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1. Introduction

Fractional calculus is a well-known theory regarding fractional differential equations (FDEs) which
has received much consideration and attention during the past decades and also has became the most
important branch in applied analysis because of its extensive applications in a vast range of applied
sciences [1–3].
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Meanwhile, the variety of fractional operators defined by mathematicians has led researchers to
focus on the differences and outputs of mathematical models designed by these operators and to use
a wide range of fractional derivation operators in their studies. Some of the prominent works in this
field are different types of fractional mathematical models in which the effects of the order of fractional
derivatives on the dynamic behavior of the solutions of the assumed systems are carefully simulated.
Some examples include the following: In [4, 5], the use of a Caputo derivative; in [6, 7], the use of a
Caputo-conformable derivative; in [8–10], the use of a generalized derivative; in [11, 12], the use of a
quantum Caputo derivative; in [13,14], the use of a nonsingular Caputo-Fabrizio derivative; in [15–18],
the use of a nonsingular Mittag-Leffler kernel-type derivative.

One of the fractional derivatives that is defined by the combination of the properties of the Caputo
and Hadamard operators is the Caputo-Hadamard fractional derivative. There are limited fractional
models and problems designed by this operator. Examples can be seen in [19–24].

Hence, as we see, the existence and uniqueness problems for FDEs have many forms according to
the shape of the differential model and of course the form of the initial or boundary conditions. In the
newly published works, the role of fractional calculus in the topics of control theory can be widely
observed. In the meantime, the fractional order controller is one of the key concepts in the field of
control problems. One of the most important specifications of the control problems is stability analysis
which is considered to be a fundamental condition for every control problem. In 1996, Matignon [25]
was one of the first mathematicians to conduct research on the stability of linear differential systems
using a Caputo operator. Since then, many researchers have implemented further investigations into
the stability of such linear fractional systems [26, 27]. In regard to the nonlinear fractional systems,
the stability criterion is much more difficult. The direct method attributed to Lyapunov gives a way
to study a special type of stability tremed the Mittag-Leffler stability for a given fractional nonlinear
system without solving it explicitly [28, 29]. Such a direct method due to Lyapunov is a sufficient
condition to confirm the stability of the nonlinear systems; in other words, the given systems may
still be stable even if we cannot choose a Lyapunov’s mapping to fulfill the stability property for the
mentioned system.

In this paper, the main properties such as the existence , uniqueness and different types of stability
are studied for the fractional system involving the nonlinear Caputo-Hadamard FIVP as given by CHDℓ

cϕ(t) = Aϕ(t) + ψ(t, ϕ(t), CHDβ
cϕ(t)), t > c > 0,

Θkϕ(t) |t=c= ϕk, k = 0, 1.
(1.1)

Where 1 < ℓ < 2, 0 < β < ℓ − 1, ϕ0, ϕ1 ∈ R
n , A ∈ Rn×n, Θ = t d

dt and ψ : [c,∞) × Rn × Rn → Rn is a
given function. CHDℓ

c and CHDβ
c are the Caputo-Hadamard derivatives of orders ℓ and β, respectively.

The basic motivation and novelty of this work is that we attempt to use some specifications of the
modified Laplace transform to the Caputo-Hadamard FIVP to derive the corresponding Hadamard
integral equation in terms of one-parametric and two-parametric Mittag-Leffler functions. Also, there
is no work about the generalized Mittag-Leffler stability for a fractional system designed by using a
Caputo-Hadamard operator so far. Thus, with the help of Lyapunov functions and the aid of K-class
functions, we will prove this type of stability.

The manuscript is structured as follows. Section 2 is devoted to recalling definitions, theorems,
lemmas and remarks that will be applied throughout the next sections. In Section 3, we shall give
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several sufficient conditions confirming the existence of the solution and its uniqueness for the
nonlinear Caputo-Hadamard FIVP given by (1.1) using the Banach contraction principle. In
Section 4, by using a Lyapunov-like function and a K-class function, the generalized Mittag-Leffler
stability for the Caputo-Hadamard system (1.1) is established. We validate our findings in Section 5
and end the paper in Section 6.

2. Preliminaries

At first, the fundamental notions related to the scope of the present paper are recollected in this
section. Let the space

ACn
Θ = {h : [c, b]→ R : Θn−1

h(t) ∈ AC[c, b]},

be so that Θ = t d
dt stands for the Hadamard derivative, and AC([c, b],R) consists of all functions on

[c, b] with the absolute continuity property.

Definition 2.1. [1,30] The Hadamard integral of a given function ψ(t) : [c, b]→ R of the order ℓ > 0
is defined by

HD−ℓc+ψ(t) =
1
Γ(ℓ)

∫ t

c

(
ln

t
w

)ℓ−1
ψ(w)

dw
w
, t > c > 0.

Definition 2.2. [1] The Hadamard derivative of a function ψ(t) : [c, b] → R belonging to ACn
Θ

of the
order ℓ is defined by

HDℓ
c+ψ(t) = Θn

[
HD−(n−ℓ)

c+ ψ(t)
]

=
1

Γ(n − ℓ)
Θn

∫ t

c

(
ln

t
w

)n−ℓ−1
ψ(w)

dw
w
, t > c > 0,

where Θ = t d
dt , and n − 1 < ℓ < n ∈ Z+.

Lemma 2.3. [31] Let ℓ > 0, n = [ℓ]+1. If ψ(t) ∈ ACn
Θ
, then the Hadamard fractional derivative HDℓ

c+

exists almost everywhere on [c, b] and can be represented in the following form:

(HDℓ
c+ψ)(t) =

n−1∑
k=0

(Θkψ)(c)
Γ(1 + k − ℓ)

(ln
t
c

)k−ℓ +
1

Γ(n − ℓ)

∫ t

c
(ln

t
w

)n−ℓ−1(Θnψ)(w)dw.

In particular, when 0 < ℓ < 1, then, for ψ(t) ∈ AC[c, b],

(HDℓ
c+ψ)(t) =

ψ(c)
Γ(1 − ℓ)

(ln
t
c

)−ℓ +
1

Γ(1 − ℓ)

∫ t

c
(ln

t
w

)−ℓψ′(w)
dw
w
.

Definition 2.4. [32] The Caputo-Hadamard derivative of the function ψ(t) of the order ℓ(n−1 < ℓ < n)
is defined by

(CHDℓ
c+ψ)(t) = HD−(n−ℓ)

c+ [Θnψ(t)]

=
1

Γ(n − ℓ)

∫ t

c

(
ln

t
w

)n−ℓ−1
Θnψ(w)

dw
w
, t > c > 0.
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Lemma 2.5. [32] If ψ(t) ∈ ACn
Θ

is a function such that CHDℓψ(t) and HDℓψ(t) exist, then

CHDℓ
cψ(t) = HDℓ

cψ(t) −
n−1∑
k=0

(t d
dt )

kψ(c)
Γ(k − ℓ + 1)

(ln
t
c

)k−ℓ,

and when 0 < ℓ < 1, then

CHDℓ
cψ(t) = HDℓ

cψ(t) −
ψ(c)
Γ(1 − ℓ)

(ln
t
c

)−ℓ.

In view of the aforementioned definitions related to the Hadamard operators (integral and derivative
operators), we can not obtain the corresponding Laplace transforms due to the initial value starting at
the time t = c > 0. For this reason, it is necessary that we provide a new type of definition for the case
with the starting value at the time t = c > 0.

Definition 2.6. [33,34] For a mapping ψ(t) given on [c,∞)(c > 0), the modified Laplace transform of
ψ is defined by

ψ̃(s) = Lc{ψ(t)} =
∫ ∞

c
ψ(t)e−s ln t

c
dt
t
, s ∈ C.

Also, the inverse modified Laplace transform of ψ̃(s) is defined by

ψ(t) = L−1
c {ψ̃(s)} =

1
2πi

∫ c+i∞

c−i∞
ψ̃(s)es ln t

c ds, c > 0, i2 = −1.

The following properties are fulfilled for these modified transforms.

Proposition 2.7. [34] If Lc{ψ(t)} = ψ̃(s), then

Lc{Θ
nψ(t)} = snψ̃(s) −

n−1∑
k=0

sn−k−1Θkψ(c), t > c > 0, n ∈ Z+,

where Θ = t d
dt .

Lemma 2.8. [34] Let n − 1 < ℓ < n. Then

Lc{HD−ℓc,tψ(t)} = s−ℓLc{ψ(t)},

Lc{HDℓ
c,tψ(t)} = sℓLc{ψ(t)} −

n−1∑
k=0

sn−k−1[Θk
HD−(n−ℓ)

c,t ψ(t)]|t=c,

Lc{CHDℓ
c,tψ(t)} = sℓLc{ψ(t)} −

n−1∑
k=0

sℓ−k−1Θkψ(c).

Definition 2.9. [34] Let ψ and h be defined on [c,∞). Then the integral
∫ t

c
ψ(c

t
w

)h(w)
dw
w

is termed

the convolution of ψ and h, that is,

ψ(t) ∗ h(t) = (ψ ∗ h)(t) =
∫ t

c
ψ(c

t
w

)h(w)
dw
w
. (2.1)
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Proposition 2.10. [34] If Lc{ψ(t)} = ψ̃(s) and Lc{h(t)} = h̃(s), then

Lc{ψ(t) ∗ h(t)} = Lc{ψ(t)}Lc{h(t)} = ψ̃(s)h̃(s);

conversely,
L−1

c {ψ̃(s)h̃(s)} = L−1
c {ψ̃(s)} ∗ L−1

c {h̃(s)} = ψ(t) ∗ h(t).

Definition 2.11. [35] The one-parametric Mittag–Leffler function is defined as

Eℓ(z) =
∞∑

k=0

zk

Γ(ℓk + 1)
, ℓ > 0, z ∈ C.

Clearly, Eℓ(z) = ez for ℓ = 1 The two-parametric Mittag-Leffler function is of the following form

Eℓ,β(z) =
∞∑

k=0

zk

Γ(ℓk + β)
, ℓ > 0, β > 0.

The derivative of the Mittag-Leffler function is given by

d
dz
Eℓ,1(czℓ) =

∞∑
k=1

ckzℓk−1

Γ(ℓk)
= czℓ−1

∞∑
k=0

(czℓ)k

Γ(ℓk + ℓ)
= czℓ−1Eℓ,ℓ(czℓ), (2.2)

and
d
dz

(
zβ−1Eℓ,β(czℓ)

)
= zβ−2Eℓβ−1(czℓ). (2.3)

Subsequently, we present the modified Laplace transform of a Mittag-Leffler function. By utilizing
the formula [36] ∫ ∞

0
e−sttℓk+β−1E j

ℓ,β(±λtℓ)dt =
j!sℓ−β

(sℓ ± λ) j+1 , Re(s) > |λ|
1
ℓ ,

and by using the change of the variable t = ln w
c , we get∫ ∞

c
e−s ln w

c (ln
w
c

)ℓk+β−1E j
ℓ,β

(
±λ(ln

w
c

)ℓ
) dw

w
=

j!sℓ−β

(sℓ ± λ) j+1 , Re(s) > |λ|
1
ℓ .

Definition 2.12. [37] For a normed space ||B|| = (B, ||.||), the operator N : B → B satisfies the
Lipschitz condition, if there is a positive real constant K such that for all ϕ and y in B,

||Nϕ − Ny|| < K||ϕ − y||.

Remark 2.13. [37] Given Definition 2.12, if 0 < K < 1, the operator N is called a contraction
mapping on the normed space ||B|| = (B, ||.||).

Theorem 2.14 (Banach fixed point theorem). [38] Let B be a Banach space and N be a contraction
mapping with the Lipschitz constant K. Then N has an unique fixed point.
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3. Existence and uniqueness of solution

For a given T > c > 0, let E = C([c,T ],Rn) be a Banach space consisting of continuous n-vector
mappings given on [c,T ] furnished with the norm

||ϕ|| = sup
t∈[c,T ]

|ϕ(t)|.

Notice that the norm of an n-vector ϕ(t) = (ϕ1(t), ϕ2(t), . . . , ϕn(t)) ∈ Rn is presented as

|ϕ(t)| =

 n∑
k=1

|ϕk(t)|2
1/2

.

Based on the problem given by (1.1), we introduce the Banach space B = {ϕ; ϕ ∈ E, CHDβ
cϕ ∈ E} via

the norm
||ϕ||B = ||ϕ|| + ||CHDβ

cϕ||.

Now, we first derive the equivalent solution to our system.

Lemma 3.1. For 1 < ℓ < 2, 0 < β < ℓ − 1 and invertible matrix [Isℓ − A], the solution of the nonlinear
Caputo-Hadamard FIVP given by (1.1) is given as

ϕ(t) = Eℓ

(
A

(
ln

t
c

)ℓ)
ϕ0 +

(
ln

t
c

)
Eℓ,2

(
A

(
ln

t
c

)ℓ)
ϕ1

+

∫ t

c

(
ln

w
c

)ℓ−1
Eℓ,ℓ

(
A

(
ln

w
c

)ℓ)
ψ(w, ϕ(w),Dβ

cϕ(w))
dw
w
.

Proof. Let Ψ(s) and Φ(s) be the modified Laplace transforms of ψ(t) and ϕ(t), respectively. Then,
by using the modified Laplace transform and its properties for the nonlinear Caputo-Hadamard FIVP
given by (1.1), we have

Lc{CHDℓ
cϕ(t)} = Lc{Aϕ(t)} + Lc{ψ(t, ϕ(t), CHDβ

cϕ(t))},

so
Φ(s) = sℓ−1[Isℓ − A]−1ϕ0 + sℓ−2[Isℓ − A]−1ϕ1 + [Isℓ − A]−1Ψ(s,Φ(s), CHDβ

cΦ(s)).

By applying the inverse modified Laplace transform to the above relation, we obtain

ϕ(t) = Eℓ

(
A

(
ln

t
c

)ℓ)
ϕ0 +

(
ln

t
c

)
Eℓ,2

(
A

(
ln

t
c

)ℓ)
ϕ1

+

∫ t

c

(
ln

w
c

)ℓ−1
Eℓ,ℓ

(
A

(
ln

w
c

)ℓ)
ψ(w, ϕ(w), CHDβ

cϕ(w))
dw
w
,

and this concludes the proof. □

We will use the Banach’s contraction principle to prove the existence of a solution of the nonlinear
Caputo-Hadamard FIVP given by (1.1).
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Theorem 3.2. Let ψ : [c,∞) × Rn × Rn → Rn be a continuous function that fulfills the following
Lipschitz inequality

||ψ(t, ϕ1(t), y1(t)) − ψ(t, ϕ2(t), y2(t))|| ≤ K(||ϕ1 − ϕ2|| + ||y1 − y2||), t ∈ [c,T ], K > 0.

Then the nonlinear Caputo-Hadamard FIVP given by (1.1) has a solution uniquely on [c,T ] if[
1
ℓ
+

(T − c)Γ(ℓ)
TcΓ(ℓ − β + 1)

(
ln

T
c

)−β]
KMℓ

(
ln

T
c

)ℓ
< 1, (3.1)

where ||ψ(t, 0, 0)|| ≤ M0 and
∣∣∣∣∣∣Eℓ,i (A (

ln t
c

)ℓ) ∣∣∣∣∣∣ ≤ Mi, i ∈ {1, 2, ℓ}.

Proof. Consider the operator N : B→ B formulated by

Nϕ(t) = Eℓ

(
A

(
ln

t
c

)ℓ)
ϕ0 +

(
ln

t
c

)
Eℓ,2

(
A

(
ln

t
c

)ℓ)
ϕ1

+

∫ t

c

(
ln

w
c

)ℓ−1
Eℓ,ℓ

(
A

(
ln

w
c

)ℓ)
ψ(w, ϕ(w), CHDβ

cϕ(w))
dw
w
.

We follow the proof in some steps:
Step 1: N is well–defined: Given ϕ ∈ B and t ∈ [c,T ], we have

||Nϕ(t)|| ≤
∣∣∣∣∣∣∣∣Eℓ (A (

ln
t
c

)ℓ) ∣∣∣∣∣∣∣∣ ||ϕ0|| +

(
ln

t
c

) ∣∣∣∣∣∣∣∣Eℓ,2 (
A

(
ln

t
c

)ℓ) ∣∣∣∣∣∣∣∣ ||ϕ1||

+

∫ t

c

(
ln

w
c

)ℓ−1 ∣∣∣∣∣∣∣∣Eℓ,ℓ (A (
ln

w
c

)ℓ) ∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣ψ(w, ϕ(w), CHDβ
cϕ(w))

∣∣∣∣∣∣ dw
w

≤ M1||ϕ0|| + M2

(
ln

t
c

)
||ϕ1|| + Mℓ

∫ t

c

(
ln

w
c

)ℓ−1 [
K

(
||ϕ(w)|| +

∣∣∣∣∣∣CHDβ
cϕ(w)

∣∣∣∣∣∣)] dw
w

+

∫ t

c

(
ln

w
c

)ℓ−1
||ψ(s, 0, 0)||

dw
w

≤ M1||ϕ0|| + M2

(
ln

t
c

)
||ϕ1|| +

KMℓ

ℓ

(
ln

t
c

)ℓ
||ϕ||B +

M0Mℓ

ℓ

(
ln

t
c

)ℓ
.

Consequently, we obtain

||Nϕ|| ≤ M1||ϕ0|| + M2

(
ln

T
c

)
||ϕ1|| +

M0Mℓ

ℓ

(
ln

T
c

)ℓ
+

KMℓ

ℓ

(
ln

T
c

)ℓ
||ϕ||B. (3.2)

Applying the first derivative of Nϕ(t) and using (2.2) and (2.3), we have

N′ϕ(t) = A
(
ln

t
c

)ℓ−1
Eℓ,ℓ

(
A

(
ln

t
c

)ℓ)
ϕ0 + Eℓ,1

(
A

(
ln

t
c

)ℓ)
ϕ1

+
1
t

(
ln

t
c

)ℓ−1
Eℓ,ℓ

(
A

(
ln

t
c

)ℓ)
ψ(t, ϕ(t), CHDβ

cϕ(t)).
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Hence,

||N′ϕ(t)|| ≤ ||A||
(
ln

t
c

)ℓ−1 ∣∣∣∣∣∣∣∣Eℓ,ℓ (A (
ln

t
c

)ℓ) ∣∣∣∣∣∣∣∣ ||ϕ0|| +
∣∣∣∣∣∣∣∣Eℓ,1 (

A
(
ln

t
c

)ℓ) ∣∣∣∣∣∣∣∣ ||ϕ1||

+
1
t

(
ln

t
c

)ℓ−1 ∣∣∣∣∣∣∣∣Eℓ,ℓ (A (
ln

t
c

)ℓ) ∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣ψ(t, ϕ(t), CHDβ
cϕ(t))

∣∣∣∣∣∣
≤ Mℓ||A||

(
ln

t
c

)ℓ−1 ∣∣∣∣∣∣∣∣ϕ0

∣∣∣∣∣∣∣∣ + M1

∣∣∣∣∣∣∣∣ϕ1

∣∣∣∣∣∣∣∣ + KMℓ

c

(
ln

t
c

)ℓ−1 ∣∣∣∣∣∣∣∣ϕ∣∣∣∣∣∣∣∣
B
+

M0Mℓ

c

(
ln

t
c

)ℓ−1

≤ Mℓ||A||
(
ln

t
c

)ℓ−1 ∣∣∣∣∣∣∣∣ϕ0

∣∣∣∣∣∣∣∣ + M1

∣∣∣∣∣∣∣∣ϕ1

∣∣∣∣∣∣∣∣ + KM′ℓ
(
ln

t
c

)ℓ−1 ∣∣∣∣∣∣∣∣ϕ∣∣∣∣∣∣∣∣
B
+ M0M′ℓ

(
ln

t
c

)ℓ−1
,

where M′ℓ =
Mℓ

c .
Now, one can estimate that∣∣∣∣∣∣CHDβ

c Nϕ(t)
∣∣∣∣∣∣ ≤ 1
Γ(1 − β)

∫ t

c

(
ln

t
w

)−β ∣∣∣∣∣∣N′ϕ(w)
∣∣∣∣∣∣dw

w

≤
M1||ϕ1||

Γ(1 − β)

∫ t

c

(
ln

t
w

)−β dw
w

+
1

Γ(1 − β)
[
Mℓ||A||||ϕ0|| + KM′ℓ||ϕ||B + M0M′ℓ

] ∫ t

c

(
ln

t
w

)−β (
ln

w
c

)ℓ−1 dw
w

≤
M1||ϕ1||

Γ(2 − β)

(
ln

t
c

)1−β
+

Γ(ℓ)
Γ(ℓ − β + 1)

[
Mℓ||A||||ϕ0|| + KM′ℓ||ϕ||B + M0M′ℓ

] (
ln

t
c

)ℓ−β
.

Consequently, we obtain

∣∣∣∣∣∣CHDβ
c Nϕ

∣∣∣∣∣∣ ≤ M1||ϕ1||

Γ(2 − β)

(
ln

T
c

)1−β

+
Γ(ℓ)

Γ(ℓ − β + 1)

[
Mℓ||A||||ϕ0||

+ KM′ℓ||ϕ||B + M0M′ℓ
] (

ln
T
c

)ℓ−β
. (3.3)

From (3.2) and (3.3), we find that

||Nϕ||B ≤
[
M1 +

Γ(ℓ)Mℓ ||A||
Γ(ℓ − β + 1)

(
ln

T
c

)ℓ−β]
||ϕ0|| +

[
M2

(
ln

T
c

)
+

M1

Γ(2 − β)

(
ln

T
c

)1−β]
||ϕ1||

+

[
KM′ℓ
ℓ

(
ln

T
c

)ℓ
+
Γ(ℓ)KMℓ

Γ(ℓ − β + 1)

(
ln

T
c

)ℓ−β]
||ϕ||B

+

[
M0 M′ℓ
ℓ

(
ln

T
c

)ℓ
+
Γ(ℓ)M0 Mℓ

Γ(ℓ − β + 1)

(
ln

T
c

)ℓ−β]
.

This implies that N is well defined.
Step 2: N is a contraction on B: For ϕ, y ∈ B and t ∈ [c,T ], we get
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||Nϕ(t) − Ny(t)|| ≤ Mℓ

∫ t

c

(
ln

w
c

)ℓ−1
||ψ(w, ϕ(w), CHDβ

cϕ(w)) − ψ(w, y(w), CHDβ
cy(w))||

dw
w

≤ KMℓ

∫ t

c

(
ln

w
c

)ℓ−1 [
||ϕ(w) − y(w)|| + ||CHDβ

cϕ(w) − CHDβ
cy(w)||

] dw
w

≤
KMℓ

ℓ

(
ln

t
c

)ℓ
||ϕ − y||B.

On the other hand, ||N′ϕ(t) − N′y(t)|| ≤ 1
t KMℓ

(
ln t

c

)ℓ−1
||ϕ − y||B.

So,

||CHDβ
c Nϕ(t) − CHDβ

c Ny(t)|| ≤
1

Γ(1 − β)

∫ t

c

(
ln

t
w

)−β
||N′ϕ(t) − N′y(t)||

dw
w

≤
KMℓ

Γ(1 − β)
||ϕ − y||B

∫ t

c

(
ln

t
w

)−β (
ln

w
c

)ℓ−1 1
w

dw
w

≤
(t − c)KMℓΓ(ℓ)
tcΓ(ℓ − β + 1)

(
ln

t
c

)ℓ−β
||ϕ − y||B.

Then,

||Nϕ − Ny||B ≤
[
1
ℓ
+

(T − c)Γ(ℓ)
TcΓ(ℓ − β + 1)

(
ln

T
c

)−β]
KMℓ

(
ln

T
c

)ℓ
||ϕ − y||B.

The contractive property for N, thanks to (3.1), is established. As a consequence, Theorem 2.14
confirms the existence of a unique solution for the nonlinear Caputo-Hadamard FIVP given by (1.1)
on [c,T ]. This completes the proof. □

4. Generalized Mittag-Leffler stability

In this section, we follow our study in relation to the stability of the nonlinear Caputo-Hadamard
FIVP given by (1.1) by using terms of a Lyapunov-like function and K-class function. For more
information, see [39–41].

From now on, we suppose that the Lyapunov function V : [c,∞) × Rn → R+ is continuously
differentiable with respect to the time variable t, Lipschtiz with respect to the unknown function ϕ, and
also V(t, 0) = 0.

Definition 4.1. [42] The solution of the nonlinear Caputo-Hadamard FIVP given by (1.1) is said to
be as follows:

• Stable if for all ϕ0, there exists ε > 0 such that ||ϕ(t)|| ≤ ε for t ≥ 0.
• Asymptotically stable if ||ϕ(t)|| → 0 as t → ∞.

Definition 4.2. [42] The solution of the nonlinear Caputo-Hadamard FIVP given by (1.1) is Mittag-
Leffler stable if

||ϕ(t)|| ≤
[
m(ϕ(t0))Eℓ

(
−λ

(
ln

t
c

)ℓ)]γ
, t > c,
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where ℓ ∈ (1, 2), λ ≥ 0, γ > 0, m(0) = 0, m(ϕ) ≥ 0 and m(ϕ) is locally Lipschitz on ϕ ∈ B ∈ Rn with a
constant m0.

Definition 4.3. [42] The solution of the nonlinear Caputo-Hadamard FIVP given by (1.1) is
generalized Mittag-Leffler stable if

||ϕ(t)|| ≤
[
m(ϕ(t0))

(
ln

t
c

)−ρ
Eℓ,1−ρ

(
−λ

(
ln

t
c

)ℓ)]γ
, t > c,

such that ℓ ∈ (1, 2), −ℓ < ρ < 1− ℓ, γ ≥ 0, λ > 0, m(0) = 0, m(ϕ) ≥ 0 and m(ϕ) is locally Lipschitz on
ϕ ∈ B ∈ Rn with a constant m0.

Remark 4.4. [42] Mittag-Leffler stability and generalized Mittag-Leffler stability imply asymptotic
stability.

4.1. Lyapunov method

Theorem 4.5. Let ϕ = 0 be an equilibrium point of the nonlinear Caputo-Hadamard FIVP given
by (1.1), and assume that V satisfies

c||ϕ||b ≤ V(t, ϕ(t)), (4.1)

CHDℓ
cV(t, ϕ(t)) ≤ −qV(t, ϕ(t)) (4.2)

such that ϕ ∈ Rn, c, b, q > 0. Then, the zero solution is Mittag-Leffler stable if V(c, ϕ(c)) ≥ 0 and
ΘV(c, ϕ(c)) = 0, where Θ = d

dt .

Proof. Using the inequality given by (4.2), a nonnegative function M(t) exists and satisfies

CHDℓ
cV(t, ϕ(t)) + M(t) = −qV(t, ϕ(t)). (4.3)

Let Lc{V(t, ϕ(t))} = V(s). Then, the application of the Laplace transform given by (4.3) gives

sℓV(s) − sℓ−1V0 − sℓ−2V1 + M(s) = −qV(s). (4.4)

By applying the inverse modified Laplace transform to (4.4), we obtain

V(t, ϕ(t)) = V0Eℓ

(
−q

(
ln

t
c

)ℓ)

+ V1

(
ln

t
c

)
Eℓ,2

(
−q

(
ln

t
c

)ℓ)
− M(t) ∗

[(
ln

t
c

)ℓ−1
Eℓ,ℓ

(
−q

(
ln

t
c

)ℓ)]
.

Since both
(
ln t

c

)ℓ−1
and Eℓ,ℓ

(
−q

(
ln t

c

)ℓ)
are nonnegative functions and V1 = ΘV(c, ϕ(c)) = 0, we

deduce that

V(t, ϕ(t)) ≤ V0Eℓ

(
−q

(
ln

t
c

)ℓ)
.

In accordance with (4.1), we obtain

||ϕ(t)|| ≤
[
V0

c
Eℓ

(
−q

(
ln

t
c

)ℓ)]1
b
,

for m =
V0

c
≥ 0. In this case, the zero solution of the nonlinear Caputo-Hadamard FIVP given by (1.1)

is Mittag-Leffler stable. □
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4.2. Stability via K-class functions

Definition 4.6. [43] If φ ∈ C([0,∞), [0,∞)) is strictly increasing, and φ(c) = 0, c > 0, then φ is
termed a K-class function, as illustrated by φ ∈ K .

Theorem 4.7. Let ϕ = 0 be an equilibrium point of the nonlinear Caputo-Hadamard FIVP given
by (1.1). Suppose that there exists a K-class function φ that satisfies

V(t, ϕ(t)) ≥ φ−1(||ϕ(t)||), (4.5)

CHDℓ
cV(t, ϕ(t)) ≤ 0, (4.6)

sup
t≥c

φ
(
V(c, ϕ(c)) + ΘV(c, ϕ(c)) ln

t
c

)
≤ M (4.7)

for M ≥ 0. Then, the zero solution is stable.

Proof. By applying (4.6), there exists some M ≥ 0 so that

CHDℓ
cV(t, ϕ(t)) = −M(t).

By using the Laplace transform and its inverse, we obtain

V(t, ϕ(t)) = V0 +

(
ln

t
c

)
V1 − M(t) ∗

[
1
Γ(ℓ)

(
ln

t
c

)ℓ−1
]
, (4.8)

where V0 = V(c, ϕ(c)), and V1 = ΘV(c, ϕ(c)).
Substituting (4.8) into (4.5) yields

φ−1(||ϕ(t)||) ≤ V0 +

(
ln

t
c

)
V1 − M(t) ∗

[
1
Γ(ℓ)

(
ln

t
c

)ℓ−1
]
≤ V0 +

(
ln

t
c

)
V1.

Therefore
||ϕ(t)|| ≤ φ

(
V0 +

(
ln

t
c

)
V1

)
.

Then, by Eq (4.7), we get ||ϕ(t)|| ≤ M, t > c, which confirms that the zero solution of the nonlinear
Caputo-Hadamard FIVP given by (1.1) is stable. □

5. Example

Here, we validate our results by providing the following example.

Example 5.1. According to (1.1), consider the nonlinear Caputo-Hadamard FIVP CHD3/2
1,t ϕ(t) =

1
10

(
−|ϕ(t)| − CHD1/2

1,t |ϕ(t)|
)
, t ∈ [1, e],

Θkϕ(t) |t=1= 0, k = 0, 1.
(5.1)

Here, we have A = 0 and ψ
(
t, ϕ(t), CHD1/2

1,t ϕ(t)
)
=

1
10

(
−|ϕ(t)| − CHD1/2

1,t |ϕ(t)|
)
, where ψ : [1, e]×R×R→

R. In order to show that (5.1) has a unique solution, we simply check that∣∣∣∣∣∣ψ (
t, ϕ(t), CHD1/2

1,t ϕ(t)
)
− ψ

(
t, y(t), CHD1/2

1,t y(t)
) ∣∣∣∣∣∣
B
≤

1
10

∣∣∣∣∣∣ϕ(t) − y(t)
∣∣∣∣∣∣
B
,
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which is satisfying the Lipschitz condition with K = 1
10 . Since |Eℓ,ℓ

(
A(ln t

c )ℓ
)
| ≤ Mℓ, for A = 0, we have

E 3
2 ,

3
2
(0) = 2

√
π

and 1
3
2

+
Γ( 3

2 )
Γ(2)

(
ln

e
1

)−1/2
 1

10
2
√
π

(
ln

e
1

)3/2
= 0.26 < 1.

From Theorem 3.2, the nonlinear Caputo-Hadamard FIVP given by (5.1) has a unique solution.
On the other hand, consider the Lyapunov function V(t, ϕ(t)) = |ϕ(t)|. In this case,

CHDℓ
1,tV(t, ϕ(t)) =

1
10

(
−V(t, ϕ(t)) − CHDβ

1,tV(t, ϕ(t))
)
≤ −

1
10
V(t, ϕ(t)).

Hence, the hypotheses of Theorem 4.5 hold with c = 0, b = 1 and q =
1
10

. Accordingly, the zero
solution of the given nonlinear Caputo-Hadamard FIVP given by (5.1) is Mittag-Leffler stable.

6. Conclusions

In this paper, we provided several hypotheses that demonstrate the existence of a solution and its
uniqueness for the nonlinear Caputo-Hadamard FIVP given by (1.1) by using the Banach contraction
principle. To do this, the modified Laplace transform played a main role in finding the corresponding
integral equation by using Mittag-Leffler functions with one and two parameters to derive the
Hadamard integrals. Subsequently, we used a Lyapunov-like function and K-class function to prove
the generalized Mittag-Leffler stability for the Caputo-Hadamard system given by (1.1). Further, we
examined the theoretical results by designing an illustrative example. In subsequent works, the notion
of generalized Mittag-Leffler stability can be discussed for different nonlinear systems furnished with
non-singular derivation operators. Also, one can focus on the generalized Mittag-Leffler stability
problem of q-FDEs in a variety of different forms.
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