), (ℏ4, 0)) ((ℏ6, 0), (ℏ7, 0), (ℏ6, 0), (ℏ5, 0), (ℏ6, 0), (ℏ5, 0))

L6 ((ℏ5, 0), (ℏ5, 0), (ℏ6, 0), (ℏ7, 0), (ℏ5, 0), (ℏ6, 0)) ((ℏ5, 0), (ℏ6, 0), (ℏ5, 0), (ℏ4, 0), (ℏ6, 0), (ℏ7, 0)) ((ℏ6, 0), (ℏ5, 0), (ℏ5, 0), (ℏ6, 0), (ℏ7, 0), (ℏ6, 0))
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Table 9. 2TL6F decision matrix provided by second expert ℵ2.

Alternatives T1 T2 T3

L1 ((ℏ4, 0), (ℏ3, 0), (ℏ5, 0), (ℏ4, 0), (ℏ5, 0), (ℏ4, 0)) ((ℏ3, 0), (ℏ5, 0), (ℏ5, 0), (ℏ6, 0), (ℏ6, 0), (ℏ5, 0)) ((ℏ5, 0), (ℏ4, 0), (ℏ5, 0), (ℏ3, 0), (ℏ6, 0), (ℏ4, 0))

L2 ((ℏ5, 0), (ℏ6, 0), (ℏ5, 0), (ℏ4, 0), (ℏ7, 0), (ℏ5, 0)) ((ℏ5, 0), (ℏ4, 0), (ℏ5, 0), (ℏ6, 0), (ℏ5, 0), (ℏ5, 0)) ((ℏ6, 0), (ℏ4, 0), (ℏ7, 0), (ℏ5, 0), (ℏ6, 0), (ℏ7, 0))

L3 ((ℏ4, 0), (ℏ5, 0), (ℏ3, 0), (ℏ4, 0), (ℏ5, 0), (ℏ4, 0)) ((ℏ3, 0), (ℏ5, 0), (ℏ4, 0), (ℏ3, 0), (ℏ5, 0), (ℏ3, 0)) ((ℏ4, 0), (ℏ3, 0), (ℏ5, 0), (ℏ4, 0), (ℏ3, 0), (ℏ3, 0))

L4 ((ℏ4, 0), (ℏ5, 0), (ℏ6, 0), (ℏ5, 0), (ℏ5, 0), (ℏ7, 0)) ((ℏ5, 0), (ℏ7, 0), (ℏ6, 0), (ℏ8, 0), (ℏ4, 0), (ℏ5, 0)) ((ℏ6, 0), (ℏ5, 0), (ℏ7, 0), (ℏ6, 0), (ℏ5, 0), (ℏ5, 0))

L5 ((ℏ6, 0), (ℏ5, 0), (ℏ5, 0), (ℏ4, 0), (ℏ5, 0), (ℏ6, 0)) ((ℏ4, 0), (ℏ6, 0), (ℏ4, 0), (ℏ7, 0), (ℏ6, 0), (ℏ5, 0)) ((ℏ6, 0), (ℏ7, 0), (ℏ6, 0), (ℏ5, 0), (ℏ7, 0), (ℏ6, 0))

L6 ((ℏ6, 0), (ℏ7, 0), (ℏ5, 0), (ℏ4, 0), (ℏ6, 0), (ℏ7, 0)) ((ℏ5, 0), (ℏ6, 0), (ℏ5, 0), (ℏ7, 0), (ℏ6, 0), (ℏ7, 0)) ((ℏ5, 0), (ℏ4, 0), (ℏ5, 0), (ℏ6, 0), (ℏ5, 0), (ℏ4, 0))

Table 10. 2TL6F decision matrix provided by third expert ℵ3.

Alternatives T1 T2 T3

L1 ((ℏ3, 0), (ℏ4, 0), (ℏ5, 0), (ℏ3, 0), (ℏ5, 0), (ℏ5, 0)) ((ℏ4, 0), (ℏ5, 0), (ℏ4, 0), (ℏ5, 0), (ℏ5, 0), (ℏ6, 0)) ((ℏ5, 0), (ℏ6, 0), (ℏ5, 0), (ℏ4, 0), (ℏ3, 0), (ℏ5, 0))

L2 ((ℏ6, 0), (ℏ5, 0), (ℏ6, 0), (ℏ4, 0), (ℏ6, 0), (ℏ4, 0)) ((ℏ4, 0), (ℏ5, 0), (ℏ6, 0), (ℏ5, 0), (ℏ6, 0), (ℏ5, 0)) ((ℏ6, 0), (ℏ5, 0), (ℏ6, 0), (ℏ6, 0), (ℏ5, 0), (ℏ7, 0))

L3 ((ℏ5, 0), (ℏ4, 0), (ℏ3, 0), (ℏ6, 0), (ℏ4, 0), (ℏ7, 0)) ((ℏ2, 0), (ℏ6, 0), (ℏ4, 0), (ℏ6, 0), (ℏ7, 0), (ℏ6, 0)) ((ℏ6, 0), (ℏ4, 0), (ℏ3, 0), (ℏ5, 0), (ℏ6, 0), (ℏ5, 0))

L4 ((ℏ7, 0), (ℏ5, 0), (ℏ6, 0), (ℏ4, 0), (ℏ5, 0), (ℏ4, 0)) ((ℏ6, 0), (ℏ7, 0), (ℏ5, 0), (ℏ4, 0), (ℏ5, 0), (ℏ5, 0)) ((ℏ5, 0), (ℏ7, 0), (ℏ5, 0), (ℏ6, 0), (ℏ5, 0), (ℏ7, 0))

L5 ((ℏ4, 0), (ℏ5, 0), (ℏ4, 0), (ℏ5, 0), (ℏ4, 0), (ℏ6, 0)) ((ℏ5, 0), (ℏ6, 0), (ℏ7, 0), (ℏ6, 0), (ℏ5, 0), (ℏ4, 0)) ((ℏ4, 0), (ℏ6, 0), (ℏ5, 0), (ℏ6, 0), (ℏ5, 0), (ℏ6, 0))

L6 ((ℏ5, 0), (ℏ4, 0), (ℏ5, 0), (ℏ4, 0), (ℏ5, 0), (ℏ7, 0)) ((ℏ5, 0), (ℏ6, 0), (ℏ5, 0), (ℏ4, 0), (ℏ5, 0), (ℏ6, 0)) ((ℏ5, 0), (ℏ6, 0), (ℏ5, 0), (ℏ7, 0), (ℏ5, 0), (ℏ4, 0))

(2) The aggregated 2TL6F decision matrix by using 2TLmFWA operator as given in Table 11.

Table 11. Aggregated 2TL6-polar decision matrix.

Alternatives T1

L1 ((ℏ4,−0.226654), (ℏ4,−0.336520), (ℏ5, 0.000000), (ℏ4,−0.226654), (ℏ5, 0.000000), (ℏ4, 0.274366))
L2 ((ℏ5, 0.285894), (ℏ6,−0.210673), (ℏ5,−0.037230), (ℏ4, 0.425552), (ℏ7,−0.186736), (ℏ5, 0.251286))
L3 ((ℏ4, 0.274366), (ℏ4,−0.223610), (ℏ4,−0.094747), (ℏ5,−0.370587), (ℏ4, 0.066999), (ℏ5, 0.461950))
L4 ((ℏ5, 0.461950), (ℏ6, 0.047608), (ℏ5, 0.377395), (ℏ5,−0.220928), (ℏ5,−0.357162), (ℏ7,−0.408344))
L5 ((ℏ5, 0.218775), (ℏ5, 0.439825), (ℏ5,−0.220928), (ℏ4, 0.274366), (ℏ4, 0.395606), (ℏ6,−0.3435901))
L6 ((ℏ5, 0.409544), (ℏ6,−0.164029), (ℏ5, 0.439825), (ℏ6,−0.326240), (ℏ5, 0.409544), (ℏ7,−0.311302))

Alternatives T2

L1 ((ℏ3, 0.268125), (ℏ5,−0.357162), (ℏ5,−0.220928), (ℏ6,−0.210673), (ℏ5, 0.409544), (ℏ6,−0.316194))
L2 ((ℏ4, 0.395606), (ℏ5,−0.329270), (ℏ5,−0.037230), (ℏ6,−0.210673), (ℏ5, 0.285894), (ℏ6, 0.047608))
L3 ((ℏ2, 0.383217), (ℏ5,−0.037230), (ℏ4, 0.425552), (ℏ4, 0.012700), (ℏ6,−0.287032), (ℏ4, 0.012700))
L4 ((ℏ5, 0.2858941), (ℏ6, 0.2804870), (ℏ6,−0.210673), (ℏ8, 0.000000), (ℏ4, 0.274366), (ℏ5, 0.000000))
L5 ((ℏ5,−0.3292700), (ℏ6, 0.000000), (ℏ5, 0.1597852), (ℏ6, 0.1764870), (ℏ5, 0.409544), (ℏ4, 0.395606))
L6 ((ℏ5, 0.000000), (ℏ6, 0.000000), (ℏ5, 0.000000), (ℏ6,−0.421666), (ℏ6,−0.210673), (ℏ7,−0.186736))

Alternatives T3

L1 ((ℏ5, 0.000000), (ℏ5,−0.370587), (ℏ5, 0.000000), (ℏ3, 0.268125), (ℏ5, 0.061180), (ℏ4, 0.274366))
L2 ((ℏ6, 0.0000), (ℏ5,−0.329270), (ℏ7,−0.186736), (ℏ6,−0.343590), (ℏ6, 0.047608), (ℏ7,−0.311302))
L3 ((ℏ5,−0.370587), (ℏ3, 0.268125), (ℏ5,−0.403438), (ℏ4, 0.274366), (ℏ4, 0.012700), (ℏ4, 0.390637))
L4 ((ℏ6, 0.314138), (ℏ6,−0.287032), (ℏ6,−0.255560), (ℏ6, 0.000000), (ℏ5, 0.000000), (ℏ6, 0.048266))
L5 ((ℏ6,−0.373473), (ℏ7,−0.186736), (ℏ6,−0.210673), (ℏ5, 0.28589), (ℏ6, 0.279907), (ℏ6,−0.34359))
L6 ((ℏ5, 0.439825), (ℏ5,−0.011997), (ℏ5, 0.000000), (ℏ6, 0.314706), (ℏ6, 0.047608), (ℏ5,−0.050403))
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(3) Suppose the decision makers assign the following weights to the each attribute.

ℑ=(ℑ1,ℑ2,ℑ3)=(0.421,0.234,0.345).

(4) The aggregated weighted 2TL6F decision matrix as given in Table 12.

Table 12. Aggregated weighted 2TL6-polar decision matrix.

Alternatives T1

L1 ((ℏ2,−0.115524), (ℏ2,−0.18195), (ℏ3,−0.293673), (ℏ2,−0.115524), (ℏ3,−0.293673), (ℏ2, 0.20084))
L2 ((ℏ3,−0.075115), (ℏ3, 0.344847), (ℏ3,−0.321232), (ℏ2, 0.301112), (ℏ4, 0.417449), (ℏ3,−0.102260))
L3 ((ℏ2, 0.200849), (ℏ2,−0.113670), (ℏ2,−0.034436), (ℏ2, 0.440277), (ℏ2, 0.067088), (ℏ3, 0.066175))
L4 ((ℏ3, 0.066175), (ℏ4,−0.417918), (ℏ3,−0.002367), (ℏ3,−0.454427), (ℏ2, 0.449610), (ℏ4, 0.149691))
L5 ((ℏ3,−0.127580), (ℏ3, 0.048114), (ℏ3,−0.454427), (ℏ2, 0.200849), (ℏ2, 0.281061), (ℏ3, 0.229001))
L6 ((ℏ3, 0.023540), (ℏ3, 0.386453), (ℏ3, 0.048114), (ℏ3, 0.0481141), (ℏ3, 0.0235401), (ℏ4, 0.26369810))

Alternatives T2

L1 ((ℏ1,−0.074971), (ℏ1, 0.471033), (ℏ2,−0.465982), (ℏ2, 0.079128), (ℏ2,−0.144647), (ℏ2, 0.014171))
L2 ((ℏ1, 0.361565), (ℏ1, 0.483766), (ℏ2,−0.377738), (ℏ2, 0.079128), (ℏ2,−0.212059), (ℏ2, 0.248785))
L3 ((ℏ1,−0.364563), (ℏ2,−0.377738), (ℏ1, 0.425552), (ℏ1, 0.202866), (ℏ2, 0.031892), (ℏ1, 0.202866))
L4 ((ℏ2,−0.212059), (ℏ2, 0.417203), (ℏ2, 0.079128), (ℏ8, 0.00000), (ℏ1, 0.309974), (ℏ2,−0.35935810))
L5 ((ℏ1, 0.483766), (ℏ2, 0.216270), (ℏ2,−0.278430), (ℏ2, 0.339958), (ℏ2,−0.144647), (ℏ1, 0.361565))
L6 ((ℏ2,−0.359358), (ℏ2, 0.216270), (ℏ2,−0.359358), (ℏ2,−0.048527), (ℏ2, 0.07912), (ℏ3,−0.11877))

Alternatives T3

L1 ((ℏ2, 0.296640), (ℏ2, 0.062790), (ℏ2, 0.296640), (ℏ1, 0.325628), (ℏ2, 0.3370380), (ℏ2,−0.1459351))
L2 ((ℏ3, 0.041169), (ℏ2, 0.088000), (ℏ4,−0.141676), (ℏ3,−0.237609), (ℏ3, 0.082215), (ℏ4,−0.286781))
L3 ((ℏ2, 0.062790), (ℏ1, 0.325628), (ℏ2, 0.042890), (ℏ2,−0.145935), (ℏ2,−0.291556), (ℏ2,−0.079074))
L4 ((ℏ3, 0.325044), (ℏ3,−0.193652), (ℏ3,−0.168883), (ℏ3, 0.041169), (ℏ2, 0.296640), (ℏ3, 0.082786))
L5 ((ℏ3,−0.26055), (ℏ4,−0.141676), (ℏ3,−0.133161), (ℏ2, 0.490335), (ℏ3, 0.29251), (ℏ3,−0.237609))
L6 ((ℏ3,−0.399790), (ℏ2, 0.2887811), (ℏ2, 0.296640), (ℏ3, 0.3255870), (ℏ3, 0.082215), (ℏ2, 0.263761))

(5) The 2TL6F positive ideal solution (2T L6FPIS ) is given as

2T L6FPIS ={(
(ℏ3, 0.066175), (ℏ4,−0.417918), (ℏ3, 0.048114),

(ℏ3, 0.243903), (ℏ4, 0.417449), (ℏ4, 0.263698)
)
,(

(ℏ2,−0.212059), (ℏ2, 0.417203), (ℏ2, 0.079128),

(ℏ8, 0.000000), (ℏ2, 0.079128), (ℏ3,−0.118772)
)
,(

(ℏ3, 0.325044), (ℏ4,−0.141676), (ℏ4,−0.141676),

(ℏ3, 0.325587), (ℏ3, 0.292511), (ℏ4,−0.286781)
)}
.
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(6) The 2TL6F negative ideal solution (2T L6FNIS ) is

2T L6FNIS ={(
(ℏ2,−0.115524), (ℏ2,−0.181952), (ℏ2,−0.034436),

(ℏ2,−0.115524), (ℏ2, 0.067088), (ℏ2, 0.200849)
)
,(

(ℏ1,−0.364563), (ℏ1, 0.471033), (ℏ1, 0.374512),

(ℏ1, 0.202866), (ℏ1, 0.309974), (ℏ1, 0.202866)
)
,(

(ℏ2, 0.062790), (ℏ1, 0.325628), (ℏ2, 0.042890),

(ℏ1, 0.325628), (ℏ2,−0.291556), (ℏ2,−0.145935)
)}
.

(7) The 2TL6F distances of each alternatives from 2T L6FPIS and 2T L6FNIS are given in Table 13.

Table 13. 2TL6F distances of alternatives from 2T L6FPIS and 2T L6FNIS .

2T L6FPIS 2T L6FNIS

D̂(l1, 2T L6FPIS )=0.240336 D̂(l1, 2T L6FNIS )=0.057793
D̂(l2, 2T L6FPIS )=0.193977 D̂(l2, 2T L6FNIS )=0.147393
D̂(l3, 2T L6FPIS )=0.268528 D̂(l3, 2T L6FNIS )=0.041564
D̂(l4, 2T L6FPIS )=0.093810 D̂(l4, 2T L6FNIS )=0.243444
D̂(l5, 2T L6FPIS )=0.197382 D̂(l5, 2T L6FNIS )=0.129373
D̂(l6, 2T L6FPIS )=0.200682 D̂(l6, 2T L6FNIS )=0.146986

(8) Relative 2TL6F closeness coefficients are given in Table 14.

Table 14. Relative closeness index.

Êi Closeness index values

Ê1 0.193852
Ê2 0.431768
Ê3 0.134039
Ê4 0.721839
Ê5 0.395933
Ê6 0.422776

(9) Ranking of objects based on their index values.

L4 > L2 > L6 > L5 > L1 > L3.
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Thus, L4 is a best alternative.

5. Another mathematical approach for MAGDM

5.1. Structure of 2TLmF ELECTRE-I method

In this section, we develop another mathematical technique, to deal with multi-attribute group
decision making (MAGDM), namely, the 2TLmF ELECTRE-I approach comprising 2TLmF
information. In this approach, a group of experts is selected to choose the best alternative. Each
expert (ℜu, u=1,2,. . . ,v) has the right of assigning the 2TLmF number to each alternative with respect
to criteria. Let 𭟋 = {𭟋1, 𭟋2, . . . , 𭟋k} be the set of alternatives against the 2TLmF information from
which the best one is selected based on some attributes denoted as, ζ = {ζ1, ζ2, . . . , ζt}. Let q,
(q = 1, 2, . . . ,m) be the number of poles according to m characteristics and (cϕq(x), ϱq(x)),
q = 1, 2, . . . ,m be the number of membership values to each pole. The weight vector for attributes is
represented by, φ = {φ1, φ2, . . . , φt}, where φ ∈ [0, 1], the weights are given by the experts must satisfy
the normality condition as, Σt

j=1φ j = 1.
The main target is the selection of the most desirable alternative as the solution to this MAGDM

problem. We describe the 2TLmF ELECTRE-1 method step by step as follows.
In 2TLmF ELECTRE-1 method, (Step 1–Step 4) are same as in 2TLmF-TOPSIS method, already

described in Section 3.

Step 5: The core concept behind the ELECTRE-1 method is to compare the distinct alternatives in
pairs, the 2TLmFNs are compared by using the score and accuracy function. In case when two
alternatives have the same score function, than we calculate accuracy function. The 2TLmF
concordance sets are constructed as defined below:

Mrs =
{
1 ≤ j ≤ k :

(
ĉϕr j

q
, ϱ̂

r j
q
)
≥

(
ĉϕs j

q
, ϱ̂

s j
q
)
; r , s; r, s = 1, 2, . . . , k

}
, q = 1, 2, . . . ,m

where,

(ĉϕi j
q
, ϱ̂

i j
q ) = Λ

(
σ
m

(
Λ−1(c

ϕ1
i j
,ϱ1

i j)

σ
+
Λ−1(c

ϕ2
i j
,ϱ2

i j)

σ
+ . . . +

Λ−1(c
ϕ2

i j
,ϱ2

i j)

ϱ

))
.

Step 6: The 2TLmF discordance sets are the complementary subsets of 2TLmF concordance sets. The
2TLmF discordance sets are constructed as

Nrs =
{
1 ≤ j ≤ k :

(
ĉϕr j

q
, ϱ̂

r j
q
)
≤

(
ĉϕs j

q
, ϱ̂

s j
q
)
; r , s; r, s = 1, 2, . . . , k

}
, q = 1, 2, . . . ,m

where,

(ĉϕi j
q
, ϱ̂

i j
q ) = Λ

(
σ
m

(
Λ−1(c

ϕ1
i j
,ϱ1

i j)

σ
+
Λ−1(c

ϕ2
i j
,ϱ2

i j)

σ
+ . . . +

Λ−1(c
ϕ2

i j
,ϱ2

i j)

ϱ

))
.

Step 7: The 2TLmF concordance indices prs’s are calculated by means of weights assigned to the
concordance indicators involved in the corresponding concordance sets as

prs =
∑

j∈Prs
φ j,∀r, s.
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Step 8: The 2TLmF concordance matrix P can be obtained by arranging all the 2TLmF concordance
indices prs’s as below:

P =



– p12 . . . p1(k−1) p1k

p21 – . . . p2(k−2) p2k
...

...
. . .

...
...

p(k−1)1 p(k−2)2 . . . – p(k−1)k

pk1 pk2 . . . p(k−1)k –


.

Step 9: On contrary to the 2TLmF concordance indices, the 2TLmF discordance indices qrs’s are the
extent in which one alternative is inferior to other. The 2TLmF discordance indices are obtained by
using normalized Euclidean distance d(ẑr j, ẑs j), as defined below:

qrs =
max j∈Qrs

(
d(ẑr j, ẑs j)

)
max j

(
d(ẑr j, ẑs j)

) ,

=

max j∈Qrs

√√√√√√
1
m

[(
Λ−1(ĉ

ϕ
r j
1
,ϱ̂

r j
1 )

σ −

Λ−1(ĉ
ψ

s j
1
,ϱ̂

s j
1 )

σ

)2

+...+

(
Λ−1(ĉ

ϕ
r j
m
,ϱ̂

r j
m )

σ −

Λ−1(ĉ
ψ

s j
m
,ϱ̂

s j
m )

σ

)2]
max j

√√√√√√
1
m

[(
Λ−1(ĉ

ψ
r j
1
,ϱ̂

r j
1 )

σ −

Λ−1(ĉ
ψ

s j
1
,ϱ̂

s j
1 )

σ

)2

+...+

(
Λ−1(ĉ

ψ
r j
m
,ϱ̂

r j
m )

σ −

Λ−1(ĉ
ψ

s j
m
,ϱ̂

s j
m )

σ

)2] , ∀ r,s.

Step 10: The 2TLmF discordance matrix Q can be obtained by arranging all the 2TLmF discordance
indices qrs’s as below:

Q =



– q12 . . . q1(k−1) q1k

q21 – . . . q2(k−2) q2k
...

...
. . .

...
...

q(k−1)1 q(k−2)2 . . . – q(k−1)k

qk1 qk2 . . . qk(k−1) –


.

Step 11: Now, we evaluate the 2TLmF concordance level p̄ and 2TLmF discordance level q̄. The
2TLmF concordance level and the 2TLmF discordance level are obtained by calculating average of
2TLmF concordance and 2TLmF discordance indices as defined below:

p̄ =
1

k(k − 1)

k∑
r=1
r,s

k∑
s=1
r,s

prs,

q̄ =
1

k(k − 1)

k∑
r=1
r,s

k∑
s=1
r,s

qrs.

Step 12: According to concordance and discordance level, the 2TLmF concordance dominance matrix
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and 2TLmF discordance dominance matrix are constructed as

Υ =



– γ12 . . . γ1(k−1) γ1k

γ21 – . . . γ2(k−1) γ2k
...

...
. . .

...
...

γ(k−1)1 γ(k−2)2 . . . – γ(k−1)k

γk1 γk2 . . . γk(k−1) –


,

where,

γrs =

{
1, prs ≥ p̄,
0, prs ≤ p̄.

η =



– η12 . . . η1(k−1) η1k

η21 – . . . η1(k−2) η2k
...

...
. . .

...
...

η(k−1)1 η(k−2)2 . . . – η(k−1)k

ηk1 ηk2 . . . ηk(k−1) –


,

where,

ηrs =

{
1, qrs ≤ q̄,
0, qrs ≥ q̄.

Step 13: The 2TLmF concordance and discordance dominance matrices are combined to obtained the
aggregated outranking Boolean matrix that offers more accurate information on the outranking
relationship and superiority of one alternative over another. Assemble the aggregated outranking
boolean matrix as follows:

τ =



– τ12 . . . τ1(k−1) τ1k

τ21 – . . . τ1(k−2) τ2k
...

...
. . .

...
...

τ(k−1)1 τ(k−2)2 . . . – τ(k−1)k

τk1 τk2 . . . τk(k−1) –


,

where,

τi j = γi j × ηi j, (i, j = 1, 2, 3, . . . , k, i , j).

Step 14: Lastly, our target is to ranked the alternatives by using aggregated outranking Boolean matrix
τ information. For convenience, we can visualized the outranking relations by using directed graph. A
directed edge is exist from alternative 𭟋r to 𭟋s if and only if τrs = 1.

Then there exist the following three situations as described below:

• For a unique directed edge from 𭟋r to 𭟋s implies that 𭟋r is preferred over 𭟋s.
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• Existence of directed edge from 𭟋r to 𭟋s and 𭟋s to 𭟋r implies that 𭟋r and 𭟋s are indifferent.
• If there is no edge between 𭟋r to 𭟋s implies that 𭟋r and 𭟋s both are incomparable.

The representation of relations in an outranking decision graph is shown in Figure 3.

Preference

Indifference

Incomparable

Fr ≈ Fs

Fr ? Fs

FsFr

FsFr

FsFr

Fr > Fs

Figure 3. Graphically representation of relations in an outranking decision graph.

Step 15: The decision graph allows for the partial ordering of the alternatives and eliminates the less
favorable alternatives. On the other hand, the linear ranking order of the alternatives reduces the partial
ordering dilemma that can be evaluated by employing net outranking indices to strengthen the proposed
2TLmF ELECTRE-I technique.

Let {
︷︸︸︷
Θi , i = 1, 2, . . . , k} be the concordance outranking relation derived with the help of

concordance matrix P and the following Eq (5.1):︷︸︸︷
Θi =

k∑
r=1
r,i

pir −

k∑
s=1
s,i

pis. (5.1)

The discordance outranking relation { Θi︸︷︷︸, i = 1, 2, . . . , k} computed by using discordance matrix Q

and Eq (5.2) as given below:

Θi︸︷︷︸ = k∑
r=1
r,s

pir −

k∑
r=1
r,s

pis. (5.2)

Thus, for the final linear ranking order, the net outranking index is defined as follows in Eq (5.3).

Ξ =
︷︸︸︷
Θi − Θi︸︷︷︸ . (5.3)

The alternative with the maximum net outranking index is considered the most suitable choice. We
describe our proposed methods, namely, 2TLmF-TOPSIS method and 2TLmF ELECRTE-1 method,
in a flowchart as shown in Figure 4.
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Selection of alternatives and attributes

Construct aggregated 2TLmF decision matrix

Assign weight values to attributes

Calculate the aggregated weighted 2TLmF matrix

Alternatives ranking based on

Compute the 2TLmF aggregated

Calculate the 2TLmF discordance

Calculate the 2TLmF concordance

MAGDM Methods

ELECTRE-I
method method

TOPSIS

Assign weight values to the experts ℜ1,ℜ2„ℜv

b b b

Compute the Euclidean distance between
alternatives

Construct the 2TLmF discordance matrix

Construct the 2TLmF concordance matrix

Determine positive and negative ideal solution

Calculate separation measures

Calculate relative closeness index

Alternatives ranking based on index values

Evaluation Evaluation Evaluation Evaluation

Selection of the
best alternative

by ℜ1 by ℜ2 by ℜ3 by ℜv

2TLmF
ELECTRE-I

2TLmF
TOPSIS

dominance matrix

dominance matrix

dominance matrix

decision graph

Figure 4. Flowchart for 2TLmF ELECTRE-I and 2TLmF-TOPSIS method.

6. Application

In this section, we apply the proposed 2TLmF ELECTRE-I method to the same MAGDM problems,
whose case studies related to construction and industry field are already discussed in Section 3.

6.1. Numerical Example I: Selection of highway construction project manager

(1) In this subsection, we apply proposed 2TLmF ELECTRE-I method to the “Selection of Highway
Construction Project Manager” as already 2TLmF-TOPSIS method is applied on it in Section 3.
In 2TLmF ELECTRE-I method, (Step 1–Step 4) are same as already discussed in
2TLmF-TOPSIS method.

In order to construct the 2TL4F concordance and 2TL4F discordance set, the superiority and
inferiority of the alternatives are checked by using 2TL4F score values as displayed in Table 15.
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Table 15. 2TL4F score values.

Alternatives Ç1 Ç2 Ç3 Ç4

𭟋1 (c1, 0.487394) (c1, 0.196308) (c3,−0.48428) (c1,−0.44210)
𭟋2 (c2, 0.043372) (c2,−0.44857) (c3, 0.431724) (c2,−0.01857)
𭟋3 (c3, 0.315239) (c3,−0.34750) (c4, 0.389165) (c5,−0.25393)
𭟋4 (c2,−0.30922) (c1, 0.336906) (c2,−0.05586) (c1,−0.41972)
𭟋5 (c2,−0.34475) (c1, 0.074408) (c2, 0.213861) (c1,−0.41162)
𭟋6 (c5,−0.00162) (c1, 0.371090) (c5, 0.191220) (c5,−0.28005)

Step 5: The 2TL4F concordance set is given in Table 16.

Table 16. 2TL4F concordance set representation.

k 1 2 3 4 5 6
M1k − ∅ ∅ {3} {2, 3} ∅

M2k {1, 2, 3, 4} − ∅ {1, 2, 3, 4} {1, 2, 3, 4} {2}
M3k {1, 2, 3, 4} {1, 2, 3, 4} − {1, 2, 3, 4} {1, 2, 3, 4} {2, 4}
M4k {1, 2, 4} ∅ ∅ − {1, 2} ∅

M5k {1, 4} ∅ ∅ {3, 4} − ∅

M6k {1, 2, 3, 4} {1, 2, 3, 4} {1, 3} {1, 2, 3, 4} {1, 2, 3, 4} −

Note: ∅ indicates an empty set.

Step 6: The 2TL4F discordance set is given in Table 17.

Table 17. 2TL4F discordance set representation.

k 1 2 3 4 5 6
N1k − {1, 2, 3, 4} {1, 2, 3, 4} {1, 2, 4} {1, 4} {1, 2, 3, 4}
N2k ∅ − {1, 2, 3, 4} ∅ ∅ {1, 3, 4}
N3k ∅ ∅ − ∅ ∅ {1, 3}
N4k {3} {1, 2, 3, 4} {1, 2, 3, 4} − {3, 4} {1, 2, 3, 4}
N5k {2, 3} {1, 2, 3, 4} {1, 2, 3, 4} {1, 2} − {1, 2, 3, 4}
N6k ∅ {2} {2, 4} ∅ ∅ −

Step 7: The 2TL4F-concordance matrix is computed as given below:

P =



– 0 0 0.4 0.6 0
1 – 0 1 1 0.2
1 1 – 1 1 0.3

0.6 0 0 – 0.5 0
0.4 0 0 0.5 – 0
1 0.8 0.7 1 1 –


.
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Step 8: The 2TL4F concordance level is: p̄ = 0.5001.
Step 9: The normalized Euclidean distances d

(
ẑr j, ẑs j) are arranged in Table 18, where the entries ẑr j,

ẑs j are from aggregated weighted 2TL4F decision matrix as arranged in Table 5.

Table 18. Normalized Euclidean distances for 2TL4F data d
(
ẑr j, ẑs j).

ẑ11 ẑ21 ẑ31 ẑ41 ẑ51 ẑ61 ẑ12 ẑ22 ẑ32 ẑ42 ẑ52 ẑ62

ẑ11 – 0.020029 0.070153 0.010664 0.01494 0.106889 ẑ12 – 0.011135 0.065085 0.009263 0.01494 0.012061
ẑ21 – – 0.053503 0.010941 0.022640 0.096937 ẑ22 – – 0.061226 0.009763 0.014138 0.009500
ẑ31 – – – 0.062834 0.068473 0.102559 ẑ32 – – – 0.064142 0.071325 0.061664
ẑ41 – – – – 0.015663 0.103487 ẑ42 – – – – 0.012148 0.004630
ẑ51 – – – – – 0.103076 ẑ52 – – – – – 0.014473
ẑ61 – – – – – – ẑ62 – – – – – –

ẑ13 ẑ23 ẑ33 ẑ43 ẑ53 ẑ63 ẑ14 ẑ24 ẑ34 ẑ44 ẑ54 ẑ64

ẑ13 – 0.046101 0.065046 0.031574 0.017043 0.087542 ẑ14 – 0.077759 0.131008 0.003306 0.006669 0.129839
ẑ23 – – 0.044653 0.059610 0.047148 0.069929 ẑ24 – – 0.104477 0.076727 0.074959 0.147221
ẑ33 – – – 0.086642 0.069149 0.077820 ẑ34 – – – 0.131658 0.132380 0.099549
ẑ43 – – – – 0.022224 0.094621 ẑ44 – – – – 0.003528 0.129726
ẑ53 – – – – – 0.094006 ẑ54 – – – – – 0.130609
ẑ63 – – – – – – ẑ64 – – – – – –

Step 10: The 2TL4F-discordance matrix is computed as given below:

Q =



– 1 1 0.406777 0.876840 1
0 – 1 0 0 1
0 0 – 0 0 1
1 1 1 – 1 1
1 1 1 0.704784 – 1
0 0.064534 0.570654 0 0 –


.

Step 11: The 2TL4F discordance level is: q̄ = 0.60078.
Step 12: By using concordance and discordance level, the 2TL4F-concordance dominance and 2TL4F-
discordance dominance matrix are evaluated as:

Υ =



– 0 0 0 1 0
1 – 0 1 1 0
1 1 – 1 1 0
1 0 0 – 1 0
0 0 0 1 – 0
1 1 1 1 1 –


,

η =



– 0 0 1 0 0
1 – 0 1 1 0
1 1 – 1 1 0
0 0 0 – 0 0
0 0 0 0 – 0
1 1 1 1 1 –


.
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Step 13: The 2TL4F aggregated dominance matrix is evaluated as

τ =



– 0 0 0 0 0
1 – 0 1 1 0
1 1 – 1 1 0
0 0 0 – 0 0
0 0 0 0 – 0
1 1 1 1 1 –


.

Step 14: The alternatives ranking is shown in Figure 5. Thus, 𭟋6 is outranking over all other
alternatives, 𭟋1, 𭟋2, 𭟋3, 𭟋4, 𭟋5. Where the partial preferences of the alternatives are pinned up in
Table 19.

Table 19. Decision graph exploration.

Alternatives Submissive alternatives Incomparable alternatives

𭟋1 – 𭟋4, 𭟋5

𭟋2 𭟋1, 𭟋4, 𭟋5 –
𭟋3 𭟋1, 𭟋2, 𭟋4, 𭟋5 –
𭟋4 – 𭟋1, 𭟋5

𭟋5 – 𭟋1, 𭟋4

𭟋6 𭟋1, 𭟋2, 𭟋3, 𭟋4, 𭟋5 –

F2 F3

F4 F5

F6

F1

Figure 5. Directed graph for alternatives ranking of Example I.

Step 15: The concordance
︷︸︸︷
Θi and discordance Θi︸︷︷︸ outranking coefficients are displayed in

Table 20, with net Ξ outranking index. Table 20, represents that 𭟋6 is the best alternative with linear
ranking order of alternatives, 𭟋6 > 𭟋3 > 𭟋2 > 𭟋1 > 𭟋5 > 𭟋4.
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Table 20. Outranking indices of the alternatives.

Alternatives Concordance Discordance Net Ranking
outranking index outranking index outranking index

𭟋1 -3.001 2.2836 -5.2836 4
𭟋2 1.390 -1.0645 2.4645 3
𭟋3 3.570 -3.9706 7.5706 2
𭟋4 -2.761 3.8884 -6.6884 6
𭟋5 -3.200 2.8279 -6.0279 5
𭟋6 4.001 -3.9648 7.9648 1

6.2. Numerical Example II: Selection of the best textile industry

(2) We now used our proposed 2TLmF ELECTRE-I method for the “Selection of the Best Textile
Industry” as already 2TLmF-TOPSIS method is applied on it in Section 3.

In 2TLmF ELECTRE-I method (Step 1–Step 4) are same as in 2TLmF-TOPSIS method.

In order to construct the 2TL6F concordance and 2TL6F discordance set, every pair of the
alternatives are compared by using 2TL6F score values as displayed in Table 21.

Table 21. 2TL4F score values.

Alternatives T1 T2 T3

L1 (ℏ2, 0.200083) (ℏ2,−0.35354) (ℏ2, 0.028800)
L2 (ℏ3, 0.094133) (ℏ2,−0.23609) (ℏ3, 0.090886)
L3 (ℏ2, 0.271047) (ℏ1, 0.344972) (ℏ2,−0.18087)
L4 (ℏ3, 0.131794) (ℏ3,−0.12751) (ℏ3,−0.10281)
L5 (ℏ3,−0.30383) (ℏ2,−0.1702) (ℏ3, 0.001640)
L6 (ℏ3, 0.331541) (ℏ2, 0.068230) (ℏ3,−0.35713)

Step 5: The 2TL6F concordance set is given in Table 22.

Table 22. 2TL6F concordance set representation.

k 1 2 3 4 5 6
M1k − ∅ {2, 3} ∅ ∅ ∅

M2k {1, 2, 3} − {1, 2, 3} {3} {1, 3} {3}
M3k {1} ∅ − ∅ ∅ ∅

M4k {1, 2, 3} {1, 2} {1, 2, 3} − {1, 2} {2, 3}
M5k {1, 2, 3} {2} {1, 2, 3} {3} − {3}
M6k {1, 2, 3} {1, 2} {1, 2, 3} {1} {1, 2} −

Step 6: The 2TL6F discordance set is given in Table 23.
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Table 23. 2TL6F discordance set representation.

k 1 2 3 4 5 6
N1k − {1, 2, 3} {1} {1, 2, 3} {1, 2, 3} {1, 2, 3}
N2k ∅ − ∅ {1, 2} {2} {1, 2}
N3k {2, 3} {1, 2, 3} − {1, 2, 3} {1, 2, 3} {1, 2, 3}
N4k ∅ {3} ∅ − {3} {1}
N5k ∅ {1, 3} ∅ {1, 2} − {1, 2}
N6k ∅ {3} ∅ {2, 3} {3} −

Step 7: The 2TL6F concordance matrix is calculated as given below:

P =



- 0 0.579 0 0 0
1 - 1 0.345 0.766 0.345

0.421 0 - 0 0 0
1 0.655 1 - 0.655 0.579
1 0.234 1 0.345 - 0.345
1 0.655 1 0.421 0.655 -


.

Step 8: The 2TL6F concordance level is: ˆ̄p = 0.5001.
Step 9: The normalized Euclidean distances d

(
z̆r j, z̆s j

)
are arranged in Table 24, where the entries z̆r j,

z̆s j are from aggregated weighted 2TL6F decision matrix as arranged in Table 12.
Step 10: The 2TL6F-discordance matrix is computed as given below:

Q =



- 1 1 1 1 1
0 - 0 1 0.521245 0.975527

0.865896 1 - 1 1 1
0 0.272636 0 - 0.295279 0.149646
0 1 0 1 - 0.903347
0 1 0 1 1 -


.

Step 11: The 2TL6F discordance level is: ˆ̄q = 0.632785.
Step 12: By using concordance and discordance level, the 2TL6F-concordance dominance and 2TL6F-
discordance dominance matrix are evaluated as:

ℶ =



- 0 1 0 0 0
1 - 0 0 1 0
0 0 - 0 0 0
1 1 1 - 1 1
1 0 1 0 - 0
1 1 1 0 1 -


,

¥ =



- 0 0 0 0 0
1 - 1 0 1 0
0 0 - 0 0 0
1 1 1 - 1 1
1 0 1 0 - 0
1 0 1 0 0 -


.
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Step 13: The 2TL6F aggregated dominance matrix is evaluated as

ℸ =



- 0 0 0 0 0
1 - 1 0 1 0
0 0 - 0 0 0
1 1 1 - 1 1
1 0 1 0 - 0
1 0 1 0 0 -


.

Step 14: The alternatives ranking is shown in Figure 6. Thus, L4 is outranking over all other
alternatives, L1,L2,L3,L5,L6. Where the partial preferences of the alternatives are pinned up in
Table 25.

Table 25. Decision graph exploration.

Alternatives Submissive alternatives Incomparable alternatives
L1 – L3

L2 L1,L3,L5 L6

L3 – L1

L4 L1,L2,L3,L5,L6 –
L5 L1,L3 L6

L6 L1,L3 L2,L5

L2

L3

L4

L5

L6

L1

Figure 6. Directed graph for alternatives ranking of Example II.

Step 15: The concordance
︷︸︸︷
Ωi and discordance ℧i︸︷︷︸ outranking coefficients are displayed in

Table 26, with net £ outranking index. Table 26 represents that L6 is the best alternative with linear
ranking order of alternatives, L4 > L2 > L6 > L5 > L1 > L3.

AIMS Mathematics Volume 7, Issue 8, 14557–14594.



14586

Table 26. Outranking indices of the alternatives.

Alternatives Concordance Discordance Net Ranking
outranking index outranking index outranking index

L1 -3.842 4.13410 -7.9761 5
L2 1.912 -1.0645 3.6878 2
L3 -4.158 3.8658 -8.0238 6
L4 2.778 3.8884 7.0604 1
L5 0.848 -0.9131 1.7611 4
L6 2.462 -1.0285 3.4905 3

7. Comparative analysis

7.1. Comparison of the proposed methods

In this subsection, we present comparison study of our proposed methods, namely,
2TLmF-TOPSIS and 2TLmF ELECTRE-I. The 2TLmF-TOPSIS technique is, based on the concept of
finding an alternative, that is nearest to the 2TLPIS and far away from the 2TLNIS, while an
outranking 2TLmF ELECTRE-I method is based on the pairwise comparison of the alternatives. The
2TLmF ELECTRE-I method sometimes provides two optimal solutions at once because it only
considers the benefit criterion, but the 2TLmF-TOPSIS method provides a single alternative because
we believe that both benefits and cost standards. Based on two case studies related to construction and
industrial fields by using the same descriptive 2TLmF set, the comparison of proposed methods is
described below:

(1) For “Selection of Highway Construction Project Manager” the comparison between
2TLmF-TOPSIS and 2TLmF ELECTRE-I methods is displayed in Table 27. This comparison
shows that 𭟋6 is the most desirable alternative by using the 2TLmF ELECTRE-1 and 2TLmF
TOPSIS methods, order of ranking is given in Table 27. Comparison graph of proposed methods
for the selection of highway construction project manager is displayed in Figure 7.

Figure 7. Comparison of proposed methods in case of manager selection.
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Table 27. Alternative ranking order.

Methods Ranking Best alternative
2TLmF TOPSIS 𭟋6 > 𭟋3 > 𭟋2 > 𭟋1 > 𭟋5 > 𭟋4 𭟋6

2TLmF ELECTRE-1 𭟋6 > 𭟋3 > 𭟋2 > 𭟋1 > 𭟋5 > 𭟋4 𭟋6

(2) For “Selection of the best textile industry” the comparison between 2TLmF-TOPSIS and 2TLmF
ELECTRE-I methods is displayed in Table 28. This comparison shows that L4 is the most
desirable alternative, order of ranking is given in Table 28. The comparative graph of proposed
methods for the selection of best textile industry is displayed in Figure 8.

Table 28. Alternative ranking order.

Methods Ranking Best alternative

2TLmF TOPSIS L4 > L2 > L6 > L5 > L1 > L3 L4

2TLmF ELECTRE-1 L4 > L2 > L6 > L5 > L1 > L3 L4

Figure 8. Comparison of proposed methods in case of textile industry selection.

7.2. Comparison with existing techniques

Recently, Akram et al. [28] developed the 2-tuple linguistic m-polar fuzzy Hamacher weighted
average (2TLmFHWA) and 2TLmFHWG operators. In this subsection, we compare the proposed
methods with the existing method [28] to check the applicability and versatility of the proposed models.

(1) For a comparative study between the proposed method and the existing method [28], i.e.
2TLmFHWA and 2TLmFHWG operators with parameters λ = 3, are employed to assemble the
values given in Table 4. The values combined using the 2TLmFHWA and 2TLmFHWG
operators are given in the Tables 29 and 30. The score values for each alternative using the
Definition 2.7 are given in Tables 31 and 32. Therefore, according to the comparison of the
existing model and the proposed model, 𭟋6 is the most ideal alternative, ensuring the authenticity
of our proposed study. The rank order of alternatives for existing and proposed work is shown in
the Table 37.
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Table 29. Assembled values (♭̂i) by using the 2TLmFHWA operator.

♭̂i 2TLmFHWA operator

♭̂1 ((c4,−0.237025), (c4,−0.156577), (c4, 0.405718), (c4, 0.312066))
♭̂2 ((c4, 0.3160501), (c6, 0.000000), (c5,−0.302145), (c6, 0.000000))
♭̂3 ((c6, 0.000000), (c5, 0.2000000), (c6, 0.000000), (c5, 0.2000000))
♭̂4 ((c4, 0.180325), (c4,−0.352272), (c4, 0.024654), (c4,−0.06813))
♭̂5 ((c4,−0.317807), (c4,−0.09277), (c3, 0.49582), (c5,−0.350218))
♭̂6 ((c6, 0.000000), (c5,−0.354769), (c6, 0.000000), (c6, 0.000000))

Table 30. Scores values for all the 2TL4F numbers ♭̂i.

Scores values 2TLmFHWA operator

S(♭̂1) (c4, 0.081045)
S(♭̂2) (c5, 0.330680)
S(♭̂3) (c6,−0.40000)
S(♭̂4) (c4,−0.05385)
S(♭̂5) (c4,−0.06624)
S(♭̂6) (c6,−0.33869)

Table 31. Assembled values (♭̂i) by using the 2TLmFHWG operator.

♭̂i 2TLmFHWG operator

♭̂1 ((c4,−0.303973), (c4,−0.298562), (c4, 0.2921963), (c4, 0.2656442))
♭̂2 ((c4, 0.2968202), (c5,−0.181945), (c5,−0.308545), (c5,−0.066331))
♭̂3 ((c5,−0.169367), (c6,−0.240905), (c5, 0.3103902), (c5, 0.2236302))
♭̂4 ((c4, 0.1669631), (c4,−0.482343), (c4, 0.0040604), (c4,−0.074481))
♭̂5 ((c4,−0.355479), (c4,−0.140987), (c3, 0.4912188), (c5,−0.4038449))
♭̂6 ((c6,−0.436916), (c5,−0.359750), (c6,−0.240905), (c6,−0.352806))

Table 32. Scores values for all the 2TL4F numbers ♭̂i.

Scores values 2TLmFHWG operator

S(♭̂1) (c4,−0.011173)
S(♭̂2) (c5,−0.315000)
S(♭̂3) (c5, 0.2809367)
S(♭̂4) (c4,−0.096450)
S(♭̂5) (c4,−0.102273)
S(♭̂6) (c5, 0.4024051)
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(2) For a comparative study between the proposed method and the existing method [28], i.e.
2TLmFHWA and 2TLmFHWG operators with parameters λ = 3, are employed to assemble the
values given in Table 11. The values assembled using the 2TLmFHWA and 2TLmFHWG
operators are given in the Tables 33 and 34. The score values for each alternative using the
Definition 2.7 are given in Tables 35 and 36. Therefore, according to the comparison of the
existing model and the proposed model, L4 is the most ideal alternative, ensuring the authenticity
of our proposed study. The rank order of alternatives for existing and proposed work is shown in
the Table 37.

Table 33. Assembled values (♮̃i) by using the 2TLmFHWA operator.

♮̃i 2TLmFHWA operator

♮̃1 ((ℏ4, 0.11334054), (ℏ4, 0.2419176), (ℏ5,−0.050780), (ℏ4, 0.1573784), (ℏ5, 0.1203015), (ℏ5,−0.356388))

♮̃2 ((ℏ5, 0.3708851), (ℏ5, 0.18080780), (ℏ6,−0.241310), (ℏ5, 0.2173407), (ℏ6, 0.2731900), (ℏ6, 0.0144995))

♮̃3 ((ℏ4,−0.007891), (ℏ4,−0.0935551), (ℏ4, 0.2726495), (ℏ4, 0.367347), (ℏ4, 0.4859191), (ℏ5,−0.207669))

♮̃4 ((ℏ6,−0.249351), (ℏ6,−0.003903), (ℏ6,−0.393966), (ℏ8, 0.0000000), (ℏ5,−0.313300), (ℏ6, 0.101870))

♮̃5 ((ℏ5, 0.24687350), (ℏ6, 0.1279355), (ℏ5, 0.2425176), (ℏ5, 0.1416756), (ℏ5, 0.3783680), (ℏ5, 0.3944357))

♮̃6 ((ℏ5, 0.3282144), (ℏ6,−0.390561), (ℏ5, 0.1911016), (ℏ6,−0.106643), (ℏ6,−0.268146), (ℏ6, 0.2560303))

Table 34. Scores values for all the 2TL6F numbers ♮̃i.

Scores values 2TLmFHWA operator

S(♮̃1) (ℏ5,−0.462371)
S(♮̃2) (ℏ6,−0.364097)
S(♮̃3) (ℏ4, 0.3027999)
S(♮̃4) (ℏ6, 0.0235580)
S(♮̃5) (ℏ5, 0.4219677)
S(♮̃6) (ℏ6,−0.331667)

Table 35. Assembled values (♮̃i) by using the 2TLmFHWG operator.

♮̃i 2TLmFHWG operator

♮̃1 ((ℏ4, 0.0507263), (ℏ4, 0.2128660), (ℏ5,−0.051972), (ℏ4, 0.0254261), (ℏ5, 0.1163187), (ℏ5,−0.407553))

♮̃2 ((ℏ5, 0.3161339), (ℏ5, 0.1347207), (ℏ6,−0.403355), (ℏ5, 0.1588720), (ℏ6, 0.192966), (ℏ6,−0.067063))

♮̃3 ((ℏ4,−0.113670), (ℏ4,−0.146005), (ℏ4, 0.2602225), (ℏ4, 0.359559), (ℏ4, 0.4149561), (ℏ5,−0.260478))

♮̃4 ((ℏ6,−0.286330), (ℏ6,−0.013376), (ℏ6,−0.400008), (ℏ6,−0.034697), (ℏ5,−0.32309), (ℏ6, 0.030347))

♮̃5 ((ℏ5, 0.2282171), (ℏ6, 0.0457900), (ℏ5, 0.2126563), (ℏ5, 0.0541447), (ℏ5, 0.2693903), (ℏ5, 0.3542517))

♮̃6 ((ℏ5, 0.3234717), (ℏ6,−0.4208887), (ℏ5, 0.1841108), (ℏ6,−0.127622), (ℏ6,−0.282073), (ℏ6, 0.116531))

AIMS Mathematics Volume 7, Issue 8, 14557–14594.



14590

Table 36. Scores values for all the 2TL6F numbers ♮̃i.

Scores values 2TLmFHWG operator

S(♮̃1) (ℏ4, 0.49096840)
S(♮̃2) (ℏ6,−0.4446209)
S(♮̃3) (ℏ4, 0.25243047)
S(♮̃4) (ℏ6,−0.3378598)
S(♮̃5) (ℏ5, 0.36074173)
S(♮̃6) (ℏ6,−0.3677451)

Table 37. Comparison of proposed models with existing work.

Case study Methods Ranking Best alternative

Project manager selection 2TLmFHWA [28] 𭟋6 > 𭟋3 > 𭟋2 > 𭟋1 > 𭟋4 > 𭟋5 𭟋6

2TLmFHWG [28] 𭟋6 > 𭟋3 > 𭟋2 > 𭟋1 > 𭟋4 > 𭟋5 𭟋6

2TLmF TOPSIS (proposed) 𭟋6 > 𭟋3 > 𭟋2 > 𭟋1 > 𭟋5 > 𭟋4 𭟋6

2TLmF ELECTRE-1 (proposed) 𭟋6 > 𭟋3 > 𭟋2 > 𭟋1 > 𭟋5 > 𭟋4 𭟋6

Textile industry selection 2TLmFHWA [28] L4 > L6 > L2 > L5 > L1 > L3 L4

2TLmFHWG [28] L4 > L6 > L2 > L5 > L1 > L3 L4

2TLmF TOPSIS (proposed) L4 > L2 > L6 > L5 > L1 > L3 L4

2TLmF ELECTRE-1 (proposed) L4 > L2 > L6 > L5 > L1 > L3 L4

Finally, the similar results of the proposed and existing methods illustrate the reliability and
transparency of our proposed methods. In contrast, our proposed methods can quickly summarize mF
and 2TL information without parameter selection. However, selecting different parameter values
makes the prior art difficult. These limitations of existing work are being reduced, and we can
investigate better resiliency in practical use by using our proposed MAGDM model. Therefore, the
advanced decision model provides a new flexible measure for expert control of the 2TLmF-MAGDM
problem.

8. Contribution and limitations

In this section, we describe the contribution and limitations of the proposed work. The major
contribution of this research article is described as follows:

• The most important contribution of this study is the establishment of revolutionary strategies to
efficiently manipulate 2TLmF information with great precision to the benefit of MAGDM.
• The proposed method 2TLmF-TOPSIS focuses on 2TLPIS, 2TLNIS, normalized Euclidean

distance using 2TL information. The alternatives ranking is based on a relative closeness index.
• In another proposed method, 2TLmF ELECTRE-I, the salient concepts of concordance and

discordance sets are defined by using 2TLmF score and 2TLmF accuracy values. The strategy
uses outranking relationships and outranking graphs to indicate the best alternatives.
• The overall picture of the proposed technique is depicted by a flowchart, which thoroughly depicts

the step-by-step approach of the proposed work.
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• The practical application of the proposed methods 2TLmF-TOPSIS, 2TLmF-ELECTRE-I is
demonstrated by using two case studies from the construction and industrial fields to consider
the importance and effectiveness of the provided techniques.
• A comparative study is carried out with existing techniques, which provides transparency and

validity of our proposed methods.

The limitations of this research article are described below:

• The proposed methods, i.e. 2TLmF-TOPSIS and 2TLmF ELECTRE-I only deal with 2TLm-
polar membership values and cannot take into account the unfavorable and hesitant preferences
of decision makers.
• The 2TL nature of multi-pole data makes the proposed method difficult because of the evaluation

of symbolic translation at every step of calculations.

9. Conclusions

The simplicity of m-polar fuzzy sets has been discovered by many researchers in a short time since
many real-world examples rely on multipolar information. However, in the issue at hand, the
technique cannot handle 2-tuple linguistic information, which can lead to data loss. Therefore, the
multi-functional 2TLmFSs are found to be more suitable to utilize the linguistic multi-polar data aptly
owing to its captivating design and modern structure in complex decision-making scenarios. In this
research paper, the popular theories and heuristics of the TOPSIS and ELECTRE-I methods has been
exploited for constructing new group decision-making techniques, namely, 2TLmF-TOPSIS and
2TLmF-ELECTRE I methods, which are beneficial and convenient for decision-makers. In addition,
the presented MAGDM strategies have been embedded in an elegant flow chart diagram.
Furthermore, the 2TLmF-TOPSIS and 2TLmF-ELECTRE I methods have been implemented with
detailed explanations to solve two real-life problems for the evaluation of suitable highway
construction project manager and the best textile industry. The proposed techniques have been proved
to be transparent and suitable for MAGDM, as these techniques successfully deal with ambiguous
data on the properties of 2TLmFS. Ultimately, the ability of the proposed method to take over data
qualitatively and quantitatively makes it superior to previous techniques, preventing data loss, and
engaging researchers for future decision-making. In the future, we will try to extend our work to other
variants of the ELECTRE family, such as ELECTRE-II, ELECTRE-III, and ELECTRE-IV, under the
2TLmFS.
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