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1. Introduction

Over time, it was necessary to introduce several concepts of efficient solutions for multiobjective
optimization problems. Geoffrion [5] defined a rather narrow definition of efficiency, named proper
efficiency. Klinger [13] introduced improper solutions for a given vector maximization problem.
Kazmi [11] used vector variational-like inequalities to prove the existence of a weak minimum for
some constrained vector optimization problems. Ghaznavi-ghosoni and Khorram [6] considered
approximate solutions of the corresponding scalarized problems to establish efficiency conditions for
approximating (weakly, properly) efficient points associated with general multi-objective optimization
problems.

The concept of convexity is almost inevitable in optimization theory. However, since convexity is
no longer sufficient in certain real-life problems, its generalization was a necessity. Thus, Hanson [8]
defined invex functions. Over time, many other various extensions have been considered: preinvexity,
univexity, pseudoinvexity, approximate convexity, quasiinvexity and so on (see, for instance, Antczak
[2, 3], Arana-Jiménez et al. [4], Mishra et al. [14], Ahmad et al. [1]). In addition, these concepts
have been converted for the multidimensional case defined by multiple/curvilinear integrals (see, for
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instance, Mititelu and Treanţă [15], Treanţă [18, 20]).
The crucial role of variational inequalities in engineering or traffic analysis is well known.

Remarkable results for the vector case were developed by Giannessi [7]. Under suitable hypotheses,
vector variational inequalities give the existence of solutions for multiobjective/vector optimization
problems. Many papers centered on the links between the solutions of these types of inequalities
and efficient solutions of mutiobjective optimization problems (see, for instance, Ruiz-Garzón et al.
[16, 17], Jayswal et al. [9]). Recently, Treanţă [19] defined and studied a class of controlled variational
inequalities defined by functionals of the curvilinear integral type.

Kim [12] formulated some relations between vector continuous-time programs and vector
variational inequalities. As is well known, optimal control problems, regarded as continuous-time
variational problems, represent a powerful ingredient for investigating many engineering problems and
processes coming from game theory, economics and operations research. For this, Treanţă [21, 22]
and Jha et al. [10] have contributed and proved necessary and sufficient optimality (efficiency)
conditions, a saddle-point criterion, well-posedness and a modified objective function method for
various multidimensional control problems determined by functionals of the multiple or curvilinear
integral type.

As a natural continuation of the above-mentioned advances, in the current paper we introduce vector
controlled variational inequalities and the corresponding multiobjective controlled variational problem,
determined by functionals of the curvilinear integral type, which are independent of the path. By
considering a new form of the notion of an invex set with respect to some given functions, we establish
relations between the solutions of the considered multidimensional variational problems.

In the following, the paper is continued with the problem formulation and preliminaries. In Section
3, we establish the characterization results for the solutions associated with the considered variational
problems. Section 4 contains the conclusions of this paper.

2. Problem description

In this paper, we begin with B as a domain in Rm, that is supposed to be compact, and B 3 ζ =

(ζβ), β = 1,m, as a multi-variable of evolution. Denote by B ⊃ C : ζ = ζ(ς), ς ∈ [x, y] a piecewise
differentiable curve that links the two points ζ1 = (ζ1

1 , . . . , ζ
m
1 ), ζ2 = (ζ1

2 , . . . , ζ
m
2 ) in B. Also, we

introduce U as the space of all piecewise differentiable state functions u : B → Rn and V as the space
of all control functions v : B → Rk, which are supposed to be piecewise continuous. In addition, on
U × V we define the scalar product

〈(u, v), (π, x)〉 =

∫
C
[u(ζ) · π(ζ) + v(ζ) · x(ζ)

]
dζβ

=

∫
C

[ n∑
i=1

ui(ζ)πi(ζ) +

k∑
j=1

v j(ζ)x j(ζ)
]
dζ1

+ · · · +
[ n∑

i=1

ui(ζ)πi(ζ) +

k∑
j=1

v j(ζ)x j(ζ)
]
dζm, (∀)(u, v), (π, x) ∈ U × V,

together with the norm induced by it.
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By using the vector-valued C2-class functions hβ = (hl
β) : B×Rn×Rnm×Rk → Rp, β = 1,m, l = 1, p,

we introduce the following vector functional defined by curvilinear integrals:

H : U × V→ Rp, H(u, v) =

∫
C

hβ (ζ, u(ζ), uα(ζ), v(ζ)) dζβ =

=

(∫
C

h1
β (ζ, u(ζ), uα(ζ), v(ζ)) dζβ, · · · ,

∫
C

hp
β (ζ, u(ζ), uα(ζ), v(ζ)) dζβ

)
.

In the following, Dα, α ∈ {1, . . . ,m}, denotes the operator of total derivative, and we assume that
the 1-form densities of Lagrange type

hβ =
(
h1
β, . . . , h

p
β

)
: B × Rn × Rnm × Rk → Rp, β = 1,m,

are closed, that is, Dαhl
β = Dβhl

α, β, α = 1,m, β , α, l = 1, p. Also, throughout the paper, we will use
the following rules associated with equalities and inequalities:

a = b⇔ al = bl, a ≤ b⇔ al ≤ bl, a < b⇔ al < bl, a � b⇔ a ≤ b, a , b, l = 1, p,

for any p-tuples a =
(
a1, · · · , ap

)
, b =

(
b1, · · · , bp

)
in Rp.

Further, we introduce the following partial differential equation constrained multiobjective
variational control problem

(CP) min
(u,v)

{
H(u, v) =

∫
C

hβ (ζ, u(ζ), uα(ζ), v(ζ)) dζβ
}

subject to (u, v) ∈ S,

where
H(u, v) =

∫
C

hβ (ζ, u(ζ), uα(ζ), v(ζ)) dζβ

=

(∫
C

h1
β (ζ, u(ζ), uα(ζ), v(ζ)) dζβ, · · · ,

∫
C

hp
β (ζ, u(ζ), uα(ζ), v(ζ)) dζβ

)
=

(
H1(u, v), ...,Hp(u, v)

)
and

S =
{
(u, v) ∈ U × V | Z (ζ, u(ζ), uα(ζ), v(ζ)) = 0, Y (ζ, u(ζ), uα(ζ), v(ζ)) ≤ 0,

(u, v)|ζ=ζ1,ζ2 = given
}
.

In the definition of S, we have considered that Z = (Zι) : B × Rn × Rnm × Rk → Rt, ι = 1, t, Y = (Yr) :
B × Rn × Rnm × Rk → Rq, r = 1, q, are assumed to be C2-class functions.

Definition 2.1 (Mititelu and Treanţă [15]) A point (u0, v0) ∈ S is called an efficient solution in (CP)
if there exists no other (u, v) ∈ S such that H(u, v) � H(u0, v0), or, equivalently, Hl(u, v) − Hl(u0, v0) ≤
0, (∀)l = 1, p, with strict inequality for at least one l.

Definition 2.2 (Geoffrion [5]) A point (u0, v0) ∈ S is called a proper efficient solution in (CP) if
(u0, v0) ∈ S is an efficient solution in (CP), and there exists a positive real number M such that, for all
l = 1, p, we have

Hl(u0, v0) − Hl(u, v) ≤ M
(
H s(u, v) − H s(u0, v0)

)
,
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for some s ∈ {1, · · · , p} such that
H s(u, v) > H s(u0, v0),

whenever (u, v) ∈ S and
Hl(u, v) < Hl(u0, v0).

According to Treanţă [20], for u ∈ U and v ∈ V, we consider the vector functional of curvilinear
integral type (which is independent of the path)

K : U × V→ Rp, K (u, v) =

∫
C
κβ (ζ, u(ζ), uα(ζ), v(ζ)) dζβ

and introduce the concept of invexity associated with K.

Definition 2.3 If there exist

ϑ : B × Rn × Rk × Rn × Rk → Rn,

ϑ = ϑ
(
ζ, u(ζ), v(ζ), u0(ζ), v0(ζ)

)
=

(
ϑi

(
ζ, u(ζ), v(ζ), u0(ζ), v0(ζ)

))
, i = 1, n,

of C1-class with ϑ
(
ζ, u0(ζ), v0(ζ), u0(ζ), v0(ζ)

)
= 0, (∀)ζ ∈ B, ϑ(ζ1) = ϑ(ζ2) = 0, and

υ : B × Rn × Rk × Rn × Rk → Rk,

υ = υ
(
ζ, u(ζ), v(ζ), u0(ζ), v0(ζ)

)
=

(
υ j

(
ζ, u(ζ), v(ζ), u0(ζ), v0(ζ)

))
, j = 1, k,

of C0-class with υ
(
ζ, u0(ζ), v0(ζ), u0(ζ), v0(ζ)

)
= 0, (∀)ζ ∈ B, υ(ζ1) = υ(ζ2) = 0, such that

K (u, v) − K
(
u0, v0

)
≥

∫
C

[
∂κβ

∂u

(
ζ, u0(ζ), u0

α(ζ), v0(ζ)
)
ϑ +

∂κβ

∂uα

(
ζ, u0(ζ), u0

α(ζ), v0(ζ)
)

Dαϑ

]
dζβ

+

∫
C

[
∂κβ

∂v

(
ζ, u0(ζ), u0

α(ζ), v0(ζ)
)
υ

]
dζβ,

for any (u, v) ∈ U × V, then K is said to be invex at
(
u0, v0

)
∈ U × V with respect to ϑ and υ.

Definition 2.4 In the above definition, with (u, v) ,
(
u0, v0

)
, if we replace ≥ with >, we say that K

is strictly invex at
(
u0, v0

)
∈ U × V with respect to ϑ and υ.

Some examples of invex curvilinear integral functionals can be consulted in Treanţă [20].

Definition 2.5 The nonempty subset X × Q ⊂ U × V is said to be invex with respect to ϑ and υ if

(u0, v0) + λ
(
ϑ
(
ζ, u, v, u0, v0

)
, υ

(
ζ, u, v, u0, v0

))
∈ X × Q,

for all (u, v), (u0, v0) ∈ X × Q and λ ∈ [0, 1].
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Now, in order to formulate and prove some results on the existence of solutions for problem (CP),
we introduce the following vector controlled variational inequalities: find (u0, v0) ∈ S such that there
exists no (u, v) ∈ S satisfying

(VI)
( ∫

C

∂h1
β

∂u

(
ζ, u0(ζ), u0

α(ζ), v0(ζ)
)
ϑ +

∂h1
β

∂v

(
ζ, u0(ζ), u0

α(ζ), v0(ζ)
)
υ

 dζβ

+

∫
C

∂h1
β

∂uα

(
ζ, u0(ζ), u0

α(ζ), v0(ζ)
)

Dαϑ

 dζβ, · · · ,

∫
C

∂hp
β

∂u

(
ζ, u0(ζ), u0

α(ζ), v0(ζ)
)
ϑ +

∂hp
β

∂v

(
ζ, u0(ζ), u0

α(ζ), v0(ζ)
)
υ

 dζβ

+

∫
C

∂hp
β

∂uα

(
ζ, u0(ζ), u0

α(ζ), v0(ζ)
)

Dαϑ

 dζβ
)
≤ 0.

3. Main results

In this section, we will formulate the characterization results and connections between the solutions
of the considered vector controlled variational inequalities and (proper) efficient solutions of the
introduced multiobjective variational control problem (CP).

Theorem 3.1 Let S ⊂ U×V be an invex set with respect to ϑ and υ, and let (u0, v0) ∈ S be a proper
efficient solution of (CP). If each curvilinear integral∫

C
hl
β (ζ, u(ζ), uα(ζ), v(ζ)) dζβ, l = 1, p,

is Fréchet differentiable at (u0, v0) ∈ S, then the pair (u0, v0) solves (VI).

Proof. By reductio ad absurdum, consider that (u0, v0) ∈ S is a proper efficient solution of (CP), but
it does not satisfy (VI). In consequence, there exists (u, v) ∈ S such that, for all l = 1, p, we have∫

C

∂hl
β

∂u

(
ζ, u0(ζ), u0

α(ζ), v0(ζ)
)
ϑ +

∂hl
β

∂v

(
ζ, u0(ζ), u0

α(ζ), v0(ζ)
)
υ

 dζβ

+

∫
C

∂hl
β

∂uα

(
ζ, u0(ζ), u0

α(ζ), v0(ζ)
)

Dαϑ

 dζβ < 0, (1)

and, for s , l, ∫
C

[
∂hs

β

∂u

(
ζ, u0(ζ), u0

α(ζ), v0(ζ)
)
ϑ +

∂hs
β

∂v

(
ζ, u0(ζ), u0

α(ζ), v0(ζ)
)
υ

]
dζβ

+

∫
C

[
∂hs

β

∂uα

(
ζ, u0(ζ), u0

α(ζ), v0(ζ)
)

Dαϑ

]
dζβ ≤ 0. (2)
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By hypothesis, we have that S ⊂ U×V is an invex set with respect to ϑ and υ. Thus, we can consider
the pair (z,w) = (u0, v0) + λn

(
ϑ
(
ζ, u, v, u0, v0

)
, υ

(
ζ, u, v, u0, v0

))
∈ S, (∀)n, for some sequence {λn} of

positive real numbers satisfying λn → 0 as n→ ∞.

Further, we establish that each curvilinear integral
∫

C
hl
β (ζ, u(ζ), uα(ζ), v(ζ)) dζβ, l = 1, p, is Fréchet

differentiable at (u0, v0) ∈ S and obtain the following equality:

Hl(z,w) − Hl(u0, v0)

=

∫
C
λn

∂hl
β

∂u

(
ζ, u0(ζ), u0

α(ζ), v0(ζ)
)
ϑ +

∂hl
β

∂v

(
ζ, u0(ζ), u0

α(ζ), v0(ζ)
)
υ

 dζβ

+

∫
C
λn

∂hl
β

∂uα

(
ζ, u0(ζ), u0

α(ζ), v0(ζ)
)

Dαϑ

 dζβ

+ ‖ λn

(
ϑ
(
ζ, u, v, u0, v0

)
, υ

(
ζ, u, v, u0, v0

))
‖ ·Gl(z,w), (3)

where Gl : V(u0,v0) → R is a continuous function defined on a neighborhood of (u0, v0), denoted by
V(u0,v0), with limn→∞Gl(z,w) = 0. By dividing (3) by λn and taking the limit, we get

lim
n→∞

1
λn

[
Hl(z,w) − Hl(u0, v0)

]
=

∫
C

∂hl
β

∂u

(
ζ, u0(ζ), u0

α(ζ), v0(ζ)
)
ϑ +

∂hl
β

∂v

(
ζ, u0(ζ), u0

α(ζ), v0(ζ)
)
υ

 dζβ

+

∫
C
λn

∂hl
β

∂uα

(
ζ, u0(ζ), u0

α(ζ), v0(ζ)
)

Dαϑ

 dζβ. (4)

Combining relations (1) and (4), it results that

Hl(z,w) − Hl(u0, v0) < 0,

for some n ≥ N, with N being a natural number.
Next, since (u0, v0) ∈ S is a proper efficient solution of (CP), we consider the nonempty set

M =
{
s ∈ {1, · · · , p} | H s(u0, v0) − H s(z,w) ≤ 0, (∀)n ≥ N

}
.

For s ∈ M, by considering the Fréchet differentiability of
∫

C
hs
β (ζ, u(ζ), uα(ζ), v(ζ)) dζβ at (u0, v0) ∈ S,

we obtain
H s(z,w) − H s(u0, v0)

=

∫
C
λn

[
∂hs

β

∂u

(
ζ, u0(ζ), u0

α(ζ), v0(ζ)
)
ϑ +

∂hs
β

∂v

(
ζ, u0(ζ), u0

α(ζ), v0(ζ)
)
υ

]
dζβ

+

∫
C
λn

[
∂hs

β

∂uα

(
ζ, u0(ζ), u0

α(ζ), v0(ζ)
)

Dαϑ

]
dζβ
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+ ‖ λn

(
ϑ
(
ζ, u, v, u0, v0

)
, υ

(
ζ, u, v, u0, v0

))
‖ ·Gs(z,w), (5)

where Gs : V(u0,v0) → R is a continuous function defined on a neighborhood of (u0, v0), denoted by
V(u0,v0), with limn→∞Gs(z,w) = 0. By dividing (5) by λn and taking the limit, we get

lim
n→∞

1
λn

[
H s(z,w) − H s(u0, v0)

]
=

∫
C

[
∂hs

β

∂u

(
ζ, u0(ζ), u0

α(ζ), v0(ζ)
)
ϑ +

∂hs
β

∂v

(
ζ, u0(ζ), u0

α(ζ), v0(ζ)
)
υ

]
dζβ

+

∫
C

[
∂hs

β

∂uα

(
ζ, u0(ζ), u0

α(ζ), v0(ζ)
)

Dαϑ

]
dζβ.

By using the property of the setM, for n ≥ N, we get∫
C

[
∂hs

β

∂u

(
ζ, u0(ζ), u0

α(ζ), v0(ζ)
)
ϑ +

∂hs
β

∂v

(
ζ, u0(ζ), u0

α(ζ), v0(ζ)
)
υ

]
dζβ (6)

+

∫
C

[
∂hs

β

∂uα

(
ζ, u0(ζ), u0

α(ζ), v0(ζ)
)

Dαϑ

]
dζβ ≥ 0.

Combining relations (2) and (6), it results that∫
C

[
∂hs

β

∂u

(
ζ, u0(ζ), u0

α(ζ), v0(ζ)
)
ϑ +

∂hs
β

∂v

(
ζ, u0(ζ), u0

α(ζ), v0(ζ)
)
υ

]
dζβ

+

∫
C

[
∂hs

β

∂uα

(
ζ, u0(ζ), u0

α(ζ), v0(ζ)
)

Dαϑ

]
dζβ = 0,

for some n ≥ N, with N being a natural number, and s , l, s ∈ M.
Finally, for s , l, s ∈ M, by computing the limit

1
λn

[
Hl(u0, v0) − Hl(z,w)

]
1
λn

[
H s(z,w) − H s(u0, v0)

] ,
we find that it is∞ as n→ ∞, which contradicts the proper efficiency of (u0, v0) for (CP), and the proof
is now complete. �

The next theorem provides a charaterization of the efficient solutions for (CP) by using the vector
controlled variational inequality (VI).

Theorem 3.2 Let (u0, v0) ∈ S be a solution of (VI). If each curvilinear integral∫
C

hl
β (ζ, u(ζ), uα(ζ), v(ζ)) dζβ, l = 1, p, is Fréchet differentiable and invex at (u0, v0) ∈ S with respect

to ϑ and υ, then the pair (u0, v0) is an efficient solution of (CP).

Proof. By reductio ad absurdum, consider that (u0, v0) ∈ S is a solution of (VI), but it is not an
efficient solution of (CP). In consequence, there exists (u, v) ∈ S such that, for all l = 1, p,

Hl(u, v) − Hl(u0, v0) ≤ 0, (7)
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with strict inequality for at least one l.

By hypothesis, each curvilinear integral
∫

C
hl
β (ζ, u(ζ), uα(ζ), v(ζ)) dζβ, l = 1, p, is Fréchet

differentiable and invex at (u0, v0) ∈ S with respect to ϑ and υ. In consequence, we have

Hl(u, v) − Hl(u0, v0)

≥

∫
C

∂hl
β

∂u

(
ζ, u0(ζ), u0

α(ζ), v0(ζ)
)
ϑ +

∂hl
β

∂v

(
ζ, u0(ζ), u0

α(ζ), v0(ζ)
)
υ

 dζβ

+

∫
C

∂hl
β

∂uα

(
ζ, u0(ζ), u0

α(ζ), v0(ζ)
)

Dαϑ

 dζβ, (8)

for any (u, v) ∈ S and l = 1, p.
On combining inequalities (7) and (8), we find that, for all l = 1, p, there exists (u, v) ∈ S such that∫

C

∂hl
β

∂u

(
ζ, u0(ζ), u0

α(ζ), v0(ζ)
)
ϑ +

∂hl
β

∂v

(
ζ, u0(ζ), u0

α(ζ), v0(ζ)
)
υ

 dζβ

+

∫
C

∂hl
β

∂uα

(
ζ, u0(ζ), u0

α(ζ), v0(ζ)
)

Dαϑ

 dζβ ≤ 0,

with strict inequality for at least one l, which contradicts that (u0, v0) ∈ S is a solution of (VI). The
proof is now complete. �

4. Conclusions

In the current paper, by using the invexity and Fréchet differentiability of the involved curvilinear
integral functionals (which are independent of the path), we have formulated and proved a connection
between the solutions of some vector controlled variational inequalities and (proper) efficient solutions
of a multiobjective controlled variational problem. Also, the notion of an invex set with respect to some
given functions played an important role in our arguments. The theory developed in this paper can be
converted by considering the concept of the variational derivative associated with multiple/curvilinear
integral functionals (see Treanţă [19]).
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