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Abstract: The estimation of a certain population characteristics is required for several situations. The
estimates are built so that the error of estimation is minimized. In several situations estimation of the
population mean is required. Different estimators for the mean are available but, there is still room for
improvement. In this paper, a new class of ratio-type estimators is proposed for the estimation of the
population mean. The estimators are proposed for single- and two-phase sampling schemes. The
expressions for bias and mean square error are obtained for single-phase and two-phase sampling
estimators. Mathematical comparison of the proposed estimators has been achieved by using some
existing single-phase and two-phase sampling estimators. Extensive simulations have been conducted
to compare the proposed estimators with some available single- and two-phase sampling estimators. It
has been observed that the proposed estimators are better than the existing estimators. Consequently,
the proposed ratio estimators are recommended for use by the practitioners in various fields of industry,
engineering and medical and physical sciences.
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1. Introduction

The efficient estimation of population parameters has been a challenging job within the domain
of statistics. Sampling methods have played an important role in developing various estimators for
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various situations. Simple random sampling has been a useful method to draw a sample from a
population that is homogeneous with respect to the characteristics under study. The estimation of the
population mean or total is of interest in several situations. For example, we may be interested to
estimate the average or total yearly income of a household; hence the estimation of the average or total
income of the locality might be required. The estimate can be improved by using some auxiliary
variable(s) that is (are) highly correlated with the variable for which the estimation is required. A
classical method of estimation in such a situation is the ratio method of estimation, proposed by [1].
The method has been modified from time to time in order to improve the efficiency by reducing the
mean square error (MSE). A modification of the ratio estimator was proposed in [2], whereas an
extensive numerical study of the ratio estimator has been performed by the authors of [3]. More
modifications of the ratio estimator were proposed in [4-6]. The product method of estimation has also
been used by some authors when the variable of interest and auxiliary variable are negatively correlated.
The ratio and product estimators have been combined by some authors to propose some more efficient
estimators. The estimator proposed in [7] combines ratio and product estimators and has a smaller MSE
than the classical ratio estimator. Another ratio-type estimator was proposed by the authors of [8] who
used the ideas presented in [4-6].

In recent years, some work has been done to propose families of estimators. Some families of
estimators were proposed in [9-11]. These families of estimators provide other different estimators as
a special case. Ratio and ratio-type estimators have been developed by some authors by using some
measures of auxiliary variables other than the mean. Some notable references in this regard are [12-14].
The idea of using a ratio estimator in ranked set sampling was proposed in [15].

In some situations, the population information of auxiliary variables is unknown; hence, ratio- or
product-type estimators cannot be used. For such situations, a useful sampling technique, known as
two-phase sampling, has been proposed. The method is described in [16] and [17], and some ratio- and
regression-type estimators have been introduced by the authors of [18-20]. More details on various
estimators in single- and two-phase sampling can be found in [21] and [22]. There is always room to
suggest some more efficient estimators, and we have proposed some new estimators for the population
mean in single- and two-phase sampling in this paper. The plan of the paper follows.

A brief description of the ratio estimator in single- and two-phase sampling is given in Section 2
alongside some notations. Some existing single- and two-phase sampling estimators are given in Section
3. A new estimator for single phase sampling is proposed in Section 4 alongside the expressions for
the bias and MSE of the proposed estimator. In Section 5, a two-phase sampling version of the proposed
estimator is presented. The expression for the bias and MSE of the two-phase sampling estimator are
also given in Section 5. In Section 6, a numerical study is detailed for the proposed estimators. The
numerical study comprised a simulation and applications using some real populations. The conclusions
and recommendations are given in Section 7.

2. Methodology and notations

In this section the methodology and notations are given. Suppose the units of a population of size
N are U;,U,,K U, and the values of some variable of interest are Y,,Y,,K ,Y . Suppose further that

the estimation of the population mean Y = N’lziNﬂYi is required. The estimation is done by using a
random sample of size n. The conventional single phase sampling estimator of Y is the sample mean
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y= n’lz?:l y; . When information on an auxiliary variable is available then the ratio estimator of the

population mean is given as

Yr = X’ (1)

x| | <

where X = N’lzi'ilxi and X = n*lzi":lxi are population and sample means of the auxiliary variable,

respectively. The MSE of the ratio estimator is
MSE (¥,) = &Y (C; +C; -2oC,C, ), )

where =n"-N", C, is the population coefficient of variation for Y, C, is the population
coefficient of variation for X and p is the population correlation coefficient between X and Y. The

classical ratio estimator has been very popular for a long period of time,

In some situations, the population information for the auxiliary variable is not available and in
such situations the ratio estimator (1) cannot be used. The problem can be solved by using a two-phase
sampling technique. In two-phase sampling a first-phase sample of size n1 is drawn from a population
of size N, and information about the auxiliary variable is recorded. A sub-sample of size n2 < n1 is
drawn from the first-phase sample and information about the auxiliary variable and study variable are
recorded. The conventional ratio estimator in two-phase sampling is given as

VR(Z) = % X 3)

where Y, = n;lzinil y, is the second-phase sample mean of the study variable Y, X, = nz‘lzinj1 X; 1S

second-phase sample mean of the auxiliary variable X and X, = nl_lz:il X; is the first-phase sample

mean of the auxiliary variable X. The MSE of two-phase sampling ratio estimator is

MSE (Ve ) = V2 [6:C; +(6, - 6)(C} -2pC,C, ) ], 4)
where 6,=n,"~N"' and 6, =n;*—~N". Several modifications of the two-phase sampling ratio
estimator have been proposed from time to time; see for example [21].

The MSE of an estimator in single-phase sampling is usually obtained by writing ¥ :\7(1+ ey)

and X = X (1+e,) where e, and e, are errors in estimation such that
E(e,)=E(e,)=0, E(e})=06C;, E(el)=6C! and E(e,e,)=6pC,C,. (5)

The MSE of an estimator in two-phase sampling is usually obtained by writing Y, =\7(1+ eyz),

X, =X (1+ exz)and X, = )?(1+ exl) where e, , e, and e, are errors in estimation such that

AIMS Mathematics Volume 7, Issue 8, 14208—-14226.
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e, )=E(e,)=E(e,)=0;E(el)=6,C;;E(el)=06,C: E(el )=0C]

e.e, )=0,,CC,;E(e.e )=0,CC, E(ee, )=6C; E[eyl (exl—exz)]:o (6)

Xy ! Xy !

E(
E(

E (eX1 _exz) =(6,-6)C; E|:ey2 (ex1 —€, )] =(6,-6,)pC.C,

We will now discuss some important single- and two-phase sampling estimators in the following
section.

3. Some existing estimators

Several estimators have been proposed from time to time for the estimation of the population
mean in single- and two-phase sampling. Some of these are given in the following subsections.

3.1 Some single phase sampling estimators

Some popular single-phase sampling estimators will now be discussed.
e Sisodia and Dwivedi estimator [2]

Estimator: Y = )7[)5 Gy } : (7)

MSE:
MSE (Vg5 ) = Y * (C2 +m{CZ —2mpC,C, ) ; m = X/(X+C,). (8

e Singh estimator [23]

. [ X+B
Estimator: = Z | 9
stimator: e, y[ﬂﬁz] ©)
MSE:
MSE (Vs ) = OV 2 (C§ +m2C? —2m2pcxc:y) m,=X/(X+5,), (10)

where S, is the coefficient of kurtosis for the auxiliary variable X.

e Kadilar and Cingi estimator [9]

(11

x| X

Estimator: Y, = [y +b ( X - )]

MSE:

MSE (Vi ) = 6V 2 [cj+cj (1—p2)] , (12)
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where b is the regression coefficient between x and y.
e Yan and Tian estimator [24]
Estimator:

VYsz(X_'—ﬁlj- (13)

X+ [

MSE:

MSE (¥,; ) =V *(C} +miC; -2mpC,C ) imy=X/(X +B),  (14)

where £, is the coefficient of skewness for the auxiliary variable X.

e Singh estimator [25]
Estimator:

X+8S
Ver =Y x|, 15
Ysos y(Y#—S j (15)

X

MSE:

MSE (Vsp3) = O % (C2 +miC —2m,pC,C, ) ;i m, = X/(X +S,),  (16)

where S, is the standard deviation of the auxiliary variable X.

e Subramani and Kumarpandiyan estimator [26]

Estimator:
[ X+ M,
- , 17
T y[ﬂMdj (17)
MSE:
MSE (Vg ) = 0¥ * (C2 +miC. —2mpC,C, ) s my = X /(X + M), (18)

where M is the mean deviation of the auxiliary variable X.
For the above estimators, it is assumed that the quantities C,,C,,M,, 3, and g, are known.

3.2 Some two-phase sampling estimators

Some popular two-phase sampling estimators will now be discussed.
e Mohanty estimator [27]
Estimator:

N |

N

yM(2):|:72+ﬂyx(¥1_yz)} (19)

AIMS Mathematics Volume 7, Issue 8, 14208—-14226.
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MSE:

2

MSE (VM(z)) :Y_2 |:92 C§ +(02 _01){p32 sz _(pxy Cy — Px Cz)

2 : (20)
+(C.=C,p, ) - Ci o3|
where Z is another auxiliary variable.
e Hanif, Hammad and Shahbaz estimator [28]
Estimator:
yHHS(Z) = [72 + ﬂyx (71 - 72)}[" (71/72) + (1_ k)(fz/fl)} > (21)
where k is the weighting constant such that 0 <k <1.
MSE:
o T22 2 2
MSE ( yHHS(Z)) = Y Cy [92 - (62 - 91) {pxy + (pyz - pxypxz ) }i| 5 (22)

where p, is the correlation coefficient between (X,Y ), p,, is the correlation coefficient between

(Y,Z) and p,, is the correlation coefficient between (X,Z).

More details about single- and two-phase sampling estimators can be found in [21]. We will now
propose a new ratio-type estimator in single-phase sampling.

4. A new class of estimators for the mean in single-phase sampling

The proposed class of estimators for single phase sampling is

11=12,3,4,5 (23)

x| | |

Vos: =a7()xz+Aj+(1—“)[7+b(x‘7)J

where A=C, ,A=4,, A=0,A=S,and A =M, . We can see that the proposed class of
estimators can be written as

VD5_3 = ati + (1_ a) VKC ; I :1, 2,3,4,5
where t, =V o t, = Yoou » ts = Vyr » b, = Ve aNd t, = ¥, . From above we can see that the proposed

class of estimators is a weighted sum of various ratio type estimators. The bias and MSE of the
proposed class of estimators are derived in the following subsections.

4.1 Bias and MSE

Using the notations from (5), the class of estimators given in (23) can be written as

AIMS Mathematics Volume 7, Issue 8, 14208—-14226.
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Vo = &Y (1+ ey)[&]ﬂl—a)[\f_(br ey)—b)?ex]%

- X + Xe, + A 1+e,)
=a¥ (1+e,)(1+me,) " +(1-a)(V +Ve, —bXe, ) (1+e,) ; m, = )?i %
Expanding the negative powers and retaining the linear terms only, we have
Voo =¥ (1+e,)(1-me, ) +(1-a)(Y +Ye, —bXe, )(1-¢,). (24)

Expanding and applying expectation, the bias of the proposed class of estimators is
Bias (Vg ) = E (Vg ~¥ ) = —0pm¥C.C, .
Again, expanding (24) and retaining only the linear terms we have
Vos: —Y =(Ye, —Ye, +a¥e, —bXe, + abXe, —amYe, ).
Squaring and applying expectation, the MSE of the proposed class of estimators is
_\2 _ _ _ _ — 2
MSE (Vyg: ) = E(Voe =Y ) = E(Ve, ~ Ve, + Ve, ~bXe, + abXe, —amye, ) .

Expanding the square, applying expectation to individual terms and ignoring E(b)—,B, where
pF is the population regression coefficient between X and Y, the MSE of the proposed class of
estimators is

MSE (V5 ) = 6V?| C2{1-p* (1-a”)}+Cl (1-a+am ) ~2apC,C, (1-a+am)|.  (25)

The optimum value of « that minimizes the MSE is obtained by differentiating (25) with respect
to « and equating the resulting derivative to zero. The optimum value thus obtained is

C,
C,(1-m)+pC,

a =

Substituting the optimum value of « in (25), the minimum MSE of the proposed class of
estimators is

MSE i (Vo0 ) = O °C (1= 7). (26)

4.2 Comparison of the proposed class of estimators
A comparison of the proposed class of estimators is given below. For the comparison we have

compared the MSE of the proposed class of estimators with some existing estimators. The proposed
class of estimators will be better than the estimators compared if

AIMS Mathematics Volume 7, Issue 8, 14208—-14226.
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MSE (t) - MSE (¥, ) > 0,

where t is any estimator compared. We first compare the proposed class of estimators with the classical
ratio estimator. For this we have

MSE (¥, ) - MSE(7D83)= V?(C?+C2-2pC,C, ) 6V?CZ(1- p?)

:HY_Z(pr—CX)Z.

(27)

From above, it is easy to see that MSE (Y, ) > MSE(V_.. ) ; hence the proposed class of estimators
R DS;

is always more precise than the ratio estimator. The equality holds when poC, =C, .

Again, we will compare the proposed class of estimators with the estimators given in Subsection 3.1.
The proposed class of estimators will be more efficient than the estimators given in Subsection 3.1 if

MSE (t,) ~ MSE (¥ g ) 2 0 t = Vo, Voo Vor Voo andl Yo -
Now,
MSE (t,)=6Y*(CZ +m’C} -2mpC,C,);i=1234,5,
and mi; is suitably defined. Comparing the MSE of t, with MSE of proposed class of estimators, we
have
MSE (t,) - MSE (¥, | = 0V (C; +m’C? —2m,pC,C, ) - ¥ °C} (1- p°)
or

MSE (t,) - MSE (VDsg) = 6V2(C2p? ~mC2+2pC,C, ). (28)

From (28) we can see that the proposed class of estimators will be more efficient than any of the
estimators given in Subsection 3.1 if C;p” +2oC,C, >mC;.

Finally, we will compare the proposed class of estimators with the estimator proposed in [9]. For
this we have

MSE (Jyc )~ MSE (V) = 072 CZ + C2 (1 %) |- 67 7°CE (1- p7)
or
MSE (¢ ) — MSE (yDSig ) —OV°C2>0; (29)

hence the proposed class of estimators will always be more efficient than the estimator proposed in [9].
We will now propose a class of estimators for two-phase sampling in the following section.

AIMS Mathematics Volume 7, Issue 8, 14208—-14226.
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5. A new class of estimators for the mean in two-phase sampling

The proposed class of estimators for two-phase sampling is

_ _ [ X+ _ . axX .
Yosi(2) zayz(—i+2]+(1—a)[y2+b(xl—x2) 7_2 ;1=1,2,34,5 (30)

where Ai has been defined in Section 4. Also X, and X, are the first- and second-phase sample means
of the auxiliary variable X and Y, is the second-phase sample mean of the study variable Y. We can
see that the proposed class of estimators for two-phase sampling can be written as

Yoss2) = gy + (1-2) Yec) 1 1=12,34,5

where

t =—2(X1+Aj;i=1,2,3,4,5

represents the two-phase sampling counterparts of the estimators Yy, Vs Yy7s Ysos @nd Vg . Also
Yic2) is the two-phase sampling counterpart of the estimator proposed in [9]; it is given as

= = o o1 X
Yke(z) = I:yz +b(X1 _XZ)]Y_l'

2

From above we can see that the proposed class of estimators is a weighted sum of various ratio-
type estimators in two-phase sampling. The bias and MSE of the proposed class of estimators are
derived in the following subsections.

5.1 Bias and MSE

Using the notations from (6), the class of estimators given by (30) can be written as

Y +Ye, )(X + Xe, +A _ _ - \1lte,
:0(( (){’2(X6X2+A1) )+(1—a)[(Y +Yey2)+bX ((i‘xl—Xexz)]l_l_ex2

=a¥ (L+e, )(1+me, )(1+me,, )71 +(1- a)[(Y_ +Ye, )+bX (e, —e, )]
x(1+e, )(1+e, )_1.
Expanding the negative powers and retaining the linear terms only, we have
Vosiz) = a\?(1+ e, )(1+ me,, )(1— me,, ) +(1-a) [Y_(l+ e, ) +bX (exl —e, )]

x(1+e, )(1-e, )

AIMS Mathematics Volume 7, Issue 8, 14208—-14226.
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Expanding (31) and applying expectation, the bias of the proposed class of estimators for two-
phase sampling is

Bias Vo)) = E (Vossy) =¥ ) = (6~ 61)am¥ pC,C,.
Again, expanding (31) and retaining only the linear terms, we have

Vossg ~Y =V, +Y (e, -e, )-a¥ (e, —e, )+amY (e, —e, )+bX(e, —e, )-abX(e, e, ).

Squaring and applying expectation, the MSE of the proposed class of estimators is

MSE (7055(2)) -E (7083(2) —Y_)2 -E [\(_eyz +Y_(exl e, ) - a\?(exl —e, ) + amiY_(eXl e, )
+bX (e, e, )-abX (e, —e, )T :

Expanding the square and applying expectation to individual terms, the MSE of the proposed class
of estimators is

MSE (VDsisu)) =vc? [«92 +(1-0%) (6, - el)pz]_ 2a(6,-6,)pY°C,C, (1-a-ma) @
+(6,-6,)Y°C:[1-a(1-m)].

The optimum value of « that minimizes the mean square error is obtained by differentiating (32)
with respect to « and equating the resulting derivative to zero. The optimum value thus obtained is

) C2(1-m)+C,C,
a=— 5 — (33)
C;(1-m) +2pCC, (1+m)-p°C;

The minimum value of the MSE of the class of two-phase sampling estimators can be obtained
by applying the optimum value of « from (33) in (32), as follows:

= 1o
MSE(yDSiB(z)) - Z[Y ’C, {ampC} (6, - 6,)+ pC[ 2C, (1+m) - pC, | 6, + 1 (6, - 6,)] o
+C,C2[(1-m,)* +0,{1- p* + m(m-2)(1+ pz)}m,
where A=C?(1-m,)* +2pC,C, (1+m,)— p*C2.
6. Numerical study
In this section, we present the numerical study for the proposed estimators. The numerical study
comprised a simulation for the single- and two-phase sampling estimators and an application of the

proposed single-phase sampling estimator by using some real populations. We will first give the
simulation study for the proposed estimators in the following subsection.

AIMS Mathematics Volume 7, Issue 8, 14208—-14226.
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6.1 Simulation study

Here, we present the simulation study for the proposed single- and two-phase sampling estimators.
The algorithm for the single phase sampling is given below.
1) Generate an artificial population of size 5000 from a bivariate normal distribution
N, (65, 50,6°,5°, p) by using different values of the correlation coefficient.

2)  Generate random samples of sizes 50, 100, 200 and 500 from the generated population.
3) Compute different estimators by using the generated samples.

4) Repeat Steps 2 and 3; 20000 times for each sample size.

5) Compute the bias and MSE of each estimator for different sample sizes by using

(7)=7 (T = > (55 =i >
Bias(y,)=Y; —65 and MSE(Y,)=—= V. —V)  Vi=—— > V.
20000 &1 20000 & 7"

3 3 3 3 3
where i =R, SD, S04, KC, YT, 03, sk, DSt DS; DS; DS;anq DSs
Table 1 contains the bias of various estimators and Table 2 contains the MSE of various estimators
used in the simulation study.

Table 1. Bias of various estimators.

p=-0.9 p=-05

n=50 n=100 n=200 n=500 n=50 n=100 n=200 n=500
Yr 0.1215 0.1304 -0.0082 0.0302 0.0672 0.0288 0.1273 -0.1214
Yso 0.1214 0.1304 -0.0082 0.0302 0.0671 0.0287 0.1273 -0.1214
Ysos 0.1200 0.1301 -0.0086 0.0302 0.0659 0.0279 0.1269 -0.1216
Yke 0.1097 0.1311 -0.0117 0.0304 0.0626 0.0249 0.1249 -0.1224
Yyr 0.1215 0.1304 -0.0082 0.0302 0.0672 0.0288 0.1273 -0.1214
Ysos 0.1191 0.1300 -0.0088 0.0301 0.0652 0.0275 0.1266 -0.1217
Ysk 0.1196 0.1300 -0.0087 0.0302 0.0655 0.0277 0.1267 -0.1216
VDSE 0.0958 0.1319 -0.0159 0.0307 0.0530 0.0166 0.1198 -0.1246
Yos: 0.0966 0.1324  -0.0157  0.0307 0.0546 0.0174 0.1202  -0.1244
VDSS 0.0957 0.1319 -0.0159 0.0307 0.0529 0.0165 0.1198 -0.1246
VDSS 0.0972 0.1326 -0.0156 0.0308 0.0558 0.0180 0.1204 -0.1243
VDSS 0.0969 0.1325 -0.0156 0.0308 0.0552 0.0177 0.1203 -0.1244

p=05 p=09

n=50 n=100 n=200 n=500 n =50 n=100 n=200 n=500
Yr -0.0360 0.0185 -0.1519 -0.0638 0.0337 0.0175 -0.0997 -0.1203
Ysp -0.0360 0.0185 -0.1519  -0.0638 0.0337 0.0175 -0.0997  -0.1203
Ysos -0.0381 0.0179 -0.1521 -0.0640 0.0323 0.0170 -0.1004  -0.1204
Yke -0.0250 0.0211 -0.1512 -0.0625 0.0444 0.0206 -0.0920 -0.1196
Yor -0.0360 0.0186 -0.1519 -0.0638 0.0337 0.0175 -0.0997  -0.1203
Ysos -0.0392 0.0175 -0.1523  -0.0642 0.0315 0.0167 -0.1008  -0.1204
Ysk -0.0386 0.0177 -0.1522 -0.0641 0.0319 0.0168 -0.1006  -0.1204

Continued on next page
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p=05 p=09
n=50 n=100 n=200 n=500 n =50 n=100 n=200 n=500
Yos: -0.0493 0.0157 -0.1527  -0.0653 0.0315 0.0169 0.1013 -0.1204
Yoss -0.0506 0.0151 -0.1530 -0.0654 0.0307 0.0165 -0.1014 -0.1205
Yos: -0.0492 0.0157 -0.1527  -0.0653 0.0315 0.0169 -0.1013  -0.1204
Yos; -0.0512 0.0147 -0.1532  -0.0654 0.0303 0.0163 -0.1015  -0.1205
Yos; —0.0509 0.0149 -0.1531  -0.0654 0.0305 0.0164 -0.1015  -0.1205

Table 2. MSE of various estimators.

p=-0.9 p=-05

n =50 n=100 n=200 n=500 n =50 n=100 n=200 n=500
Yr 1.5992 0.7699 0.3732 0.1413 1.5658 0.7463 0.3722 0.1434
Yoo 1.5957 0.7682 0.3723 0.1409 1.5624 0.7447 0.3714 0.1430
Yso4 1.5037 0.7241 0.3515 0.1325 1.4727 0.6990 0.3507 0.1348
Yke 1.7655 0.7655 0.3793 0.1667 0.9687 0.4573 0.2299 0.0873
Yyr 1.5986 0.7690 0.3729 0.1412 1.5672 0.7463 0.3719 0.1434
Ysos 1.4504 0.6965 0.3379 0.1280 1.4192 0.6752 0.3378 0.1298
Yok 14771 0.7097 0.3442 0.1305 1.4453 0.6882 0.3440 0.1322

Yos; 1.3436 0.6385 0.3210 0.1175 0.9292 0.4294 0.2108 0.0825
Yos; 1.3435 0.6385 0.3210 0.1175 0.9292 0.4293 0.2108 0.0825
Yos: 1.3436 0.6385 0.3210 0.1175 0.9292 0.4294 0.2108 0.0825
Yos: 1.3435 0.6384 0.3210 0.1175 0.9291 0.4293 0.2108 0.0825

Yos; 1.3435 0.6384 0.3210 0.1175 0.9291 0.4293 0.2108 0.0825
p=05 p=09

n =50 n =100 n =200 n =500 n =50 n =100 n =200 n =500
Yr 1.5602 0.7839 0.3858 0.1370 1.5661 0.7574 0.3738 0.1388
Yso 1.5568 0.7822 0.3850 0.1367 1.5627 0.7558 0.3730 0.1385
Ysoa 1.4633 0.7400 0.3629 0.1291 1.4712 0.7127 0.3518 0.1306
Yke 2.5034 1.2828 0.6160 0.2223 3.5518 1.7170 0.8512 0.3124
Yvr 1.5611 0.7847 0.3856 0.1368 1.5662 0.7576 0.3740 0.1388
Ysos 1.4125 0.7100 0.3501 0.1245 1.4181 0.6858 0.3386 0.1261
Yk 1.4394 0.7228 0.3566 0.1268 1.4452 0.6985 0.3450 0.1284

Yos; 0.8868 0.4585 0.2218 0.0806 1.2971 0.6257 0.3113 0.1163
Yos; 0.8865 0.4585 0.2218 0.0806 1.2969 0.6256 0.3113 0.1163
Yos: 0.8868 0.4585 0.2218 0.0806 1.2971 0.6257 0.3113 0.1163
Yos; 0.8863 0.4584 0.2218 0.0806 1.2968 0.6256 0.3113 0.1163
Yos; 0.8864 0.4584 0.2218 0.0806 1.2968 0.6256 0.3113 0.1163

From Table 1, we can see that the bias remains negative for all of the sample sizes and all values
of the correlation coefficients. From Table 2, we can see that all members of the proposed class of
estimators are more efficient than the other estimators used in the study. We can also see that the MSE
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of all of the estimators decreases with an increase in the sample size. The relative efficiency of various
estimators relative to the classical ratio estimator was also computed; the results are plotted in Figure 1
given below.

2 =-09 2 =-0.5

SO SM4 KC YT S03 Sk DS31 DS32 DS33 DS34 DS3s

Figure 1. Relative efficiency of various estimators.

From the above figure we can see that all the members of the proposed class of estimators are

more efficient than the ratio estimator.

We also conducted the simulation study for the proposed class of estimators for two-phase

sampling. The algorithm for the two-phase sampling simulation is given below.

1)

2)
3)
4)

5)
6)

Generate an artificial population of size 5000 from a bivariate normal distribution
N, (65, 50,6°,5°, p) by using different values of the correlation coefficient.

Generate first-phase random samples of sizes 500 and 1000 from the generated population.
Generate second-phase random samples with sizes 5%, 10% and 20% of the first-phase sample.
Compute different estimators by using the second-phase sample mean of Y, first- and second-
phase sample means of the auxiliary variable X and some population measures for the auxiliary
variable X.

Repeat Steps 2—4; 20000 times for each combination of first- and second-phase sample sizes.
Compute the bias and MSE of each estimator for different sample sizes by using

= 1 2%0 2 _ 1 20000
Bias(y;)=Y, —65 and MSE(V;)=—— vi—v.) ;¥
( ) ( ) 20000 j:l( ! )

'~ 20000 JZ;‘ Yy

where i = CR, DS} (2), DS;(2), DS;(2), DS;(2)and DS:(2).
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Table 3 contains the bias of various estimators whereas Table 4 contains the MSE of various

estimators.
Table 3. Bias of various two-phase sampling estimators.
L n, Yee) Yosso Yosie) Yosie) Yosie) Yos)
25 0.0886 0.0989 0.0974 0.0990 0.0962 0.0968
500 50 0.0159 0.0242 0.0231 0.0243 0.0223 0.0227
09 100 0.1785 0.1811 0.1807 0.1811 0.1805 0.1806
50 -0.0637 -0.0598  -0.0605 -0.0598 -0.0609 -0.0607
1000 100 0.0124 0.0144 0.0141 0.0144 0.0138 0.0139
200 -0.0481 -0.0474  —0.0475 -0.0474 -0.0476 -0.0475
25 -0.0584 -0.0516  -0.0528 -0.0516 -0.0536 -0.0532
500 50 0.0005 0.0047 0.0040 0.0048 0.0036 0.0038
05 100 0.0611 0.0632 0.0629 0.0632 0.0627 0.0628
50 0.0267 0.0312 0.0304 0.0312 0.0299 0.0302
1000 100 0.0614 0.0643 0.0639 0.0643 0.0636 0.0638
200 —0.0453 -0.0446  -0.0447 -0.0446 -0.0448 -0.0448
25 0.1086 0.1157 0.1144 0.1157 0.1136 0.1141
500 50 0.1128 0.1144 0.1140 0.1144 0.1137 0.1139
05 100 -0.0076 -0.0051  -0.0054 ~0.0050 -0.0057 ~0.0056
50 -0.0448 -0.0398  -0.0406 -0.0398 -0.0412 -0.0409
1000 100 -0.1156 -0.1126  -0.1130 -0.1126 -0.1134 -0.1132
200 -0.0675 -0.0668  —0.0669 —0.0668 -0.0670 -0.0670
25 -0.0229 -0.0136  -0.0150 -0.0136 -0.0160 -0.0155
500 50 -0.0940 -0.0857  -0.0869 -0.0857 -0.0876 -0.0872
0.9 100 0.1172 0.1211 0.1206 0.1211 0.1202 0.1204
50 0.0821 0.0862 0.0855 0.0862 0.0850 0.0853
1000 100 0.0125 0.0139 0.0136 0.0139 0.0135 0.0136
200 -0.0984 -0.0957  —0.0960 —0.0956 -0.0963 -0.0962

The above table shows that the bias of various estimators fluctuates and is on the relatively higher

side.

Table 4. MSE of various two-phase sampling estimators.
p n , Yee) Yosp  Yosiz) Yosie) Yosie) Yosie)
25 2.9315 2.4527 2.3638 2.4561 2.3013 2.3317
500 50 1.5120 1.2882 1.2404 1.2905 1.2059 1.2226
09 100 0.6847 0.5644 0.5450 0.5649 0.5307 0.5375
' 50 1.5420 1.3049 1.2560 1.3068 1.2224 1.2392
1000 100 0.7237 0.6036 0.5813 0.6044 0.5666 0.5740
200 0.3472 0.2867 0.2768 0.2872 0.2699 0.2733
05 500 25 3.0511 2.5930 2.4944 2.5961 2.4319 2.4648
' 50 1.4463 1.2070 1.1614 1.2094 1.1337 1.1488
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p n n, Yee) Yosi(2) Yosiz) Yosi) Yosie) Yosi(z)
100 07090 05796  0.5588 05803 05454 05525

50 1.5738 1.3242 1.2749 1.3265 1.2400 1.2572

O3 4000 100 07220 0.6083  0.5856 06087 05709 05785
200  0.3383 02798 0.2696 02802 02631  0.2665

25 3.0231 25636 24679 25666 24058  2.4376

500 50 1.4745 12240 11792 12261 11482 11638

o5 100 0.6860 05672  0.5480 05683 05339 05407
50 15257 12847 1.2366 12854 12040  1.2206

1000 100  0.7258 0.6067  0.5853 06073 05689 05765

200 03377 02774 02679 02777 02608  0.2641

25 29532 25230 24298 25265 23682 24001

500 50 1.4656 1.2274 1.1804 1.2297 1.1538 1.1693

0o 100 06928 05783 05581 05788 05436 05505
50 1.5425 1.3028 1.2558 1.3044 1.2217 1.2381

1000 100  0.7250 06113  0.5886 06114 05741 05817

200  0.3324 02724  0.2631 02728 02564  0.2596

From the above tables, we can see that all members of the proposed class of estimators are more
efficient than the classical two-phase sampling ratio estimator.

We also computed the relative efficiency of various two-phase sampling estimators relative to the
two-phase sampling ratio estimator. The relative efficiencies are plotted for various combinations of
o, h1and n2. The plots of relative efficiencies are given in Figure 2 below.

From the above figure, we can see that the estimator ¥, is the most efficient among the

members of the new class. The member VDsg(z) is the worst in the class, but all members are more

efficient than the ratio estimator. We will now present the numerical study of different estimators using
some real populations.

6.2 Study using data from some real populations
In this subsection, we present a numerical comparison of various estimators using some real
populations. The description of the populations used in the study alongside some measures computed

from these populations are given in Table 5 below.

Table 5. Description of various populations.

Pop. 1 2 3 4 5 6 7 8
Source [29] [30] [31] [32] [32] [31] [33] [34]
Y Output Wheat Output Output Output No. of Food Wheat
Area 74 Cultivator Amount  Area 37
X No. of Wheat No. of No. of No. of Cultivated Total Wheat
Workers  Area 71 Workers  Workers Workers  Area Income Area 37
N 40 34 20 10 20 15 10 15

Continued on next page

AIMS Mathematics Volume 7, Issue 8, 14208—-14226.



14223

Pop. 1 2 3 4 5 6 7 8

n 20 20 6 4 12 4 4 6

X 230.31 208.88 440.81 362.43 202.54 2361.13 88.50 19.47
Y 5078.61 856.41 6668.63 5729.22 4919.95 704.20 106.31 168.67
M, 125 150 447.52 302.54 109.52 1881 49 131

B 0.97 0.98 0.04 0.91 1.26 0.57 2.18 1.85
B2 -0.53 0.09 -1.05 -0.06 0.29 -1.11 4.78 2.83
Sy 193.60 150.51 114.69 318.15 187.28 1718.24 82.99 182.56
Cy 0.84 0.72 0.26 0.87 0.92 0.73 0.13 0.92
Sy 1673.52 733.14 514.52 2090.23 1915.34 735.12 92.21 126.10
Cy 0.33 0.86 0.08 0.37 0.39 1.04 0.18 0.75

p 0.80 0.45 0.95 0.92 0.69 0.18 0.44 0.91

p=-09:n =500 p =-0.9:n, =1000

12025 —amg2e50 22100
/\
>

e N\

0s33(2] 0534(2 s35(2)

0s31{2) 0s32(2)

Ds31(2

08332, 0534(2]

Figure 2. Relative efficiency of various two-phase sampling estimators

We computed the MSE of various estimators by using the data on the above-mentioned

populations. The results are shown in Table 6 below.
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Table 6. MSE of various estimators.

Pop CR S&D K&C S03 S04 Y&T S&K Proposed
1 239659.8 237392.1 480754.6 49130.7 2411164 237034.8 49130.7 25134.9
2 10539.9 10514.9 16673.8 8853.7 10536.6 10506.1 8853.7 8835.0
3  185284.7 184986.6 354520.2 95865.3 186493.0 1852417 95865.3  3311.3
4 1515718.0 1504491.0 3882710.0 168872.8 1516529.0 1504032.0 168872.8 88122.5
5 4113312 406893.8 7541251 100180.7 409900.2 405269.9 100180.7 64005.7
6 122361.6 122339.6 144004.2 100813.8 122395.1 122344.2 100813.8 95861.5
7 42.5 41.6 122.7 18.4 43.7 41.9 18.4 10.1
8 454.1 448.1 2712.9 392.8 436.2 442.2 392.8 281.5

From the above table we can see that the proposed estimator outperformed all of the other
estimators used in the study as it has smallest MSE among all of the estimators. We also computed the
relative efficiency of the proposed estimator relative to various estimators. The MSE and relative
efficiency are shown in Figure 3 below.

Mean Square Error of Various Estimators 120 Relative Efficiency of Proposed Estimator

——R CR S&D KAL =503 504 g (ST e—gSEK

Figure 3. MSE and relative efficiency of various estimators
The graph also shows the same results as are provided in Table 6.
7. Conclusions

In this paper we have proposed two new families of estimators for estimation of the population
mean. The families of estimators have been proposed for single- and two-phase sampling. The
expressions for the bias and MSE for the proposed families of estimators have been obtained. We have
seen that the proposed family of estimators in single-phase sampling is more efficient than the other
estimators to which they were compared. This has been shown through analytical and empirical
comparisons. The results of the simulation study also support this comparison. We can thus conclude
that the proposed single-phase sampling estimator will estimate the population mean with more
precision. We have also found that the proposed family of estimators in two-phase sampling is also
more efficient than the classical ratio estimator for two-phase sampling. This has been concluded by
the results of an extensive simulation study on the two-phase sampling family of estimators. We can,
therefore, conclude that the proposed families of estimators will provide more efficient results for
estimation of the population mean in single- and two-phase sampling when information on a single
auxiliary variable is available.
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