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Abstract: The estimation of a certain population characteristics is required for several situations. The 

estimates are built so that the error of estimation is minimized. In several situations estimation of the 

population mean is required. Different estimators for the mean are available but, there is still room for 

improvement. In this paper, a new class of ratio-type estimators is proposed for the estimation of the 

population mean. The estimators are proposed for single- and two-phase sampling schemes. The 

expressions for bias and mean square error are obtained for single-phase and two-phase sampling 

estimators. Mathematical comparison of the proposed estimators has been achieved by using some 

existing single-phase and two-phase sampling estimators. Extensive simulations have been conducted 

to compare the proposed estimators with some available single- and two-phase sampling estimators. It 

has been observed that the proposed estimators are better than the existing estimators. Consequently, 

the proposed ratio estimators are recommended for use by the practitioners in various fields of industry, 

engineering and medical and physical sciences. 
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1. Introduction 

The efficient estimation of population parameters has been a challenging job within the domain 

of statistics. Sampling methods have played an important role in developing various estimators for 
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various situations. Simple random sampling has been a useful method to draw a sample from a 

population that is homogeneous with respect to the characteristics under study. The estimation of the 

population mean or total is of interest in several situations. For example, we may be interested to 

estimate the average or total yearly income of a household; hence the estimation of the average or total 

income of the locality might be required. The estimate can be improved by using some auxiliary 

variable(s) that is (are) highly correlated with the variable for which the estimation is required. A 

classical method of estimation in such a situation is the ratio method of estimation, proposed by [1]. 

The method has been modified from time to time in order to improve the efficiency by reducing the 

mean square error (MSE). A modification of the ratio estimator was proposed in [2], whereas an 

extensive numerical study of the ratio estimator has been performed by the authors of [3]. More 

modifications of the ratio estimator were proposed in [4–6]. The product method of estimation has also 

been used by some authors when the variable of interest and auxiliary variable are negatively correlated. 

The ratio and product estimators have been combined by some authors to propose some more efficient 

estimators. The estimator proposed in [7] combines ratio and product estimators and has a smaller MSE 

than the classical ratio estimator. Another ratio-type estimator was proposed by the authors of [8] who 

used the ideas presented in [4–6]. 

In recent years, some work has been done to propose families of estimators. Some families of 

estimators were proposed in [9–11]. These families of estimators provide other different estimators as 

a special case. Ratio and ratio-type estimators have been developed by some authors by using some 

measures of auxiliary variables other than the mean. Some notable references in this regard are [12–14]. 

The idea of using a ratio estimator in ranked set sampling was proposed in [15]. 

In some situations, the population information of auxiliary variables is unknown; hence, ratio- or 

product-type estimators cannot be used. For such situations, a useful sampling technique, known as 

two-phase sampling, has been proposed. The method is described in [16] and [17], and some ratio- and 

regression-type estimators have been introduced by the authors of [18–20]. More details on various 

estimators in single- and two-phase sampling can be found in [21] and [22]. There is always room to 

suggest some more efficient estimators, and we have proposed some new estimators for the population 

mean in single- and two-phase sampling in this paper. The plan of the paper follows. 

A brief description of the ratio estimator in single- and two-phase sampling is given in Section 2 

alongside some notations. Some existing single- and two-phase sampling estimators are given in Section 

3. A new estimator for single phase sampling is proposed in Section 4 alongside the expressions for 

the bias and MSE of the proposed estimator. In Section 5, a two-phase sampling version of the proposed 

estimator is presented. The expression for the bias and MSE of the two-phase sampling estimator are 

also given in Section 5. In Section 6, a numerical study is detailed for the proposed estimators. The 

numerical study comprised a simulation and applications using some real populations. The conclusions 

and recommendations are given in Section 7. 

2. Methodology and notations 

In this section the methodology and notations are given. Suppose the units of a population of size 

N are 1 2, , , NU U UK  and the values of some variable of interest are 1 2, , , NY Y YK . Suppose further that 

the estimation of the population mean 
1

1

N

ii
Y N Y−

=
=   is required. The estimation is done by using a 

random sample of size n. The conventional single phase sampling estimator of Y  is the sample mean 
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1

1

n

ii
y n y−

=
=  . When information on an auxiliary variable is available then the ratio estimator of the 

population mean is given as 

R

y
y X

x
= ,           (1) 

where 1

1

N

ii
X N X−

=
=   and 1

1

n

ii
x n x−

=
=  are population and sample means of the auxiliary variable, 

respectively. The MSE of the ratio estimator is 

( ) ( )2 2 2 2R y x x yMSE y Y C C C C = + − ,       (2) 

where 
1 1n N − −= − , yC  is the population coefficient of variation for Y, xC  is the population 

coefficient of variation for X and   is the population correlation coefficient between X and Y. The 

classical ratio estimator has been very popular for a long period of time. 

In some situations, the population information for the auxiliary variable is not available and in 

such situations the ratio estimator (1) cannot be used. The problem can be solved by using a two-phase 

sampling technique. In two-phase sampling a first-phase sample of size n1 is drawn from a population 

of size N, and information about the auxiliary variable is recorded. A sub-sample of size n2 < n1 is 

drawn from the first-phase sample and information about the auxiliary variable and study variable are 

recorded. The conventional ratio estimator in two-phase sampling is given as 

( )
2

12

2

R

y
y x

x
= ,           (3) 

where 
21

2 2 1

n

ii
y n y−

=
=   is the second-phase sample mean of the study variable Y, 

21

2 2 1

n

ii
x n x−

=
=   is 

second-phase sample mean of the auxiliary variable X and 
11

1 1 1

n

ii
x n x−

=
=   is the first-phase sample 

mean of the auxiliary variable X. The MSE of two-phase sampling ratio estimator is 

( )( ) ( ) ( )2 2 2

2 2 12
2y x x yR

MSE y Y C C C C    = + − −
 

,     (4) 

where 1 1

2 2n N − −= −  and 1 1

1 1n N − −= − . Several modifications of the two-phase sampling ratio 

estimator have been proposed from time to time; see for example [21]. 

The MSE of an estimator in single-phase sampling is usually obtained by writing ( )1 yy Y e= +

and ( )1 xx X e= +  where ye  and xe  are errors in estimation such that 

( ) ( ) 0y xE e E e= = , ( )2 2

y yE e C= , ( )2 2

x xE e C=  and ( )y x x yE e e C C= .    (5) 

The MSE of an estimator in two-phase sampling is usually obtained by writing ( )
22 1 yy Y e= + , 

( )
22 1 xx X e= + and ( )

11 1 xx X e= +  where 
2ye , 

2xe  and 
1xe  are errors in estimation such that 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 2 2 2 1

2 2 2 1 1 2 1 1 2

1 2 2 1 2

2 2 2 2 2 2

2 2 1

2

2 1 1

2
2

2 1 1 2

0 ; ; ;

; ; ; 0

;

x x y y y x x x x

y x x y y x x y x x x y x x

x x x y x x x y

E e E e E e E e C E e C E e C

E e e C C E e e C C E e e C E e e e

E e e C E e e e C C

  

    

    

= = = = = =

 = = = − =  

 − = − − = −

  

  (6) 

We will now discuss some important single- and two-phase sampling estimators in the following 

section. 

3. Some existing estimators 

Several estimators have been proposed from time to time for the estimation of the population 

mean in single- and two-phase sampling. Some of these are given in the following subsections. 

3.1 Some single phase sampling estimators 

Some popular single-phase sampling estimators will now be discussed. 

• Sisodia and Dwivedi estimator [2] 

Estimator: x
SD

xx
y

X C
y

C
=

 +


+ 
.         (7) 

MSE:  

( ) ( ) ( )2 2 2 2

1 1 12 ;y x x y xSDM Y C m C CSE m C X Cy m X + − = += .  (8) 

• Singh estimator [23] 

Estimator: 2
04

2

S
x

y
X

y



=

 +


+ 
.        (9) 

MSE:  

( ) ( ) ( )2 2 2 2

204 2 2 22 ;y x yS xY C m C m CM mSE y C X X  + − += = ,  (10)  

where 2  is the coefficient of kurtosis for the auxiliary variable X. 

• Kadilar and Cingi estimator [9] 

Estimator: ( )KC
x

X
y y b X x− =  + .       (11) 

MSE:  

( ) ( )2 2 2 21K yC xM E Y Cy CS   + −


=


,       (12)  
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where b is the regression coefficient between x and y. 

• Yan and Tian estimator [24] 

Estimator:  

1

1

YT
x

y
X

y



=

 +


+ 
.         (13) 

MSE: 

( ) ( ) ( )2 2 2 2

3 3 3 12 ;y x x yYTMSE Yy C m C m C C m X X  + − = += ,  (14) 

where 1  is the coefficient of skewness for the auxiliary variable X. 

• Singh estimator [25] 

Estimator:  

03
x

S

xx
y

X S
y

S
=

 +


+ 
.         (15) 

MSE: 

( ) ( ) ( )2

0

2 2 2

43 4 42 ;y x x y xSM Y C m C CSE m C X Sy m X  == + − + ,  (16) 

where xS  is the standard deviation of the auxiliary variable X. 

• Subramani and Kumarpandiyan estimator [26] 

Estimator:  

d
SK

dx
y

X M
y

M
=

 +


+ 
.         (17) 

MSE:  

( ) ( ) ( )2 2 2 2

5 5 52 ;y x x y dSKM Y C m C CSE m C X My m X + − = += ,   (18) 

where dM is the mean deviation of the auxiliary variable X. 

For the above estimators, it is assumed that the quantities 1, , ,x y dC C M   and 2  are known. 

3.2 Some two-phase sampling estimators 

Some popular two-phase sampling estimators will now be discussed. 

• Mohanty estimator [27] 

Estimator: 

( ) ( ) 1
2 1 22

2

yxM

z
y y x x

z
 = + −  .       (19) 
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MSE: 

( )( ) ( ) ( )

( ) 

22 2 2

2 2 12

2

2

2 2

y xz z xy y xz zM

z y yz y yz

MSE y C C C C

C C

Y

C

     

 

= + − − −


+ − −


,    (20) 

where Z is another auxiliary variable. 

• Hanif, Hammad and Shahbaz estimator [28] 

Estimator: 

( ) ( ) ( ) ( ) ( )2 1 2 1 2 2 12
1yxHHS

y y x x k z z k z z = + − + −    ,    (21) 

where k is the weighting constant such that 0 1k  . 

MSE:  

( )( ) ( ) ( ) 
2

2 2 2

2 2 12 y xy yz xy xzHHS
MSE y Y C        = − − + −

  
,    (22) 

where xy  is the correlation coefficient between ( ),X Y , yz  is the correlation coefficient between 

( ),Y Z  and xz  is the correlation coefficient between ( ),X Z . 

More details about single- and two-phase sampling estimators can be found in [21]. We will now 

propose a new ratio-type estimator in single-phase sampling. 

4. A new class of estimators for the mean in single-phase sampling 

The proposed class of estimators for single phase sampling is 

( ) ( )3 1 ; 1,2,3,4,5
i

i

DS
i

X A
y

X
y b X x i

x
y

x A
  + − + − = 

 +
=  

+ 
    (23) 

where 1 2 2 3 1 4 5, , , andx x dA C A A A S A M = = = = = . We can see that the proposed class of 

estimators can be written as  

( )3 1 ; 1,2,3,4,5
i

i KCDS
y t y i = + − =  

where 1 2 04 3 4 03 5, , , andSD S YT S SKt y t y t y t y t y= = = = = . From above we can see that the proposed 

class of estimators is a weighted sum of various ratio type estimators. The bias and MSE of the 

proposed class of estimators are derived in the following subsections. 

4.1 Bias and MSE 

Using the notations from (5), the class of estimators given in (23) can be written as 
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( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )

3

1 1

1

1 1 1 1 ; .

1 1
1i

i
yDS

x i

y i i

y

x

x

x y x

x

i

X
Y e bXe

X

X A
y Y e

X Xe A

X
Y e m e Y Ye bXe e m

X A

e


 



− −

 +
= +  

+
+

+ 

+

 

+

+ − −


+



+ + − − =
+

+

=

 

Expanding the negative powers and retaining the linear terms only, we have 

( )( ) ( ) ( )( )3 1 1 1 1
i

y i x y x xDS
y Y e m e Y Ye bXe e = + − + − + − − .    (24) 

Expanding and applying expectation, the bias of the proposed class of estimators is 

( ) ( )3 3
i i

i x yDS DS
Bias y E y Y mYC C= − = − . 

Again, expanding (24) and retaining only the linear terms we have 

( )3
i

y x x x x i xDS
y Y Ye Ye Ye bXe bXe mYe  − = − + − + − . 

Squaring and applying expectation, the MSE of the proposed class of estimators is 

( ) ( ) ( )3 3

2 2

i i
y x x x x i xDS DS

MSE y E y Y E Ye Ye Ye bXe bXe mYe  = − = − + − + − . 

Expanding the square, applying expectation to individual terms and ignoring ( )E b − , where 

  is the population regression coefficient between X and Y, the MSE of the proposed class of 

estimators is 

( ) ( )  ( ) ( )3

22 2 2 2 21 1 1 2 1
i

y x i y x iDS
MSE y Y C C m C C m        = − − + − + − − +

 
.  (25) 

The optimum value of  that minimizes the MSE is obtained by differentiating (25) with respect 

to  and equating the resulting derivative to zero. The optimum value thus obtained is 

( )1

x

x i y

C

C m C



=

− +
. 

Substituting the optimum value of  in (25), the minimum MSE of the proposed class of 

estimators is 

( ) ( )3

2 2 2

min 1
i

yDS
MSE y Y C = − .       (26) 

4.2 Comparison of the proposed class of estimators 

A comparison of the proposed class of estimators is given below. For the comparison we have 

compared the MSE of the proposed class of estimators with some existing estimators. The proposed 

class of estimators will be better than the estimators compared if 
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( ) ( )3 0
iDS

MSE t MSE y−  , 

where t is any estimator compared. We first compare the proposed class of estimators with the classical 

ratio estimator. For this we have 

( ) ( ) ( ) ( )

( ) ( )

3

2 2 2 2 2 2

22

2 1

. 27

i
R y x x y yDS

y x

MSE y MSE y Y C C C C Y C

Y C C

   

 

− = + − − −

= −

 

From above, it is easy to see that ( ) ( )3
i

R DS
MSE y MSE y ; hence the proposed class of estimators 

is always more precise than the ratio estimator. The equality holds when y xC C = . 

Again, we will compare the proposed class of estimators with the estimators given in Subsection 3.1. 

The proposed class of estimators will be more efficient than the estimators given in Subsection 3.1 if 

( ) ( )3 04 030 ; , , , and
i

i i SD S YT S SKDS
MSE t MSE y t y y y y y−  = . 

Now, 

( ) ( )2 2 2 2 2 ; 1,2,3,4,5y i x i x yiM Y C m C mS C CE t i + − == , 

and mi is suitably defined. Comparing the MSE of it  with MSE of proposed class of estimators, we 

have 

( ) ( ) ( ) ( )3

22 2 2 2 2 22 1
i

ii x yD y i x yS
M Y C m C m C CSE t MSE y Y C  = −+ −− −  

or 

( ) ( ) ( )3

2 2 2 2 2 2
i

i y xS y i xD
Y CM m CSE t MSE y C C  − = +− .    (28) 

From (28) we can see that the proposed class of estimators will be more efficient than any of the 

estimators given in Subsection 3.1 if 
2 2 2 22 yy i xxC C m CC  + . 

Finally, we will compare the proposed class of estimators with the estimator proposed in [9]. For 

this we have 

( ) ( ) ( ) ( )3

2 2 2 2 2 2 21 1
i

K S y yC D xM Y C C YSE y MSE y C    − − − −
 

= +  

or 

( ) ( )3

2 2 0
i

KC xDS
M YSE y MSE y C− =  ;       (29) 

hence the proposed class of estimators will always be more efficient than the estimator proposed in [9]. 

We will now propose a class of estimators for two-phase sampling in the following section. 



14216 

AIMS Mathematics  Volume 7, Issue 8, 14208–14226. 

5. A new class of estimators for the mean in two-phase sampling 

The proposed class of estimators for two-phase sampling is 

( )
( ) ( )3

1
22 1 2

2

1
2

2

1 ; 1,2,3,4,5
i

i

DS
i

x A
y

x
y

x A
y b x x i

x


 
+ − + − 

+
=  

+ 
= 


   (30) 

where Ai has been defined in Section 4. Also 1x  and 2x are the first- and second-phase sample means 

of the auxiliary variable X and 2y  is the second-phase sample mean of the study variable Y. We can 

see that the proposed class of estimators for two-phase sampling can be written as  

( ) ( ) ( ) ( )3 2 22
1 ; 1,2,3,4,5

i
i KCDS

y t y i = + − =  

where 

( )
1

22

2

; 1,2,3,4,5i
i

i

x A
t y i

x A

 +
= = 

+ 
 

represents the two-phase sampling counterparts of the estimators 04 03, , ,SD S YT Sy y y y  and SKy . Also 

( )2KC
y  is the two-phase sampling counterpart of the estimator proposed in [9]; it is given as 

( ) ( ) 1
2 12 2

2

KC
y

x
y b x x

x
+ − =  . 

From above we can see that the proposed class of estimators is a weighted sum of various ratio-

type estimators in two-phase sampling. The bias and MSE of the proposed class of estimators are 

derived in the following subsections. 

5.1 Bias and MSE 

Using the notations from (6), the class of estimators given by (30) can be written as 

( )

( ) ( )
( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2 1 1

3
2 1 2

22

2 1 2 2 1 2

1 2

2

1

1

1
1

1

1 1 1 1

1 1 .

i

y x i x

y x xDS
xx i

y i x i x y x x

x x

Y Ye X Xe A e
y Y Ye bX e Xe

eX Xe A

Y e m e m e Y Ye bX e e

e e

 

 
−

−

+ + + +
 = + − + + −
  ++ +

 + + + + − += + −
 

 + +

 

Expanding the negative powers and retaining the linear terms only, we have  

( ) ( )( ) ( ) ( ) ( ) ( )

( )( )

3
2 1 2 2 1 2

1 2

2
1 1 1 1 1

1 1

i
y i x i x y x xDS

x x

y Y e m e m e Y e bX e e

e e

   = + + − + − + + −
 

 + −
   (31) 
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Expanding (31) and applying expectation, the bias of the proposed class of estimators for two-

phase sampling is 

( )( ) ( )( ) ( )3 3 2 12 2i i
i y xDS DS

Bias y E y Y mY C C   = − = − − . 

Again, expanding (31) and retaining only the linear terms, we have 

( ) ( ) ( ) ( ) ( ) ( )3
2 1 2 1 2 1 2 1 2 1 22i

y x x x x i x x x x x xDS
y Y Ye Y e e Y e e m Y e e bX e e bX e e  − = + − − − + − + − − − . 

Squaring and applying expectation, the MSE of the proposed class of estimators is 

( )( ) ( )( ) ( ) ( ) ( )

( ) ( )

3 3
2 1 2 1 2 1 2

1 2 1 2

2

2 2

2

.

i i
y x x x x i x xDS DS

x x x x

MSE y E y Y E Ye Y e e Y e e mY e e

bX e e bX e e

 



= − = + − − − + −


+ − − −


 

Expanding the square and applying expectation to individual terms, the MSE of the proposed class 

of estimators is 

( )( ) ( )( ) ( ) ( )

( ) ( )

3

2 2 2 2 2

2 2 1 2 12

22 2

2 1

1 2 1

1 1 .

i
y y x iDS

x i

MSE y Y C Y C C m

Y C m

          

  

 = + − − − − − −
 

+ − − −  

 (32) 

The optimum value of  that minimizes the mean square error is obtained by differentiating (32) 

with respect to  and equating the resulting derivative to zero. The optimum value thus obtained is 

( )

( ) ( )

2

22 2 2

1

1 2 1

x i x y

x i y x i y

C m C C

C m C C m C




 

− +
=

− + + −
 .     (33) 

The minimum value of the MSE of the class of two-phase sampling estimators can be obtained 

by applying the optimum value of  from (33) in (32), as follows: 

( )( ) ( ) ( ) ( )

( ) ( ) ( )  

3

2 3 2 2

2 1 2 2 12

22 2 2

2

1
4 2 1

1 1 2 1 ,

i
y i x y x i yDS

y x i

MSE y Y C m C C C m C

C C m m m

        

  

   = − + + − + −   

 + − + − + − +
  

 (34) 

where ( ) ( )
22 2 21 2 1x i y x i yC m C C m C  = − + + − . 

6. Numerical study 

In this section, we present the numerical study for the proposed estimators. The numerical study 

comprised a simulation for the single- and two-phase sampling estimators and an application of the 

proposed single-phase sampling estimator by using some real populations. We will first give the 

simulation study for the proposed estimators in the following subsection. 
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6.1 Simulation study 

Here, we present the simulation study for the proposed single- and two-phase sampling estimators. 

The algorithm for the single phase sampling is given below. 

1) Generate an artificial population of size 5000 from a bivariate normal distribution 

( )2 2

2 65,50,6 ,5 ,N   by using different values of the correlation coefficient. 

2) Generate random samples of sizes 50, 100, 200 and 500 from the generated population. 

3) Compute different estimators by using the generated samples. 

4) Repeat Steps 2 and 3; 20000 times for each sample size. 

5) Compute the bias and MSE of each estimator for different sample sizes by using 

( ) ( ) ( )
20000 20000

2

1 1

1 1
65 ;

20000 20000
i i i ij i i ij

j j

Bias y y and MSE y y y y y
= =

= − = − =   

where i = R, SD, S04, KC, YT, S03, SK, 
3

1DS ,
3

2DS , 
3

3DS , 
3

4DS and 
3

5DS . 

Table 1 contains the bias of various estimators and Table 2 contains the MSE of various estimators 

used in the simulation study. 

Table 1. Bias of various estimators. 

 0.9 = −  0.5 = −  

 n = 50 n = 100 n = 200 n = 500 n = 50 n = 100 n = 200 n = 500 

Ry  0.1215 0.1304 –0.0082 0.0302 0.0672 0.0288 0.1273 –0.1214 

SDy  0.1214 0.1304 –0.0082 0.0302 0.0671 0.0287 0.1273 –0.1214 

04Sy  0.1200 0.1301 –0.0086 0.0302 0.0659 0.0279 0.1269 –0.1216 

KCy  0.1097 0.1311 –0.0117 0.0304 0.0626 0.0249 0.1249 –0.1224 

YTy  0.1215 0.1304 –0.0082 0.0302 0.0672 0.0288 0.1273 –0.1214 

03Sy  0.1191 0.1300 –0.0088 0.0301 0.0652 0.0275 0.1266 –0.1217 

SKy  0.1196 0.1300 –0.0087 0.0302 0.0655 0.0277 0.1267 –0.1216 

3
1DS

y  
0.0958 0.1319 –0.0159 0.0307 0.0530 0.0166 0.1198 –0.1246 

3
2DS

y  
0.0966 0.1324 –0.0157 0.0307 0.0546 0.0174 0.1202 –0.1244 

3
3DS

y  
0.0957 0.1319 –0.0159 0.0307 0.0529 0.0165 0.1198 –0.1246 

3
4DS

y  
0.0972 0.1326 –0.0156 0.0308 0.0558 0.0180 0.1204 –0.1243 

3
5DS

y  
0.0969 0.1325 –0.0156 0.0308 0.0552 0.0177 0.1203 –0.1244 

 0.5 =  0.9 =  

 n = 50 n = 100 n = 200 n = 500 n = 50 n = 100 n = 200 n = 500 

Ry  –0.0360 0.0185 –0.1519 –0.0638 0.0337 0.0175 –0.0997 –0.1203 

SDy  –0.0360 0.0185 –0.1519 –0.0638 0.0337 0.0175 –0.0997 –0.1203 

04Sy  –0.0381 0.0179 –0.1521 –0.0640 0.0323 0.0170 –0.1004 –0.1204 

KCy  –0.0250 0.0211 –0.1512 –0.0625 0.0444 0.0206 –0.0920 –0.1196 

YTy  –0.0360 0.0186 –0.1519 –0.0638 0.0337 0.0175 –0.0997 –0.1203 

03Sy  –0.0392 0.0175 –0.1523 –0.0642 0.0315 0.0167 –0.1008 –0.1204 

SKy  –0.0386 0.0177 –0.1522 –0.0641 0.0319 0.0168 –0.1006 –0.1204 

Continued on next page 
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 0.5 =  0.9 =  

 n = 50 n = 100 n = 200 n = 500 n = 50 n = 100 n = 200 n = 500 

3
1DS

y  
–0.0493 0.0157 –0.1527 –0.0653 0.0315 0.0169 0.1013 –0.1204 

3
2DS

y  
–0.0506 0.0151 –0.1530 –0.0654 0.0307 0.0165 –0.1014 –0.1205 

3
3DS

y  
–0.0492 0.0157 –0.1527 –0.0653 0.0315 0.0169 –0.1013 –0.1204 

3
4DS

y  
–0.0512 0.0147 –0.1532 –0.0654 0.0303 0.0163 –0.1015 –0.1205 

3
5DS

y  
–0.0509 0.0149 –0.1531 –0.0654 0.0305 0.0164 –0.1015 –0.1205 

Table 2. MSE of various estimators. 

 0.9 = −  0.5 = −  

 n = 50 n = 100 n = 200 n = 500 n = 50 n = 100 n = 200 n = 500 

Ry  1.5992 0.7699 0.3732 0.1413 1.5658 0.7463 0.3722 0.1434 

SDy  1.5957 0.7682 0.3723 0.1409 1.5624 0.7447 0.3714 0.1430 

04Sy  1.5037 0.7241 0.3515 0.1325 1.4727 0.6990 0.3507 0.1348 

KCy  1.7655 0.7655 0.3793 0.1667 0.9687 0.4573 0.2299 0.0873 

YTy  1.5986 0.7690 0.3729 0.1412 1.5672 0.7463 0.3719 0.1434 

03Sy  1.4504 0.6965 0.3379 0.1280 1.4192 0.6752 0.3378 0.1298 

SKy  1.4771 0.7097 0.3442 0.1305 1.4453 0.6882 0.3440 0.1322 

3
1DS

y  
1.3436 0.6385 0.3210 0.1175 0.9292 0.4294 0.2108 0.0825 

3
2DS

y  
1.3435 0.6385 0.3210 0.1175 0.9292 0.4293 0.2108 0.0825 

3
3DS

y  
1.3436 0.6385 0.3210 0.1175 0.9292 0.4294 0.2108 0.0825 

3
4DS

y  
1.3435 0.6384 0.3210 0.1175 0.9291 0.4293 0.2108 0.0825 

3
5DS

y  
1.3435 0.6384 0.3210 0.1175 0.9291 0.4293 0.2108 0.0825 

 0.5 =  0.9 =  

 n = 50 n = 100 n = 200 n = 500 n = 50 n = 100 n = 200 n = 500 

Ry  1.5602 0.7839 0.3858 0.1370 1.5661 0.7574 0.3738 0.1388 

SDy  1.5568 0.7822 0.3850 0.1367 1.5627 0.7558 0.3730 0.1385 

04Sy  1.4633 0.7400 0.3629 0.1291 1.4712 0.7127 0.3518 0.1306 

KCy  2.5034 1.2828 0.6160 0.2223 3.5518 1.7170 0.8512 0.3124 

YTy  1.5611 0.7847 0.3856 0.1368 1.5662 0.7576 0.3740 0.1388 

03Sy  1.4125 0.7100 0.3501 0.1245 1.4181 0.6858 0.3386 0.1261 

SKy  1.4394 0.7228 0.3566 0.1268 1.4452 0.6985 0.3450 0.1284 

3
1DS

y  
0.8868 0.4585 0.2218 0.0806 1.2971 0.6257 0.3113 0.1163 

3
2DS

y  
0.8865 0.4585 0.2218 0.0806 1.2969 0.6256 0.3113 0.1163 

3
3DS

y  
0.8868 0.4585 0.2218 0.0806 1.2971 0.6257 0.3113 0.1163 

3
4DS

y  
0.8863 0.4584 0.2218 0.0806 1.2968 0.6256 0.3113 0.1163 

3
5DS

y  
0.8864 0.4584 0.2218 0.0806 1.2968 0.6256 0.3113 0.1163 

From Table 1, we can see that the bias remains negative for all of the sample sizes and all values 

of the correlation coefficients. From Table 2, we can see that all members of the proposed class of 

estimators are more efficient than the other estimators used in the study. We can also see that the MSE 
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of all of the estimators decreases with an increase in the sample size. The relative efficiency of various 

estimators relative to the classical ratio estimator was also computed; the results are plotted in Figure 1 

given below. 

 

Figure 1. Relative efficiency of various estimators. 

From the above figure we can see that all the members of the proposed class of estimators are 

more efficient than the ratio estimator. 

We also conducted the simulation study for the proposed class of estimators for two-phase 

sampling. The algorithm for the two-phase sampling simulation is given below. 

1) Generate an artificial population of size 5000 from a bivariate normal distribution 

( )2 2

2 65,50,6 ,5 ,N   by using different values of the correlation coefficient. 

2) Generate first-phase random samples of sizes 500 and 1000 from the generated population. 

3) Generate second-phase random samples with sizes 5%, 10% and 20% of the first-phase sample.  

4) Compute different estimators by using the second-phase sample mean of Y, first- and second-

phase sample means of the auxiliary variable X and some population measures for the auxiliary 

variable X. 

5) Repeat Steps 2–4; 20000 times for each combination of first- and second-phase sample sizes. 

6) Compute the bias and MSE of each estimator for different sample sizes by using 

( ) ( ) ( )
20000 20000

2

1 1

1 1
65 ;

20000 20000
i i i ij i i ij

j j

Bias y y and MSE y y y y y
= =

= − = − =   

where i = CR, ( )3

1 2DS , ( )3

2 2DS , ( )3

3 2DS , ( )3

4 2DS and ( )3

5 2DS . 
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Table 3 contains the bias of various estimators whereas Table 4 contains the MSE of various 

estimators. 

Table 3. Bias of various two-phase sampling estimators. 

  1n
 2n

 ( )2R
y

 ( )3
1 2DS

y
 ( )3

2 2DS
y

 ( )3
3 2DS

y
 ( )3

4 2DS
y

 ( )3
5 2DS

y
 

–0.9 

500 

25 0.0886 0.0989 0.0974 0.0990 0.0962 0.0968 

50 0.0159 0.0242 0.0231 0.0243 0.0223 0.0227 

100 0.1785 0.1811 0.1807 0.1811 0.1805 0.1806 

1000 

50 –0.0637 –0.0598 –0.0605 –0.0598 –0.0609 –0.0607 

100 0.0124 0.0144 0.0141 0.0144 0.0138 0.0139 

200 –0.0481 –0.0474 –0.0475 –0.0474 –0.0476 –0.0475 

–0.5 

500 

25 –0.0584 –0.0516 –0.0528 –0.0516 –0.0536 –0.0532 

50 0.0005 0.0047 0.0040 0.0048 0.0036 0.0038 

100 0.0611 0.0632 0.0629 0.0632 0.0627 0.0628 

1000 

50 0.0267 0.0312 0.0304 0.0312 0.0299 0.0302 

100 0.0614 0.0643 0.0639 0.0643 0.0636 0.0638 

200 –0.0453 –0.0446 –0.0447 –0.0446 –0.0448 –0.0448 

0.5 

500 

25 0.1086 0.1157 0.1144 0.1157 0.1136 0.1141 

50 0.1128 0.1144 0.1140 0.1144 0.1137 0.1139 

100 –0.0076 –0.0051 –0.0054 –0.0050 –0.0057 –0.0056 

1000 

50 –0.0448 –0.0398 –0.0406 –0.0398 –0.0412 –0.0409 

100 –0.1156 –0.1126 –0.1130 –0.1126 –0.1134 –0.1132 

200 –0.0675 –0.0668 –0.0669 –0.0668 –0.0670 –0.0670 

0.9 

500 

25 –0.0229 –0.0136 –0.0150 –0.0136 –0.0160 –0.0155 

50 –0.0940 –0.0857 –0.0869 –0.0857 –0.0876 –0.0872 

100 0.1172 0.1211 0.1206 0.1211 0.1202 0.1204 

1000 

50 0.0821 0.0862 0.0855 0.0862 0.0850 0.0853 

100 0.0125 0.0139 0.0136 0.0139 0.0135 0.0136 

200 –0.0984 –0.0957 –0.0960 –0.0956 –0.0963 –0.0962 

The above table shows that the bias of various estimators fluctuates and is on the relatively higher 

side. 

Table 4. MSE of various two-phase sampling estimators. 


 1n

 2n
 ( )2R

y
 ( )3

1 2DS
y

 ( )3
2 2DS

y
 ( )3

3 2DS
y

 ( )3
4 2DS

y
 ( )3

5 2DS
y

 

–0.9 

500 

25 2.9315 2.4527 2.3638 2.4561 2.3013 2.3317 

50 1.5120 1.2882 1.2404 1.2905 1.2059 1.2226 

100 0.6847 0.5644 0.5450 0.5649 0.5307 0.5375 

1000 

50 1.5420 1.3049 1.2560 1.3068 1.2224 1.2392 

100 0.7237 0.6036 0.5813 0.6044 0.5666 0.5740 

200 0.3472 0.2867 0.2768 0.2872 0.2699 0.2733 

–0.5 500 
25 3.0511 2.5930 2.4944 2.5961 2.4319 2.4648 

50 1.4463 1.2070 1.1614 1.2094 1.1337 1.1488 

Continued on next page 



14222 

AIMS Mathematics  Volume 7, Issue 8, 14208–14226. 

  1n
 2n

 ( )2R
y

 ( )3
1 2DS

y
 ( )3

2 2DS
y

 ( )3
3 2DS

y
 ( )3

4 2DS
y

 ( )3
5 2DS

y
 

–0.5 

 100 0.7090 0.5796 0.5588 0.5803 0.5454 0.5525 

1000 

50 1.5738 1.3242 1.2749 1.3265 1.2400 1.2572 

100 0.7220 0.6083 0.5856 0.6087 0.5709 0.5785 

200 0.3383 0.2798 0.2696 0.2802 0.2631 0.2665 

0.5 

500 

25 3.0231 2.5636 2.4679 2.5666 2.4058 2.4376 

50 1.4745 1.2240 1.1792 1.2261 1.1482 1.1638 

100 0.6860 0.5672 0.5480 0.5683 0.5339 0.5407 

1000 

50 1.5257 1.2847 1.2366 1.2854 1.2040 1.2206 

100 0.7258 0.6067 0.5853 0.6073 0.5689 0.5765 

200 0.3377 0.2774 0.2679 0.2777 0.2608 0.2641 

0.9 

500 

25 2.9532 2.5239 2.4298 2.5265 2.3682 2.4001 

50 1.4656 1.2274 1.1804 1.2297 1.1538 1.1693 

100 0.6928 0.5783 0.5581 0.5788 0.5436 0.5505 

1000 

50 1.5425 1.3028 1.2558 1.3044 1.2217 1.2381 

100 0.7250 0.6113 0.5886 0.6114 0.5741 0.5817 

200 0.3324 0.2724 0.2631 0.2728 0.2564 0.2596 

From the above tables, we can see that all members of the proposed class of estimators are more 

efficient than the classical two-phase sampling ratio estimator. 

We also computed the relative efficiency of various two-phase sampling estimators relative to the 

two-phase sampling ratio estimator. The relative efficiencies are plotted for various combinations of 

 , n1 and n2. The plots of relative efficiencies are given in Figure 2 below. 

From the above figure, we can see that the estimator 
( )3

4 2DS
y  is the most efficient among the 

members of the new class. The member 
( )3

3 2DS
y  is the worst in the class, but all members are more 

efficient than the ratio estimator. We will now present the numerical study of different estimators using 

some real populations. 

6.2 Study using data from some real populations 

In this subsection, we present a numerical comparison of various estimators using some real 

populations. The description of the populations used in the study alongside some measures computed 

from these populations are given in Table 5 below. 

Table 5. Description of various populations. 

Pop. 1 2 3 4 5 6 7 8 

Source [29] [30] [31] [32] [32] [31] [33] [34] 

Y Output Wheat 

Area 74 

Output Output Output No. of 

Cultivator 

Food 

Amount 

Wheat 

Area 37 

X No. of 

Workers  

Wheat 

Area 71 

No. of 

Workers 

No. of 

Workers 

No. of 

Workers 

Cultivated 

Area 

Total 

Income 

Wheat 

Area 37 

𝑁 40 34 20 10 20 15 10 15 

Continued on next page 
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Pop. 1 2 3 4 5 6 7 8 

𝑛 20 20 6 4 12 4 4 6 

𝑋̅ 230.31 208.88 440.81 362.43 202.54 2361.13 88.50 19.47 

𝑌̅ 5078.61 856.41 6668.63 5729.22 4919.95 704.20 106.31 168.67 

𝑀𝑑 125 150 447.52 302.54 109.52 1881 49 131 

𝛽1 0.97 0.98 0.04 0.91 1.26 0.57 2.18 1.85 

𝛽2 –0.53 0.09 –1.05 –0.06 0.29 –1.11 4.78 2.83 

𝑆𝑥 193.60 150.51 114.69 318.15 187.28 1718.24 82.99 182.56 

𝐶𝑥 0.84 0.72 0.26 0.87 0.92 0.73 0.13 0.92 

𝑆𝑦 1673.52 733.14 514.52 2090.23 1915.34 735.12 92.21 126.10 

𝐶𝑦 0.33 0.86 0.08 0.37 0.39 1.04 0.18 0.75 

𝜌 0.80 0.45 0.95 0.92 0.69 0.18 0.44 0.91 

 

Figure 2. Relative efficiency of various two-phase sampling estimators 

We computed the MSE of various estimators by using the data on the above-mentioned 

populations. The results are shown in Table 6 below. 
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Table 6. MSE of various estimators. 

Pop CR S&D K&C S 03 S 04 Y&T S&K Proposed 

1 239659.8 237392.1 480754.6 49130.7 241116.4 237034.8 49130.7 25134.9 

2 10539.9 10514.9 16673.8 8853.7 10536.6 10506.1 8853.7 8835.0 

3 185284.7 184986.6 354520.2 95865.3 186493.0 185241.7 95865.3 3311.3 

4 1515718.0 1504491.0 3882710.0 168872.8 1516529.0 1504032.0 168872.8 88122.5 

5 411331.2 406893.8 754125.1 100180.7 409900.2 405269.9 100180.7 64005.7 

6 122361.6 122339.6 144004.2 100813.8 122395.1 122344.2 100813.8 95861.5 

7 42.5 41.6 122.7 18.4 43.7 41.9 18.4 10.1 

8 454.1 448.1 2712.9 392.8 436.2 442.2 392.8 281.5 

From the above table we can see that the proposed estimator outperformed all of the other 

estimators used in the study as it has smallest MSE among all of the estimators. We also computed the 

relative efficiency of the proposed estimator relative to various estimators. The MSE and relative 

efficiency are shown in Figure 3 below. 

 

Figure 3. MSE and relative efficiency of various estimators 

The graph also shows the same results as are provided in Table 6. 

7. Conclusions 

In this paper we have proposed two new families of estimators for estimation of the population 

mean. The families of estimators have been proposed for single- and two-phase sampling. The 

expressions for the bias and MSE for the proposed families of estimators have been obtained. We have 

seen that the proposed family of estimators in single-phase sampling is more efficient than the other 

estimators to which they were compared. This has been shown through analytical and empirical 

comparisons. The results of the simulation study also support this comparison. We can thus conclude 

that the proposed single-phase sampling estimator will estimate the population mean with more 

precision. We have also found that the proposed family of estimators in two-phase sampling is also 

more efficient than the classical ratio estimator for two-phase sampling. This has been concluded by 

the results of an extensive simulation study on the two-phase sampling family of estimators. We can, 

therefore, conclude that the proposed families of estimators will provide more efficient results for 

estimation of the population mean in single- and two-phase sampling when information on a single 

auxiliary variable is available. 
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