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Abstract: By observing the failure behavior of the recorded survival data, we aim to compare the

different processing approaches or the effectiveness of the devices or systems applied in this non-

parametric statistical test. We'll apply the proposed strategy of used better than aged in Laplace (UBAL)
transform order, which assumes that the data used in the test will either behave as UBAL Property or

exponential behavior. If the survival data is UBAL, it means that the suggested treatment strategy is

effective, whereas if the data is exponential, the recommended treatment strategy has no negative or

positive effect on patients, as indicated in the application section. To guarantee the test's validity, we

calculated the suggested test's power in both censored and uncensored data, as well as its efficiency,

compared the results to other tests, and then applied the test to a variety of real data.
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1. Introduction

Failure occurs when a unit or component fails to perform its needed function. The analysis of
survival dataset failure behavior entails identifying whether the data exhibit a UBAL, or a constant
failure rate. The two primary characteristics of the exponential distribution are: The memoryless
property and the constant rate of failure property. The exponential distribution is the most important
member of the life distribution classes due to these two characteristics. We now have a dataset with
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two claims: First, that the data are exponential, and second, that the data are UBAL. A statistical test
is required to support one of the two hypotheses or claims, indicating which one is correct. The
classification of life probability distributions has recently aided in the creation of novel high-efficiency
statistical tests.

Several categories of life distributions have been studied to model data with different aging
aspects. There are numerous definitions for various life distributions, like the IFR, IFRA, Navarro and
Pellerey [1], Bryson and Siddiqui [2], Barlow and Proschan [3], Esary et al. [4] and Navarro J. [5].
Many researchers have discussed various aging classifications, such as NBUC and NWUC were
introduced by Cao and Wang [6]. Fernandez-Ponce et al. [7] have also looked into the multivariate
NBU. Furthermore, Ahmad [8] looked at UBA and UBAE. The Laplace order for UBA has been
explored by Abu Youssef et al. [9].

The implications of the common classes of life distributions, which include the majority of well-
known classes such as IFR, UBA, UBAE, and UBAL, are discussed as follows:

IFR[1] = UBA[S] =  UBAL[9]
U
UBAE [8]

If 0 < p(eo) < oo andforall x,t > 0, Ahmad [8] defined the life distribution of used better than aged
(UBA) as:

X

F(t)e n() < F(x+t), xt=0,

and used better than the aged in expectation (UBAE):

u(t) = p(oo),
where
F(x+1t) =
Fe)={"F@® =
and
i e ~ ~ ftooﬁ(u)du

e R

Definition:

We said that F has used better than aged in the Laplace (UBAL) transform order property if 0 <
M(OO) < OO, VXIt 2 09

0 = - = p(oo)
fO F(x+t)e *dx > F(t)m, s=0, (1.2)

for more details, see Abu Youssef and Bakr [10].
The major aim of this research is to address the issue of comparing H,, : F is exponential to H; :
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F is the greatest class of life distribution UBAL. The following is how the paper is structured: In
Section 2, we provide a test statistic for complete data based on the goodness of fit technique, Monte
Carlo critical values are simulated for different sample sizes, and power estimates are produced and
presented. The test statistic for censored data is obtained in Section 3. Finally, in Section 4, we go
through some examples of how the suggested statistical test can be used in practice.

2. Testing complete data

A random sample of F is represented by X;, X,, ..., X;,. We develop a test statistic to test the null
hypothesis H, : F is exponential (F(t) = fe #t), vs H,: F is UBAL. Many writers have
addressed non-parametric testing for classes of life distributions (see Fernandez-Ponce and Rodriguez-
Grinolo [11]; Abu-Youssef et al. [9]; Mahmoud et al. [12]; Abu-Youssef et al. [13] and Abu-Youssef
et al. [14]. According to (1.1) and without loss of generality, we assume p(o0) is known and equal
one; the measure of departure based on the goodness of fit approach can be stated as;

8(s) =E Uooe_sxF(x +t)dx — %—I—sﬁ(t)l
0

= I3 [ FCe + 0 e dx = - F(©)] dRo o) @

It's worth noting that under H,: 6(S) = 0 and under Hy: 8(s) > 0.
The test statistic of the proposed test for the UBAL class is given by the following theorem.

Theorem 2.1.
Suppose X be a UBAL random variable with distribution function F, then we'll build the test
statistic using the goodness of fit approach as,

1
(1-s)

8(s) = E (1- @)+ (1;) (7 e dF(x) — 1)], 2.2)
where @(s) = fooo e S*dF(x).

Proof.

5(s) =]000

We can take Fy(x) =1—e7*,x =0, then

Joooe_s"l_?(x +t)dx — %ﬂﬁ(t)l dF,(1).

[ee] (o] _ 1 i B
8(s) = f f e " SYF(u + t) dudt — —— f F(t)e tdt
0 0 1+s .

= 11 _Iz.

Where,
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I, = f f e SUe'F(u + t) dudt
o Jo
= f f e SX"De~tF(x) dxdt
0o Jt
0 t _
=f fe‘s(t‘x)e‘tF(t) dxdt
o Jo

= %Lw(l — e SHe 'F(t) dt
- 1L_S E (1-e®)-1+ e‘tdF(t)].
And,
I, = — [ F@®dF,(t) = —[1 - [ e'dF(®)].

From Egs (2.3) and (2.4), we obtain (2.2).
The statistic's empirical estimator can be calculated as follows:

8u(8) = s Li{E (1 — ™) - (1 - e ),

n(1-s) (1+s)

and the corresponding invariant test statistic can be found as:

An (s) = nX s (1+s)

B0 - Ly (I (L1 - ety - 21— )

(2.3)

(2.4)

(2.5)

(2.6)

The asymptotic normality of the demonstrated statistic in (2.2) is illustrated in the next theorem.

Theorem 2.2.

Using the theory of U-statistics According to Lee [15], the statistic 8(s) has the following

characteristics:

As n - o, v/n(4,(s) — 8(s)) is asymptotically normal with u, =0 and variance o?(s), where

(1i ) 1(1— ©®) + Jooe‘xdF(x)—l
s)|s )

0%(s) = var 2
(1+5s)

The variance in H,, is calculated as follows

2

o5(s) = 3(1+ )22+ 5)(1 + 25)

Proof.
By derived direct calculations, we can get p, as:

uo=foo( —fa-ems
0

(e7* — 1)}) dx =0,

2
(1-5)s (1+5)
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as well as the variance

[oe)

f e *dF(x)—1

0

2(s) = ! Lo+ -2
o=V Ao lsy Y Tty

2

Y O S £
= —(—<p)+(1+

e *dF(x) —1
1-9)]|s 6[

The variance under H,, is given by

2
3(2+5s)(1+5)2(1 + 2s)

o5(s) =

2.1. Relative efficiency

We can compare our test to some other known classes to determine the quality of the suggested
test technique. We use the test A(2) proposed by Mahmoud, et al. [12] for the (RNBUL) class of life
distribution and & presented Mahmoud and Abdul Alim [16] for (NBUFR) class of life distribution.

The Pitman asymptotic relative efficiency PARE is then used to make comparisons. In this case, we'll
use the following options:
(1) Linear failure rate family (LFR):

XZ
F,(x)=e 2% 9,x>0. (2.7)

(ii) Weibull family:
F,)=e>, 8>1,,x>0. (2.8)

(111) Makeham family:

-X

F,(x) = e X7 8(x+e™-1) g x > 0. (2.9)

It's worth noting that H (the exponential distribution) is achievedat 8 = 0 in (i &1iii) and 6 =
1 in (ii). The asymptotic efficiency of the Pitman (PAE) of 6(s) as s = 0.01 and s = 0.1 is equal
to

oo

v f— 2 p—
PAE(5(0.01)) = (0 0 00099] e =001 ) () 09999] e dFy (0,
0
1 Oo — 2 r —
PAE(5(0.1)) = 50D |0.09 f e-O-lxngo(x)—O— f X dFg,(x)|,
0 0

where Fo, (x) = = Fo(w) |MO. This leads to:
(1) PAE in case of the linear failure rate distribution:
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PAE(S(OOl))= 1 1 fe‘o-(’lxd __xze—x + 2 joe—xd __xze—x —1.29
' 9,(0.01) [0.0099 2 0.9999 2 i
0 0
) 1 |17 2 2 —x?
— —0.1x -x -x x || =
PAE(6(0.1)) R oorafe d< e >+099je d( e ) 1.25.
0 0

(i1) PAE in case of the Weibull distribution:

~ P 2 b
—0.01x J(_ —-x X J(_ -x\| —
PAE(6(0.01)) 0(001) 00099_[6 d(—x1In|x| e )+0.9999J'e d(—xIn|x| e )| = 0.96.
0 0
PAE(S(O 1)) Lf 01 g(—x Injx| e~ + —— ( e~*d(—xIn|x|e=*)| = 0.94
. 0(01)009 e —XxIn|x|e 099 xXin|x|e = U. .
0
(111) PAE in case of the Makeham distribution.
PAE (8(0.01))
1 1
= —001xd 1_ _ —-X —-X
55(0.01) 0.0099]‘? (A=x—e)e™)
0
“d((1-x —e™)e™)| = 0.86.
+0.9999Je d((1 —x—e™)e™)| = 0.86
0
PAE(S(Ol))— 1 Lf —01xd(1_ —p X —x)+ioo _xd(l— _ X —x) =0.77
)= 50 0.09) ¢ (I-x—ee 099 ) (1-x—e™e™)| =077

Table 1 summarizes the direct computations of PAE of of A(2), 8r, and our

6(0.01) and 6(0.1). The efficiencies in the table clearly illustrate that our test performs well for
F;, F, and F3.

Table 1. PAE of A(2), 6z and 8(0.01) and §(0.1).

Distribution A(2) 8r, 5(0.01) 5(0.1)
LFR 0.915 0.217 1.29 1.25
Weibull 0.618 0.050 0.96 0.94
Makeham 0.172 0.144 0.86 0.77

PARE's of §(0.01) and 8(0.1) concerning A(2) and 8k, whose PAE are listed in Table 1 are

shown in Table 2.

Table 2. PARE of 6(0.01) and &(0.1) concerning §(0.01) and §(0.1).
e(8(0.1), 6r,)

Distribution  e(8(0.01),A(2)) e(8(0.1),A(2))  e(8(0.01),6%)

LFR 1.40 1.37 5.94 5.76
Weibull 1.55 1.52 19.2 18.8
Makeham 5 4.48 5.97 5.35

AIMS Mathematics Volume 7, Issue 8, 13733-13745.



13739

Table 2 shows that for F;, F, and F, the statistics 6(0.01) and &8(0.1) perform well. For all
of the scenarios discussed above, it outperforms both A(2) and & F-

2.2. Power estimates
At a significance level of 0.05, Table 3 will be utilized to evaluate the power of the proposed test.
For the Weibull; LFR, and Gamma distributions, these powers were estimated using 10000 simulated

samples with n=10, 20, and 30.

Table 3. Powers estimates at o = 0.05.

Distribution n 60=2 6 =3 6 =4
10 0.9998 1 1

Weibull 20 1 1 1
30 1 1 1

10 0.9988 1 1

LFR 20 1 1 1

30 1 1 1

10 0.9441 0.9995 1

Gamma 20 0.9924 1 1
30 0.9987 1 1

As demonstrated in Table 3, our test has high powers for the Weibull, LFR, and Gamma families.
2.3. Critical values

Here, we use 10000 simulations with sample sizes n=10(5)100 from the standard exponential
distribution to calculate the test statistic of our test test A, (s) as s = 0.01 and s = 0.1 given in (2.6)
for some selected values s.

The asymptotic normality of our test improves as s decreases, as shown in Table 4.

Table 4. The upper percentile points of 8,(s).

5,(0.01) 5,(0.1)
n 90% 95% 99% 90% 95% 99%
5 0.222947  0.296991 0.416736 | 0.190928 0.250687  0.331011
10 | 0.175661  0.234867 0.328956 | 0.148956 0.191851  0.266253
15 | 0.152844  0.198555 0.282422 | 0.129411 0.164337  0.222148
20 | 0.136991  0.180429 0.255117 | 0.111626 0.143976  0.200654
25 0.12162  0.157556 0.223607 | 0.103156 0.132082  0.18402

Continued on next page
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§,(0.01) 8,(0.1)
n 90% 95% 999 90% 95% 999,
30 0.112775 0.14715  0.211407 | 0.0963509 0.122499 0.169919
35 0.10628 0.136184  0.193097 | 0.0845552 0.109254  0.159572
39 0.10213 0.13368  0.184562 | 0.083692  0.10837 0.150329
40 0.102546 0.133687 0.186511 | 0.0836914 0.107069 0.15120
41 0.096624 0.125063  0.178481 | 0.0801545 0.10443 0.14379
45 0.095567 0.122137 0.174346 | 0.078977  0.100291 0.141727
50 | 0.0933263 0.119181 0.167259 | 0.075482 0.0966459  0.132828
55 0.0883399  0.113484 0.162532 | 0.0716097 0.0924242  0.127282
60 | 0.0845056} 0.109896 0.156001 | 0.0709048 0.0905189  0.123108
65 | 0.0800721  0.106347 0.149221 | 0.0674512 0.0854014  0.119576
70 0.079694 0.102598 0.147153 | 0.0655145 0.0847923  0.11628
75 | 0.0781665 0.0990352 0.138235 | 0.0634726 0.0803639  0.112566
80 | 0.0750521 0.0960944 0.13506 | 0.0623859 0.0801786  0.110811
85 | 0.0709399 0.0906362 0.12933 | 0.0593002 0.0768853  0.102688
90 0.0704061 0.0898579 0.125016 | 0.0579873 0.0741982  0.102586
95 0.0689002  0.0886083 0.124733 | 0.0555379 0.0718737  0.0998331
100 0.068162  0.0866082 0.123173 | 0.054814 0.0702883  0.0990065

3. Testing of censored data

In this section, a test statistic is provided to compare H, and H; using data that has been
randomly right-censored.
Let the test statistic written as follows:

1 n j-1 {1 ~ 2
8.(s) = s 2i=1 [Ti=1 (; (1-9(@()+ ) (w— 1)). (3.1
where
n m-—2 m-1
PN —SZ(m I Ip
cp(s)—Ze m nCp G, |
m=1 p=1 p=1
n m-—2 m-—
I I n—m
wzzesz<m> nc”— ¢! | and Cy = t € [0, zam]-
P P m 1 4(m)
m=1 p=1 p=1 m+ 1
AIMS Mathematics Volume 7, Issue 8, 13733-13745.
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Again, based on 10000 simulated and sample sizes n=5(5)100 from the standard exponential
distribution in Table (5) below, the 90%, 95% and 99% percentage points of the test statistic in (3.1)

are simulated for some selected values s.

Table 5. The upper percentile points of §,(s).

8,,(0.01) 8,(0.1)

n 90% 95% 99% 90% 95% 99%
5 79.1722 99.0099  99.0099 | 7.24026  9.09091  9.09091
10 | 585798 66.7518  82.4772 | 5.30214  6.06734  7.54631
15 | 48.3237 55.6325  69.5771 | 4.34842 505073  6.38021
20 | 41.8856 48.071  59.9788 | 3.69852  4.28524  5.42593
25 | 37.4361 434792 541946 | 3.35664  3.90187  4.99075
30 | 34.2465 39.6075  50.708 | 3.09701  3.61357  4.69185
35 | 31.8667 36.4782  46.2339 | 2.84254  3.34405  4.29118
40 29.906 34817 442144 | 26558  3.08495  3.97099
45 28.031 32.6912  42.216 | 247709  2.86345  3.72305
50 | 26.5686 30.8355  40.6515 | 2.34039 273995  3.48289
51 | 26.2765 30.713 402296 | 23204  2.72125 3.40845
55 25.321 29.3385  37.4214 | 2.24602  2.64514  3.37032
60 | 24.4339 28.3712  36.8932 | 2.13922 249681  3.19249
61 | 24.2339 283127 359142 | 2.09573  2.44195 3.13856
65 | 23.3836 7.2437 342578 | 202729  2.3679 3.07914
70 | 225253 26.2706  33.526 | 1.98388  2.31408  2.90431
75 | 21.8598 25.6862  32.4598 | 1.9148 223591  2.90803
80 20.927 244351  30.753 | 1.84222  2.15769  2.75052
85 | 20.3111 239109  30.7706 | 1.76628  2.06116  2.66595
90 19.9521 23.3886  29.6384 | 1.72034  2.0335 2.60288
95 19.4658 224647 285529 | 1.70941  1.99008  2.54748
100 | 18.6863 21.6688  28.2181 | 1.63263  1.93282 2.48212

When s decreases, our test of 8.(s) behaves better in terms of asymptotic normality, as seen in

Table 5.

AIMS Mathematics
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3.1. Power estimates
The powers estimate of the proposed test & will be carried out in Table 6 at the significant level
a = 0.05. These powers are estimated for Weibull, LFR and Gamma distributions based on 10000

simulated samples for sizes n = 10, 20 and 30.

Table 6. Powers estimates at o = 0.05.

p Distribution
t Weibull LFR Gamma
1 0.9504 0.9532 0.9537
10 2 0.9516 0.9534 0.9551
3 0.9521 0.9534 0.9570
1 0.9487 0.940 0.9465
20 2 0.950 0.945 0.9468
3 0.9516 0.950 0.9469
1 0.950 0.9511 0.9541
30 2 0.9523 0.9581 0.9545
3 0.9591 0.9587 0.9549

Our test has good powers for the Weibull, LFR, and Gamma families, as shown in Table 6.
4. Applications

To demonstrate the utility of the conclusions in this study, we apply them to various real data sets.
Application 1: Case of complete data.

Example 1: Analyze the data in Abouammoh et al. [17], which show the ages (in years) of 40
patients aged with blood cancer (leukemia) in one of Saudi Arabia's health ministry hospitals.

In the two situations of A, (0.01) and A, (0.1) as n = 40, we calculate the statistic in (2.6)
A, (0.01) = 0.42 and A, (0.1) = 0.35, which are both higher than the corresponding critical value
in Table 4. As a result, we infer that this set of data seems to have the UBAL property rather than the
exponential characteristic.

Example 2: Take, for example, the data in Mahmoud et al. [12], which represent 39 liver cancer
patients from Egypt's Ministry of Health's Elminia Cancer Center 2000.

In the two situations of A,,(0.01) and A, (0.1) as n = 39, we calculate the statistic in (2.6)
A, (0.01) = 0.68 and A, (0.1) = 0.16, which are both higher than the critical value in Table 4. As a
result, we infer that this set of data seems to have the UBAL property rather than the exponential
characteristic.

Example 3: This data set from Abu-Youssef and Silvana Gerges [18] shows the survival times
(in years) of 43 patients with a specific kind of leukemia diagnosis.

In the two situations of A, (0.01) and A,(0.1) as n = 43, we calculate the statistic in (2.6)
A,(0.01) = 0.098 and A,(0.1) = 0.0097, which are both smaller than the critical value in Table 4.
As a result, we infer that this set of data seems to have the exponential characteristic property rather

AIMS Mathematics Volume 7, Issue 8, 13733-13745.
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than the UBAL.
Application 2: Case of censored data.

Example 1: In this application, we use the data from Mahmoud et al. [12], which reflects the ages
(in days) of 51 liver cancer patients from the Elminia cancer center Ministry of health Egypt, who
began the medical investigation in the year 2000. In the investigation, only 39 patients are watched
(right-censored), while the remaining 11 are dropped (missing from the investigation).

In the two situations of A,,(0.1,0.2) and A,(0.5,5)as n = 51, we calculate the statistic in (3.1)
A,(0.01) = 44.9 and A, (0.1) = 8.42, which are both higher than the critical value in Table 5. As a
result, we infer that this set of data seems to have the UBAL property rather than the exponential
characteristic.

Example 2: Consider the data in Kamran Abbas et al. [19] and in Lee and Wolfe [20], the survival
times, in weeks, of 61 patients with inoperable lung cancer treated with cyclophosphamide. There are
33 uncensored observations and 28 censored observations, representing the patients whose treatment
was terminated because of a devolving condition.

In the two situations of A, (0.01) and A, (0.1) as n = 61, we calculate the statistic in (3.1)
A,(0.01) = 28.4 and A, (0.1) = 6.87, which are both higher than the critical value in Table 5. As a
result, we infer that this set of data seems to have the UBAL property rather than the exponential
characteristic.

5. Conclusions

In this paper, a non-parametric testing for the UBAL based on goodness of fit is developed in both
complete and censored cases. The percentage points of the proposed statistics are simulated. The
efficacies of our developed tests are compared to Mahmoud, et al. [12] for the (RNBUL) class of life
distribution and &g, presented by Mahmoud and Abdul Alim [16] based on Pitman asymptotic
relative efficiency using some well-known life distributions; namely, Linear failure rate family (LFR),
Makeham and Weibull family. Finally, the findings of the paper are applied to some medical real data
sets.

Appendix

Notations and abbreviations.

IFR Increasing failure rate.

IFRA Increasing failure rate average.

NBU New better than used.

NB(W)UC New petter (worse) than used in a convex
ordering.

UBA Used better than age.

UBAE Used better than age in expectation.

UBAL Used better than age in Laplace transform.

AIMS Mathematics Volume 7, Issue 8, 13733-13745.
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