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Abstract: The concept of linear Diophantine fuzzy set (LDFS) is a new mathematical tool for
optimization, soft computing, and decision analysis. The aim of this article is to extend the notion
of graph theory towards LDFSs. We initiate the idea of linear Diophantine fuzzy graph (LDF-graph)
as a generalization of certain theoretical concepts including, q-rung orthopair fuzzy graph, Pythagorean
fuzzy graph, and intuitionistic fuzzy graph. We extend certain properties of crisp graph theory towards
LDF-graph including, composition, join, and union of LDF-graphs. We elucidate these operations with
various illustrations. We analyze some interesting results that the composition of two LDF-graphs is a
LDF-graph, cartesian product of two LDF-graphs is a LDF-graph, and the join of two LDF-graphs is
a LDF-graph. We describe the idea of homomorphisms for LDF-graphs. We observe the equivalence
relation via an isomorphism between LDF-graphs. Some significant results related to complement of
LDF-graph are also investigated. Lastly, an algorithm based on LDFSs and LDF-relations is proposed
for decision-making problems. A numerical example of medical diagnosis application is presented
based on proposed approach.
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1. Introduction

Modeling uncertainties in real-life have a become a key factor in various life problem problems
including, medical diagnosis, data analysis, computational intelligence, sustainability, etc. [1–4]. An
initiative is pioneered by Zadeh [5] in terms of fuzzy set (FS) and fuzzy logic. Since then, numerous
researchers have investigated into the idea of fuzzy sets theory in order to overcome a wide range of
real-life problems involving uncertain circumstances. Chang [6] introduced fuzzy topology and fuzzy
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topological spaces. Smithson [7] studied topologies generated by relations. Feng and Qiu [8] fuzzy
orders and fuzzifying topologies.

Atanassov [9, 10] initiated intuitionistic fuzzy sets (IFSs) as direct extension of FS. Palaniappan
and Srinivasan [11] studied IFSs of root type with application to image processing. Szmidt
and Kacprzyk [12] introduced IFS similarity measures with MCDM. Vlachos and Sergiadis [13]
established pattern recognition application using IFSs. The idea of a fuzzy graph initiated by many
researchers; Kaufmann [14], Rosenfeld Mordeson [15], and Bhattacharya [16]. The idea of complex
fuzzy graphs suggested by Thirunavukarasu et al. [17]. Intuitionistic fuzzy graphs studied by many
scholars (see [18–25]).

Burillo and Bustince [26] developed the notions of IFS relations, IFS t-norm and t-conorm,
Atanassov intuitionistic operators, and composition of t-norm and t-conorm. Bustince and Burillo [27]
established the structures on intuitionistic fuzzy relations and the structures of its complementary
intuitionistic fuzzy relations. Further properties of intuitionistic fuzzy relations studied by numerous
researchers (see [28, 29]. Deschrijver and Kerre [28] presented the notion of composition of IF
relations. Hur et al. [29] developed IF equivalence relations and their properties. They defined the
notion of level sets of an IF relation and IF transitive closures. See also [30–34].

The idea of Pythagorean fuzzy sets (PFSs) suggested by Yager [35], and Yager and Abbasov [36].
Later Yager [37] presented generalized orthopair fuzzy sets which is well-known as q-rung orthopair
fuzzy set (q-ROFS). Naeem et al. [38] introduced novel ideas of Pythagorean m-polar fuzzy sets (P-
m-PFSs) and Pythagorean fuzzy relations (PF-relations). They proposed the concept of score and
accuracy functions of a Pythagorean m-polar fuzzy numbers. They investigated and proposed images
and inverse images of Pythagorean m-polar fuzzy sets. They developed an application of PF-relations
indecision-making and choosing the life partner. Akram et al. [39, 40] studied certain PFS-graphs
and q-ROF graphs under Hamacher operators. Yin et al. [41] proposed product operations on q-ROF
graphs. Sitara et al. [42] presented q-rung picture fuzzy graph structures and their properties with
applications. They adopted q-rung image fuzzy graph structures to investigate relationships among
developed and developing countries. Riaz and Hashmi [43] proposed linear Diophantine fuzzy set
(LDFS) and their application towards multi-attribute decision-making (MADM). They proposed LDF
aggregation operators for information fusion of LDFNs. Recently, LDFSs have been extended to linear
Diophantine fuzzy soft rough set [44], algebraic structures of LDFS [45], LDF-relations with decision
making [46], and q-LDFS [47].

Klement et al. [48] presented generalizing expected values to the case of L∗-fuzzy events. They
investigated and introduced the idea of expected values of fuzzy events in the general sense.
Klement and R. Mesiar [49] investigated L-fuzzy sets and isomorphic lattices. They analyzed several
mathematical concepts about fuzzy set, interval-valued fuzzy set, intuitionistic fuzzy set, Pythagorean
fuzzy set, isomorphic lattices, and truth values. Liu et al. [50] developed generalized Einstein
averaging aggregation operators for complex q-rung orthopair fuzzy information aggregation and
their application in MADM. Yaqoob et al. [51] defined complex intuitionistic fuzzy graphs and their
homomorphisms with application network provider agencies.

Some objectives of this manuscript as the following.

1) Fuzzy graphs are conceptual frameworks to analyze the features that are frequently connected to
a network. We proposed a novel extension of fuzzy graphs named as linear Diophantine fuzzy
graph (LDF graph) which remove various strict limitations of the existing graphs.
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2) The reference parameters (RPs) corresponding to membership grades are helping to analyze the
best or worst grading by the decision makers. The RPs will attain a high value for best grading
and a low value for worst grading by the decision makers, respectively. In fact, the RPs control
the best worst situation in the decision analysis.

3) Linear Diophantine fuzzy graph provides a robust approach for fuzzy modeling in the best worst
situation. Consequently, the decision-making approach becomes robust with linear Diophantine
fuzzy information.

4) Linear Diophantine Fuzzy graph (LDF-graph) theory becomes superior to IF-graph, PyF-graph,
and q-ROF-graph theories, due to broader space for membership and non-membership values.

5) Novel concepts of LDF-graph and certain operations on LDF-graph are introduced.
6) Certain properties of LDF-graphs are investigated including, order of a LDF-graph, degree of a

vertex, cartesian product of LDF-graphs, composition of LDF-graphs, union of two LDF-graphs,
and join of two LDF-graphs. Various illustrations are given to explain these concepts.

7) The idea of homomorphism, isomorphism, and weak isomorphism (co-isomorphism) between
two LDF-graphs is introduced.

8) The concept of complement of LDF-graphs in proposed and related results are established.
9) A medical diagnosis application is established based on proposed decision-making technique.

For this objective, we construct LDF graphs and construct corresponding LDF-relations. An
algorithm is developed for decision-making based on LDFSs and LDF-relations.

The arrangement of this paper is arranged as follows. The idea of LDFSs and fundamental operation
on LDFSs are reviewed in Section 2. Novel concepts of LDF-graph and certain operations on LDf-
graph are introduced in Section 3. Moreover, we study various properties of LDF-graphs and their
related illustrations. In Section 4, we define the idea of homomorphism and isomorphism between
two LDF-graphs. In Section 5, we define the idea of complement of LDF-graphs and related results.
In Section 6, we construct an algorithm based on LDFSs and LDF-relations for decision-making
problems. Based on proposed algorithm an application of medical diagnosis is presented. Lastly,
the specific summary of manuscript is given in Section 7.

2. Preliminaries and basic definitions

In this fragment, we study the idea of LDFSs and their fundamental operation that are essential for
the study of LDF-graph theory.

Definition 2.1. Let Y be the universe. A LDFS £R on Y is defined by

£R =
{(
ϑ, 〈Mτ

R
(ϑ),Nν

R
(ϑ)〉, 〈α, β〉

)
: ϑ ∈ Y

}
=

{〈
ϑ, (Mτ

R
(ϑ),Nν

R
(ϑ)), (α, β)

〉
: ϑ ∈ Y

}
where,Mτ

R
(ϑ),Nν

R
(ϑ), α, β ∈ [0, 1] such that

0 ≤ αMτ
R

(ϑ) + βNν
R

(ϑ) ≤ 1 ∀ϑ ∈ Y (2.1)

0 ≤ α + β ≤ 1 (2.2)

AIMS Mathematics Volume 7, Issue 8, 14532–14556.



14535

The hesitation part can be written as

ξπR = 1 − (αMτ
R

(ϑ) + βNν
R

(ϑ)) (2.3)

where ξ is the RP.
The value of £R =

(
〈Mτ
R
,Nν
R
〉, 〈α, β〉

)
or £R =

〈
(Mτ
R
,Nν
R

), (α, β)
〉

is known as the linear Diophantine
fuzzy number (LDFN).

Definition 2.2. An absolute LDFS on Y is of the form
1£R =

{(
ϑ, 〈1, 0〉, 〈1, 0〉

)
: ϑ ∈ Y

}
and empty or null LDFS is of the form

0£R =
{(
ϑ, 〈0, 1〉, 〈0, 1〉

)
: ϑ ∈ Y

}
Definition 2.3. Let £R =

(
〈Mτ
R
,Nν
R
〉, 〈α, β〉

)
and £P =

(
〈Mτ
P
,Nν
P
〉, 〈γ, δ〉

)
be two LDFSs on the reference

set Y and ϑ ∈ Y. Then
• £c
R

=
(
〈Nν
R
,Mτ
R
〉, 〈β, α〉

)
.

• £R = £P ⇔ Mτ
R

= Mτ
P
, Nν
R

= Nν
P
, α = γ, β = δ.

• £R ⊆ £P ⇔ Mτ
R

(ϑ) ≤ Mτ
P

(ϑ), Nν
R

(ϑ) ≥ Nν
P

(ϑ), α ≤ γ, β ≥ δ.
• £R ∪ £P = (〈Mτ

R∪P
,Nν
R∩P
〉, 〈α ∨ γ, β ∧ δ〉)

• £R ∩ £P = (〈Mτ
R∩P

,Nν
R∪P
〉, 〈α ∧ γ, β ∨ δ〉)

where
M

τ
R∪P(ϑ) = Mτ

R
(ϑ) ∨Mτ

P
(ϑ), Mτ

R∩P(ϑ) = Mτ
R

(ϑ) ∧Mτ
P

(ϑ),

N
ν
R∩P(ϑ) = Nν

R
(ϑ) ∧ Nν

P
(ϑ), Nν

R∪P(ϑ) = NR(ϑ) ∨ Nν
P

(ϑ).

3. LDF-graphs

In this part, we review certain concepts of LDF-graph including new operations on LDF-graphs.

Definition 3.1. A LDF-graph is described by the pair G = (£R, £P) where, £R is a LDFS on W and £P
is a LDFS on E ⊆ W ×W as follows

M
τ
P

(wt) ≤ min{Mτ
R

(w),Mτ
R

(t)},
N
ν
P

(wt) ≤ max{Nν
R

(w),NνD(t)}
γwt ≤ min{αw, αt},

δwt ≤ max{βw, βt}

for all w, t ∈ W. Where αw, βw, αt, βt are the reference parameters associated with the vertices w, t and
γwt, δwt are the reference parameters associated with the edge wt.

Definition 3.2. Let G = (£R, £P) be a LDF-graph. The order of a LDF-graph is described by

O(G) =

(〈
Σ

w∈W
M

τ
R

(w), Σ
w∈W
N
ν
R

(w)
〉
,
〈

Σ
w∈W

αw, Σ
w∈W

βw
〉)
. (3.1)

The degree of a vertex w in G is described by

deg(w) =

(〈
Σ

wt∈E
M

τ
P

(wt), Σ
wt∈E
N
ν
P

(wt)
〉
,
〈

Σ
wt∈E

γwt, Σ
wt∈E

δwt
〉)
. (3.2)
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Example 3.1. Suppose that E = {ab, ac, ad, cd} and W = {a, b, c, d} are associated with a graph
G∗ = (W, E). Let £R be a LDF-subset of W and let £P be a LDF-subset of E ⊆ W ×W, as expressed in
Tables 1 and 2.

Table 1. (〈Mτ
R
,Nν
R
〉, 〈α, β〉).

£R (〈Mτ
R
,Nν
R
〉, 〈α, β〉)

a (〈0.37, 0.61〉, 〈0.59, 0.27〉)
b (〈0.51, 0.47〉, 〈0.31, 0.33〉)
c (〈0.93, 0.52〉, 〈0.51, 0.47〉)
d (〈0.78, 0.71〉, 〈0.29, 0.21〉)

Table 2. (〈Mτ
P
,Nν
P
〉, 〈γ, δ〉).

£P (〈Mτ
P
,Nν
P
〉, 〈γ, δ〉)

ab (〈0.35, 0.59〉, 〈0.29, 0.31〉)
ac (〈0.24, 0.42〉, 〈0.49, 0.42〉)
ad (〈0.32, 0.52〉, 〈0.27, 0.24〉)
cd (〈0.75, 0.62〉, 〈0.22, 0.39〉)

(i) We see that the graph described in Figure 1 is a LDF-graph.

Figure 1. LDF-graph.

(ii) Using formula given by Eq 3.1 the order of LDF-graph G is

O(G) = (〈2.59, 2.31〉, 〈1.70, 1.28〉).

(iii) Using formula given by Eq 3.2 the degree of each vertex in LDF-graph G is

deg(a) = (〈0.91, 1.53〉, 〈1.05, 0.97〉),
deg(b) = (〈0.35, 0.59〉, 〈0.29, 0.31〉),
deg(c) = (〈0.99, 1.04〉, 〈0.71, 0.81〉),
deg(d) = (〈1.07, 1.14〉, 〈0.49, 0.63〉).
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Definition 3.3. The cartesian product G1 × G2 of two LDF-graphs is defined as a pair G1 × G2 =

(£R1 × £R2 , £P1 × £P2), such that:

1) Mτ
R1×R2

(w1,w2) = min{Mτ
R1

(w1),Mτ
R2

(w2)}, Nν
R1×R2

(w1,w2) = max{Nν
R1

(w1),Nν
R2

(w2)},
(α1 × α2)(w1,w2) = min{αw1

1 , α
w2
2 }, (β1 × β2)(w1,w2) = max{βw1

1 , β
w2
2 },

for all w1,w2 ∈ W,
2) Mτ

P1×P2
((w,w2)(w, t2)) = min{Mτ

R1
(w),Mτ

P2
(w2t2)}, Nν

P1×P2
((w,w2)(w, t2)) =

max{Nν
R1

(w),Nν
P2

(w2t2)},
(γ1 × γ2)((w,w2)(w,t2)) = min{αw

1 , γ
w2t2
2 }, (δ1 × δ2)((w,w2)(w,t2)) = max{βw

1 , δ
w2t2
2 },

for all w ∈ W1, and w2t2 ∈ E2,
3) Mτ

P1×P2
((w1, t)(t1, t)) = min{Mτ

P1
(w1t1),Mτ

R2
(t)}, Nν

P1×P2
((w1, t)(t1, t)) = max{Nν

P1
(w1t1),Nν

R2
(t)},

(γ1 × γ2)((w1,t)(t1,t)) = min{γw1t1
1 , αt

2}, (δ1 × δ2)((w1,t)(t1,t)) = max{δw1t1
1 , βt

2},

for all t ∈ W2, and w1t1 ∈ E1.

Definition 3.4. Let G1 and G2 be two LDF-graphs. Then the degree of vertex in G1 × G2 is described
as follows: for any (w1,w2) ∈ W1 × W2,

dG1×G2(w1,w2) =


〈

Σ
(w1,w2)(t1,t2)∈E

Mτ
P1×P2

((w1,w2)(t1, t2)), Σ
(w1,w2)(t1,t2)∈E

Nν
P1×P2

((w1,w2)(t1, t2))
〉
,〈

Σ
(w1,w2)(t1,t2)∈E

(γ1 × γ2)((w1,w2)(t1,t2)), Σ
(w1,w2)(t1,t2)∈E

(δ1 × δ2)((w1,w2)(t1,t2))

〉
 .

Example 3.2. Consider the two LDF-graphs G1 and G2, as shown in Figures 2 and 3.

Figure 2. LDF-graph G1.

Figure 3. LDF-graph G2.

Then, their cartesian product G1 × G2 is described in Figure 4.
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Figure 4. LDF-graph G1 × G2.

Proposition 3.1. The cartesian product of two LDF-graphs is a LDF-graph.

Proof. The conditions for £R1 ×£R2 are obvious, therefore, we investigate only conditions for £P1 ×£P2 .
Let w ∈ W1, and w2t2 ∈ E2. Then

M
τ
P1×P2

((w,w2)(w, t2)) = min{Mτ
R1

(w),Mτ
P2

(w2t2)}
≤ min{Mτ

R1
(w),min{Mτ

R2
(w2),Mτ

R2
(t2)}}

= min{min{Mτ
R1

(w),Mτ
D2

(w2)},min{Mτ
R1

(w),Mτ
R2

(t2)}}
= min{Mτ

R1×R2
(w,w2),Mτ

R1×R2
(w, t2)},

N
ν
P1×P2

((w,w2)(w, t2)) = max{Nν
R1

(w),Nν
P2

(w2t2)}
≤ max{Nν

R1
(w),max{Nν

R2
(w2),Nν

R2
(t2)}}

= max{max{Nν
R1

(w),NνD2
(w2)},max{Nν

R1
(w),Nν

R2
(t2)}}

= max{Nν
R1×R2

(w,w2),Nν
R1×R2

(w, t2)},

(γ1 × γ2)((w,w2)(w,t2)) = min{αw
1 , γ

w2t2
2 }

≤ min{αw
1 ,min{αw2

2 , α
t2
2 }}

= min{min{αw
1 , α

w2
2 },min{αw

1 , α
t2
2 }}

= min{(α1 × α2)(w,w2), (α1 × α2)(w,t2)},

(δ1 × δ2)((w,w2)(w,t2)) = max{βw
1 , δ

w2t2
2 }

≤ max{βw
1 ,max{βw2

2 , β
t2
2 }}

= max{max{βw
1 , β

w2
2 },max{βw

1 , β
t2
2 }}

= max{(β1 × β2)(w,w2), (β1 × β2)(w,t2)}.

Likewise, we can verify it for t ∈ W2, and w1t1 ∈ E1. �
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Definition 3.5. The composition G1◦G2 of two LDF-graphs is described as a pair G1◦G2 = (£R1 ◦£R2 ,
£P1 ◦ £P2), such that:

1) Mτ
R1◦R2

(w1,w2) = min{Mτ
R1

(w1),Mτ
R2

(w2)}, Nν
R1◦R2

(w1,w2) = max{Nν
R1

(w1),Nν
R2

(w2)},
(α1 ◦ α2)(w1,w2) = min{αw1

1 , α
w2
2 }, (β1 ◦ β2)(w1,w2) = max{βw1

1 , β
w2
2 }, for all w1,w2 ∈ W,

2) Mτ
P1◦P2

((w,w2)(w, t2)) = min{Mτ
R1

(w),Mτ
P2

(w2t2)}, Nν
P1◦P2

((w,w2)(w, t2)) =

max{Nν
R1

(w),Nν
P2

(w2t2)},
(γ1 ◦ γ2)((w,w2)(w,t2)) = min{αw

1 , γ
w2t2
2 }, (δ1 ◦ δ2)((w,w2)(w,t2)) = max{βw

1 , δ
w2t2
2 },

for all w ∈ W1, and w2t2 ∈ E2,
3) Mτ

P1◦P2
((w1, t)(t1, t)) = min{Mτ

P1
(w1t1),Mτ

R2
(t)}, Nν

P1◦P2
((w1, t)(t1, t)) = max{Nν

P1
(w1t1),Nν

R2
(t)},

(γ1 ◦ γ2)((w1,t)(t1,t)) = min{γw1t1
1 , αt

2}, (δ1 ◦ δ2)((w1,t)(t1,t)) = max{δw1t1
1 , βt

2},

for all t ∈ W2, and w1t1 ∈ E1.
4) Mτ

P1◦P2
((w1,w2)(t1, t2)) = min{Mτ

R2
(w2),Mτ

R2
(t2),Mτ

P1
(w1t1)}

Nν
P1◦P2

((w1,w2)(t1, t2)) = max{Nν
R2

(w2),Nν
R2

(t2),Nν
P1

(w1t1)}
(γ1 ◦ γ2)((w1,w2)(t1,t2)) = min{αw2

2 , α
t2
2 , γ

w1t1
1 }

(δ1 ◦ δ2)((w1,w2)(t1,t2)) = max{βw2
2 , β

t2
2 , δ

w1t1
1 }

for all w2, t2 ∈ W2, w2 , t2 and w1t1 ∈ E1.

Definition 3.6. Let G1 and G2 be two LDF-graphs. The degree of a vertex in G1 ◦G2 can be described
as follows: for any (w1,w2) ∈ W1 × W2,

dG1◦G2(w1,w2) =


〈

Σ
(w1,w2)(t1,t2)∈E

Mτ
P1◦P2

((w1,w2)(t1, t2)), Σ
(w1,w2)(t1,t2)∈E

Nν
P1◦P2

((w1,w2)(t1, t2))
〉
,〈

Σ
(w1,w2)(t1,t2)∈E

(γ1 ◦ γ2)((w1,w2)(t1,t2)), Σ
(w1,w2)(t1,t2)∈E

(δ1 ◦ δ2)((w1,w2)(t1,t2))

〉
 .

Example 3.3. Consider the two LDF-graphs, as shown in Figure 5.

Figure 5. LDF-graphs G1 and G2.

Then, their composition G1 ◦ G2 is shown in Figure 6.
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Figure 6. LDF-graph G1 ◦ G2.

Proposition 3.2. The composition of two LDF-graphs is a LDF-graph.

Definition 3.7. The union G1 ∪ G2 = (£R1 ∪ £R2 , £P1 ∪ £P2) of two LDF-graphs is defined as follows:

1) Mτ
R1∪R2

(w) = Mτ
R1

(w), Nν
R1∪R2

(w) = Nν
R1

(w),
(α1 ∪ α2)w = αw

1 , (β1 ∪ β2)w = βw
1 ,

for w ∈ W1 and w < W2.
2) Mτ

R1∪R2
(w) = Mτ

R2
(w), Nν

R1∪R2
(w) = Nν

R2
(w),

(α1 ∪ α2)w = αw
2 , (β1 ∪ β2)w = βw

2 ,

for w ∈ W2 and w < W1.
3) Mτ

R1∪R2
(w) = max{Mτ

R1
(w),Mτ

R2
(w)}, Nν

R1∪R2
(w) = min{Nν

R1
(w),Nν

R2
(w)},

(α1 ∪ α2)w = max{αw
1 , α

w
2 }, (β1 ∪ β2)w = min{βw

1 , β
w
2 },

for w ∈ W1 ∩W2.
4) Mτ

P1∪P2
(wt) = Mτ

P1
(wt), Nν

P1∪P2
(wt) = Nν

P1
(wt),

(γ1 ∪ γ2)wt = γwt
1 , (β1 ∪ β2)wt = βwt

1 , for wt ∈ E1 and wt < E2.
5) Mτ

P1∪P2
(wt) = Mτ

P2
(wt), Nν

P1∪P2
(wt) = Nν

P2
(wt),

(γ1 ∪ γ2)wt = γwt
2 , (β1 ∪ β2)wt = βwt

2 ,

for wt ∈ E2 and wt < E1.
6) Mτ

P1∪P2
(wt) = max{Mτ

P1
(wt),Mτ

P2
(wt)}, Nν

P1∪P2
(wt) = min{Nν

P1
(wt),Nν

P2
(wt)},

(γ1 ∪ γ2)wt = max{γwt
1 , γ

wt
2 }, (β1 ∪ β2)wt = min{βwt

1 , β
wt
2 },

for wt ∈ E1 ∩ E2.

Example 3.4. Consider the two LDF-graphs, as shown in Figures 7 and 8.
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Figure 7. LDF-graph G1.

Figure 8. LDF-graph G2.

Then, their corresponding union G1 ∪ G2 is shown in Figure 9.

Figure 9. LDF-graph G1 ∪ G2.

Proposition 3.3. The union of two LDF-graphs is a LDF-graph.
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Definition 3.8. The join G1+G2 = (£R1+£R2 , £P1+£P2) of two LDF-graphs, where, W1 ∩ W2 = ∅, is
defined as follows:

1)
{
Mτ
R1+R2

(w) = Mτ
D1∪R2

(w), Nν
R1+R2

(w) = Nν
R1∪R2

(w)
(α1 + α2)w = (α1 ∪ α2)w, (β1 + β2)w = (β1 ∪ β2)w if w ∈ W1 ∪W2,

2)
{
Mτ
P1+P2

(wt) = Mτ
P1∪P2

(wt), Nν
P1+P2

(wt) = Nν
P1∪P2

(wt)
(γ1 + γ2)wt = (γ1 ∪ γ2)wt, (δ1 + δ2)wt = (δ1 ∪ δ2)wt if wt ∈ E1 ∪ E2,

3)


Mτ
P1+P2

(wt) = min{Mτ
R1

(w),Mτ
R2

(t)},
Nν
P1+P2

(wt) = max{Nν
R1

(w),Nν
R2

(t)}
(γ1 + γ2)wt = min{αw

1 , α
t
2}, (δ1 + δ2)wt = max{βw

1 , β
t
2}

if wt ∈ É,

where É is the set of all edges joining the vertices of W1 and W2.

Example 3.5. Consider the two LDF-graphs, as shown in Figure 10.

Figure 10. LDF-graphs G1 and G2.

Then, their corresponding join G1+G2 is shown in Figure 11.

Figure 11. LDF-graph G1+G2.

Proposition 3.4. The join of two LDF-graphs is a LDF-graph.
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Proposition 3.5. Let G1 = (£R1 , £P1) and G2 = (£R2 , £P2) be LDF-graphs and let W1 ∩W2 = ∅. Then
union G1 ∪ G2 = (£R1 ∪ £D2 , £P1 ∪ £P2) is a LDF-graph if and only if G1 and G2 are LDF-graphs,
respectively.

Proof. Suppose that G1 ∪ G2 is a LDF-graph. Let wt ∈ E1. Then wt < E2 and w, t ∈ W1 −W2. Thus

M
τ
P1

(wt) = M
τ
P1∩P2

(wt)
≤ min(Mτ

R1∩R2
(w),Mτ

R1∩R2
(t))

= min(Mτ
R1

(w),Mτ
R1

(t)).

N
ν
P1

(wt) = N
ν
P1∩P2

(wt)
≤ max(Nν

R1∩R2
(w),Nν

R1∩R2
(t))

= max(Nν
R1

(w),Nν
R1

(t)).

γwt
1 = (γ1 ∩ γ2)wt

≤ min((α1 ∩ α2)w, (α1 ∩ α2)t)
= min(αw

1 , α
t
2).

δwt
1 = (δ1 ∩ δ2)wt

≤ max((β1 ∩ β2)w, (β1 ∩ β2)t)
= max(βw

1 , β
t
2).

This shows that G1 = (£R1 , £P1) is a LDF-graph. Similarly, we can show that G2 = (£R2 , £P2) is a
LDF-graph. The converse part is obvious. �

Proposition 3.6. LetG1 = (£R1 , £P1) andG2 = (£R2 , £P2) be LDF-graphs and let W1∩W2 = ∅. Then join
G1+G2 = (£R1+£R2 , £P1+£P2) is a LDF-graph if and only if G1 and G2 are LDF-graphs, respectively.

Proof. The proof is obvious and identical with a proof of Proposition 3.5. �

4. Isomorphisms of LDF-graphs

Now we introduce the idea of isomorphisms of LDF-graphs.

Definition 4.1. Let G1 = (£R1 , £P1) and G2 = (£R2 , £P2) be two LDF-graphs. A homomorphism g :
G1 → G2 is a mapping g : W1 → W2 such that:

1)
{
Mτ
R1

(w1) ≤ Mτ
R2

(g(w1)), Nν
R1

(w1) ≤ Nν
R2

(g(w1))
αw1

1 ≤ α
g(w1)
2 , βw1

1 ≤ β
g(w1)
2

for all w1 ∈ W1,

2)
{
Mτ
P1

(w1t1) ≤ Mτ
P2

(g(w1)g(t1)), Nν
P1

(w1t1) ≤ Nν
P2

(g(w1)g(t1))
γw1t1

1 ≤ γ
g(w1)g(t1)
2 , δw1t1

1 ≤ δ
g(w1)g(t1)
2

for all w1t1 ∈ E1.

A bijective homomorphism with the property.
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3)
{
Mτ
R1

(w1) = Mτ
R2

(g(w1)), Nν
R1

(w1) = Nν
R2

(g(w1))
αw1

1 = α
g(w1)
2 , βw1

1 = β
g(w1)
2

for all w1 ∈ W1,

is called a weak isomorphism. A bijective homomorphism g : G1 → G2 such that:

4)
{
Mτ
P1

(w1t1) = Mτ
P2

(g(w1)g(t1)), Nν
P1

(w1t1) = Nν
P2

(g(w1)g(t1))
γw1t1

1 = γ
g(w1)g(t1)
2 , δw1t1

1 = δ
g(w1)g(t1)
2

for all w1t1 ∈ E1,

is called a strong co-isomorphism. A bijective mapping g : G1 → G2 satisfying 3) and 4) is called
an isomorphism.

Example 4.1. Consider two LDF-graphs, as shown in Figure 12.

Figure 12. LDF-graphs G1 and G2.

Then, it is easy to see that the mapping g : W1 → W2 defined by g(a) = y and g(b) = x is a strong
co-isomorphism.

Proposition 4.1. An isomorphism between LDF-graphs is an equivalence relation.

Proof. The reflexivity and symmetry are obvious. We know that the composition mapping gλ ◦ hλ :
W1 → W3 is a bijective from W1 to W3, where hλ : W1 → W2 is the isomorphisms of G1 onto
G2, and gλ : W2 → W3 be the isomorphisms G2 onto G3. For transitivity, we let hλ : W1 → W2

and gλ : W2 → W3 be the isomorphisms of G1 onto G2 and G2 onto G3, respectively. Since a map
hλ : W1 → W2 defined by hλ (w1) = w2 for w1 ∈ W1 is an isomorphism, so we have

M
τ
R1

(w1) = M
τ
R2

(hλ(w1))
= M

τ
R2

(w2) for all w1 ∈ W1· · · (A1),

N
ν
R1

(w1) = N
ν
R2

(hλ(w1))
= N

ν
R2

(w2) for all w1 ∈ W1· · · (A2),

M
τ
P1

(w1t1) = M
τ
P2

(hλ(w1)hλ(t1))
= M

τ
P2

(w2t2) for all w1t1 ∈ E1· · · (B1).

N
ν
P1

(w1t1) = N
ν
P2

(hλ(w1)hλ(t1))
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= N
ν
P2

(w2t2) for all w1t1 ∈ E1· · · (B2).

Since a map gλ : W2 → W3 defined by gλ(w2) = w3 for w2 ∈ W2 is an isomorphism, so

M
τ
R2

(w2) = M
τ
R3

(gλ(w2))
= M

τ
R3

(w3) for all w2 ∈ W2· · · (C1),

N
ν
R2

(w2) = N
ν
R3

(gλ(w2))
= N

ν
R3

(w3) for all w2 ∈ W2· · · (C2),

M
τ
P2

(w2t2) = M
τ
P3

(gλ(w2)gλ(t2))
= M

τ
P3

(w3t3) for all w2t2 ∈ E2· · · (D1).

N
ν
P2

(w2t2) = N
ν
P3

(gλ(w2)gλ(t2))
= N

ν
P3

(w3t3) for all w2t2 ∈ E2· · · (D2).

From (A1), (C1) and hλ (w1) = w2,w1 ∈ W1, we have

M
τ
R1

(w1) = M
τ
R2

(hλ(w1)) = Mτ
R2

(w2)
= M

τ
R3

(gλ(w2))
= M

τ
R3

(gλ(hλ(w1))).

From (A2), (C2) and hλ (w1) = w2, w1 ∈ W1, we have

N
ν
R1

(w1) = N
ν
R2

(hλ(w1)) = Nν
R2

(w2)
= N

ν
R3

(gλ(w2))
= N

ν
R3

(gλ(hλ(w1))).

From (B1) and (D1) we have

M
τ
P1

(w1t1) = M
τ
P2

(hλ(w1)hλ(t1)) = Mτ
P2

(w2t2)
= M

τ
P3

(gλ(w2)gλ(t2))
= M

τ
P3

(gλ(hλ(w1))gλ(hλ(t1))).

From (B2) and (D2), we have

N
ν
P1

(w1t1) = N
ν
P1

(hλ(w1)hλ(t1)) = Nν
P2

(w2t2)
= N

ν
P3

(gλ(w2)gλ(t2))
= N

ν
P3

(gλ(hλ(w1))gλ(hλ(t1))),

for all w1t1 ∈ E1. Also,
αw1

1 = αhλ(w1)
2 = αw2

2 for all w1 ∈ W1· · · (AA1),
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βw1
1 = βhλ(w1)

2 = βw2
2 for all w1 ∈ W1· · · (AA2),

γw1t1
1 = γhλ(w1)hλ(t1)

2 = γw2t2
2 for all w1t1 ∈ E1· · · (BB1).

δw1t1
1 = δhλ(w1)hλ(t1)

2 = δw2t2
2 for all w1t1 ∈ E1· · · (BB2).

Since mapping gλ : W2 → W3 is described by gλ(w2) = w3 for w2 ∈ W2 is an isomorphism, so

αw2
2 = α

gλ(w2)
3 = αw3

3 for all w2 ∈ W2· · · (CC1),

βw2
2 = β

gλ(w2)
3 = βw3

3 for all w2 ∈ W2· · · (CC2),

γw2t2
2 = γ

gλ(w2)gλ(t2)
3 = γw3t3

3 for all w2t2 ∈ E2· · · (DD1).

δw2t2
2 = δ

gλ(w2)gλ(t2)
3 = δw3t3

3 for all w2t2 ∈ E2· · · (DD2).

From (AA1), (CC1) and hλ (w1) = w2, w1 ∈ W1, we have

αw1
1 = αhλ(w1)

2 = αw2
2 = α

gλ(w2)
3

= α
gλ(hλ(w1))
3 .

From (AA2), (CC2) and hλ (w1) = w2, w1 ∈ W1, we have

βw1
1 = βhλ(w1)

2 = βw2
2 = β

gλ(w2)
3

= β
gλ(hλ(w1))
3 .

From (BB1) and (DD1) we have

γw1t1
1 = γhλ(w1)hλ(t1)

2 = γw2t2
2 = γ

gλ(w2)gλ(t2)
3

= γ
gλ(hλ(w1))gλ(hλ(t1))
3 .

From (BB2) and (DD2), we have

δw1t1
1 = δhλ(w1)hλ(t1)

1 = δw2t2
2 = δ

gλ(w2)gλ(t2)
3

= δ
gλ(hλ(w1))gλ(hλ(t1))
3 ,

for all w1t1 ∈ E1. Therefore, gλ ◦ hλ is an isomorphism between G1 and G3. This completes the
proof. �

5. Complement of LDF-graphs

Now we introduce the concept of complements of LDF-graphs.

Definition 5.1. The complement of a LDF-graph G = (£R, £P) is a LDF-graph G = (£R, £P), is defined
by

(i) W = W,

(ii)
 Mτ

R(w) = Mτ
R

(w), N
ν

R(w) = Nν
D

(w)
αw

= αw, β
w

= βw for all w ∈ W,
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(iii)



M
τ

P(wt) =

{
0 ifMτ

P
(wt) , 0

min{Mτ
R

(w),Mτ
R

(t)} ifMτ
P

(wt) = 0.

N
ν

P(wt) =

{
0 if Nν

P
(wt) , 0

max{Nν
R

(w),Nν
R

(t)} if Nν
P

(wt) = 0.

γwt
=

{
0 if γwt , 0
min{αw, αt} if γwt = 0.

δ
wt

=

{
0 if δwt , 0
max{βw, βt} if δwt = 0.

Example 5.1. Consider a LDF-graph G, as shown in Figure 13.

Figure 13. LDF-graph G.

Then, the complement G of G is shown in Figure 14.

Figure 14. LDF-graph G.

Definition 5.2. A LDF-graph G is called self complementary if G ≈ G.

Proposition 5.1. Let G = (£R, £P) be a self complementary LDF-graph. Then

Σ
x,y
M

τ
P

(wt) =
1
2

Σ
x,y

min{Mτ
R

(w),MR(t)}, Σ
x,y
N
ν
P

(wt) =
1
2

Σ
x,y

max{Nν
R

(w),Nν
R

(t)},

Σ
x,y
γwt =

1
2

Σ
x,y

min{αw, αt}, Σ
x,y
δwt =

1
2

Σ
x,y

max{βw, βt}.
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Proposition 5.2. Let G = (£R, £P) be a LDF-graph. If

M
τ
P

(wt) = min{Mτ
R

(w),Mτ
R

(t)}, Nν
P

(wt) = max{Nν
R

(w),Nν
R

(t)},
γwt = min{αw, αt}, δwt = max{βw, βt}.

w, t ∈ W, then G is self complementary.

6. Decision making application with LDF-relations

A medical diagnosis application is established based on proposed decision-making technique. For
this objective, we construct complete bipartite graphs and construct corresponding LDF-relations. An
algorithm is developed for decision-making based on LDFSs and LDF-relations.

Definition 6.1. [46] A LDF-relation RS from Y1 to Y2 is an expression of the following form:

RS = {((~1, ~2), < δτRS(~1, ~2), δνRS(~1, ~2) >, < α(~1, ~2), β(~1, ~2) >) : ~1 ∈ Y1, ~2 ∈ Y2}

where the mappings
δτRS , δ

ν
RS

: Y1 ×Y2 → [0, 1]

and α(~1, ~2), β(~1, ~2) ∈ [0, 1] such that

0 ≤ α(~1, ~2)δτRS(~1, ~2) + β(~1, ~2)δνRS(~1, ~2) ≤ 1

for all (~1, ~2) ∈ Y1 × Y2 with 0 ≤ α(~1, ~2) + β(~1, ~2) ≤ 1. For a LDF-relation from Y1 to Y2, we
shall use

RS = (< δτRS(~1, ~2), δνRS(~1, ~2) >, < α(~1, ~2), β(~1, ~2) >) (6.1)

For F-relation πR : Y1 ×Y2 → [0, 1] associated with each LDF-relation 6.1, where

γR(~1, ~2)πR(~1, ~2) = 1 − (α(~1, ~2)δτRS(~1, ~2) + β(~1, ~2)δνRS(~1, ~2))

The number πR(~1, ~2) is hesitation degree of (~1, ~2) wether ~1 and ~2 are the relation RS or not, and
γR(~1, ~2) is the degree of hesitation of RPs.

Definition 6.2. [46] Let Y1 = {w1,w2, ...,wm}, and Y2 = {t1, t2, ..., tn} be two universes. Let RS = (<
δτ
RS

(wi,w j), δνRS(wi,w j) >, < α(wi,w j), (wi,w j) >) be an LDF-relation from Y1 to Y2.
Then, an LDF-relation RS can be expressed in terms of matrices of MG, NMGs, and RPs as follows:

δτ
RS

= (ai j)m×n =



k11 k12 ... k1n

k21 k22 ... k2n

. . ... .

. . ... .

. . ... .

km1 km2 ... kmn


, δν
RS

= (li j)m×n =



l11 l12 ... l1n

l21 l22 ... l2n

. . ... .

. . ... .

. . ... .

lm1 lm2 ... lmn


.
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α = (αi j)m×n =



α11 α12 ... α1n

α21 α22 ... α2n

. . ... .

. . ... .

. . ... .

αm1 αm2 ... αmn


, β = (βi j)m×n =



β11 β12 ... β1n

β21 β22 ... β2n

. . ... .

. . ... .

. . ... .

βm1 βm2 ... βmn


.

Or in form of one matrix as follows:

RD =



((k11, l11), (α11, β11)) ((k12, l12), (α12, β12)) ... ((k1n, l1n), (α1n, β1n))
((k21, l21), (α21, β21)) ((k22, l22), (α22, β22)) ... ((k2n, l2n), (α2n, β2n))

. . ... .

. . ... .

. . ... .

((km1, lm1), (αm1, βm1)) ((km2, lm2), (αm2, βm2)) ... ((amn, lmn), (αmn, βmn))


,

where RD = (< δτ
RS

(wi,w j), δνRS(wi,w j) >, < α(wi,w j), β(wi,w j) >) = (< ki j, li j >, < αi j, βi j >)m×n.

Definition 6.3. [46] Let RS = (< δτ
RS

(~1, ~2), δν
RS

(~1, ~2) >, < α(~1, ~2), β(~1, ~2) >) be a
LFR−relation from Y1 to Y2. Define the score function on RS by a map

N : LDFR(Y1 ×Y2)→ [−1, 1]

given as follows:

N(RS) =
1
2

[(δτRS(~1, ~2) − δνRS(~1, ~2)) + (α(~1, ~2) − β(~1, ~2))]

We extend the algorithm developed by Ayub et al. [46] for MCDM approach using LDF-relations.

Algorithm:

(1) Consider multi-criterion for the objects in the universes Y1, Y2 and Y3. Construct LDF bipartite
graph from Y1 and Y2 and from Y2 to Y3.

(2) Construct two LDF-relations RS from Y1 to Y2, and PR from Y2 to Y3.
(3) Compute composition RS◦̂PR.
(4) Calculate the hesitation values by using

ηik = 1 − (δτRS(~1, ~2)α(~1, ~2) + δνRS(~1, ~2)β(~1, ~2))

(5) Estimate the association grades for the elements of Y1 and Y3 by using

Ä = δτRS(~1, ~2) − δνRS(~1, ~2)ηik

(6) determine the pair (qi, qk), where qi ∈ Y1, qk ∈ Y3 having the highest association grade value Äik.
(7) The pair (qi, qk) is the selected object.

For elaboration, we employ the extended Algorithm in the following illustration.
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6.1. Numerical example

Now we discuss a decision making application of LDFSs, LDF graph and LDF relations to medical
diagnosis. In order to diagnose a patient having multiple symptoms, we utilize the above proposed
algorithm.
Step 1. Let Y1 = {p1, p2, p3, p4} be a set of patients, Y2 = {s1, s2, s3, s4, s5} be the symptoms of the
diagnosis, where
s1 = Muscle pain,
s2 = Fever,
s3 = Weakness,
s4 = Shortness of breath,
s5 = Chest pain, and
Y3 = {D1 = Pneumonia,D2 = Influenza,D3 = Corona virus} be the diagnosis set (set of diseases).
Construct LDF graphs from Y1 and Y2 and from Y2 to Y3. See the graph in Figure 15.

Figure 15. A bipartite graph.

Step 2. Construct the LDF-relation RS from Y1 to Y2 from LDF graphs in Step 1, which describe the
presence and non-presence of symptoms in patient to certain membership and non-membership degrees
together with the parametric values α = Strong symptom and β = not strong symptom, respectively.
The membership and non-membership fuzzy relations δτ

RS
and δν

RS
, together with their parametric

values α and β are presented in the following matrix forms:

δτ
RS

=


0.86 0.56 0.78 0.25 0.12
0.75 0.46 0.45 0.67 0.58
0.56 0.34 0.78 0.89 0.76
0.95 0.99 0.86 0.89 0.75


, δν
RS

=


0.34 0.49 0.35 0.76 0.89
0.34 0.74 0.41 0.32 0.28
0.44 0.66 0.59 0.31 0.45
0.11 0.21 0.35 0.21 0.41


,
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α =


0.75 0.50 0.65 0.20 0.10
0.60 0.28 0.32 0.56 0.51
0.48 0.25 0.61 0.72 0.60
0.80 0.88 0.75 0.72 0.60


, β =


0.24 0.37 0.25 0.60 0.72
0.24 0.60 0.27 0.24 0.21
0.26 0.53 0.49 0.22 0.28
0.10 0.08 0.24 0.08 0.27


.

Now, construct the LDF-relation PR from Y2 to Y3 which describes the relationship among the
symptoms and diagnosis by the membership and non-membership fuzzy relations δM

PR
, δN
PR

together
with parametric values α′ = Serious symptoms, β′ = Not serious symptoms in the following matrix
notations:

δM
PR

=



0.86 0.86 0.75
0.65 0.78 0.75
0.70 0.86 0.89
0.95 0.66 0.98
0.78 0.42 0.89


, δN
PR

=



0.50 0.42 0.31
0.42 0.32 0.27
0.40 0.21 0.10
0.31 0.20 0.001
0.31 0.45 0.2


,

α′ =



0.70 0.75 0.65
0.60 0.62 0.65
0.41 0.48 0.56
0.75 0.51 0.95
0.70 0.61 0.85


, β′ =



0.25 0.20 0.20
0.18 0.17 0.15
0.28 0.21 0.10
0.25 0.42 0.00001
0.27 0.21 0.01


.

Step 3. By simple calculations of the composition LDF-relation, we get the following:

δτ
RS
◦̂δM
PR

=


0.86 0.86 0.78
0.75 0.75 0.75
0.89 0.78 0.89
0.89 0.86 0.89


, δν
RS
◦̂δN
PR

=


0.40 0.35 0.34
0.31 0.32 0.28
0.31 0.31 0.31
0.31 0.21 0.21


,

α◦̂α′ =


0.70 0.75 0.65
0.60 0.60 0.60
0.72 0.60 0.72
0.72 0.75 0.72


, β◦̂β′ =


0.25 0.24 0.24
0.25 0.21 0.21
0.25 0.26 0.22
0.18 0.17 0.08


.

The resulting LDF-relation RS◦̂PR from Y1 to Y3 given in Table 3.

Table 3. LDF-relation RS◦̂PR.

RS◦̂PR D1 D2 D3

p1 ((0.86, 0.40), (0.70, 0.25)) ((0.86, 0.35), (0.75, 0.24)) ((0.78, 0.34), (0.65, 0.24))
p2 ((0.75, 0.31), (0.60, 0.25)) ((0.75, 0.32), (0.60, 0.21)) ((0.75, 0.28), (0.60, 0.21))
p3 ((0.89, 0.31), (0.72, 0.25)) ((0.78, 0.31), (0.60, 0.26)) ((0.89, 0.31), (0.72, 0.22))
p4 ((0.89, 0.31), (0.72, 0.18)) ((0.86, 0.21), (0.75, 0.17)) ((0.89, 0.21), (0.72, 0.08))
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This composition basically describes the diagnosis of the diseases in the given patients.
Step 4. By using the Definition 6.1, hesitation degrees can be evaluated by the formulae ηik = 1 −
(δτ
RS

(~1, ~2)α(~1, ~2) + δν
RS

(~1, ~2)β(~1, ~2)) of the LDF-relation RS◦̂PR from Y1 to Y3, are given in
Table 4.

Table 4. LDF-relation RS◦̂PR.

ηik D1 D2 D3

p1 0.298 0.271 0.4114
p2 0.4725 0.4828 0.4912
p3 0.2817 0.4514 0.291
p4 0.3034 0.3193 0.3424

Step 5. The association grades among objects of P and D can be evaluated by using the formulae
Ä = δτ

RS
(~1, ~2) − δν

RS
(~1, ~2)ηik are given in Table 5.

Table 5. The association grades among objects of P andD.

Äik D1 D2 D3

p1 0.7408 0.76515 0.640124
p2 0.603525 0.595504 0.612464
p3 0.802673 0.640066 0.79979
p4 0.795946 0.792947 0.818096

Step 6. Clearly, in first row the pair (p1,D2), in second row the pair (p2,D3), in third row the pair
(p3,D1), and in the last row the pair (p4,D3) having the highest association grades.
Step 7. Decision is, p1 has the disease D2, p2 has D3, p3 is suffering from D1, and p4 is suffering from
D3. For confirmation, the score values among Y1 and Y3 by using the Definition 6.3, are calculated in
Table 6.

Table 6. Score values among Y1 and Y3.

Nνik D1 D2 D3

p1 0.455 0.51 0.425
p2 0.395 0.41 0.43
p3 0.56 0.405 0.54
p4 0.56 0.615 0.66

It can be easily seen that, in first row the pair (p1,D2), in second row pair (p2,D3), in third row the
pair (p3,D1), and in the last row the pair (p4,D3) having the highest score values. Thus, our above
decisions are true. Hence, our proposed algorithm is reliable and employs valid results.

7. Conclusions

Uncertain optimization, modeling uncertainty, and optimization problems have been studied by
researchers. A Linear Diophantine fuzzy graph provides a robust approach for modeling uncertainty
in the best worst situation. Consequently, the decision-making approach becomes robust with linear
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Diophantine fuzzy information. We introduced the idea of LDF-graph as a generalization of certain
existing concepts including, q-ROF graph, PF-graph, and IF-graph. We introduced certain properties
of LDF-graph including, join, union, and composition of LDF-graphs. We elucidate these operations
with various illustrations. We analyzed some interesting results that the composition of two LDF-
graphs is a LDF-graph, cartesian product of two LDF-graphs is a LDF-graph, and the join of two
LDF-graphs is a LDF-graph. We described the idea of homomorphisms and isomorphism for LDF-
graphs. We proved the result that an isomorphism between LDF-graphs is an equivalence relation.
many other significant results related to complement of LDF-graph are also established. Lastly, an
algorithm based on LDFSs and LDF-relations is proposed for decision-making problems. Based on
proposed algorithm an application of medical diagnosis is presented.

In future we may work on the following topics:
1) Linear Diophantine fuzzy soft graphs.
2) Linear Diophantine fuzzy plannar graphs.
3) Linear Diophantine fuzzy hypergraphs.

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid
University, Abha 61413, Saudi Arabia for funding this work through research groups program under
grant number R.G. P-2/98/43.

Conflict of interest

The authors of this paper declare that they have no conflict of interest.

References

1. S. Ashraf, S. Abdullah, Emergency decision support modeling for COVID-19 based on spherical
fuzzy information, Int. J. Intell. Syst., 35 (2020), 1601–1645. http://dx.doi.org/10.1002/int.22262

2. H. Garg, R. Arora, TOPSIS method based on correlation coefficient for solving decision-making
problems with intuitionistic fuzzy soft set information, AIMS Mathematics, 5 (2020), 2944–2966.
http://dx.doi.org/10.3934/math.2020190
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