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1. Introduction

Frame fields are useful technique in differential geometry for assessing curves and surfaces. The
most well-known frame field is the Frenet frame, but there are others, such as Darboux frame. In
addition to the Frenet frame, which is built on a curve with velocity and acceleration vectors, also the
Darboux frame, which is a natural moving frame created on a surface, is another important subject in
differential geometry. It is named after Jean Gaston Darboux, a French mathematician who produced
a four-volume collection of research between 1887 and 1896. Since then, the Darboux frame has had
many important repercussions, which have been studied, see for example [3, 4, 6, 13, 16]. The Bishop
frame is another approach for defining a moving frame that is clearly defined even when the second
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derivative of the curve has vanished, see [1]. Transporting an orthonormal frame parallel along a curve
is as simple as parallel transferring each element of the frame.

In E3, The envelope of the normal planes of ϕ is the focus surface or caustic of a curve ϕ in Euclidean
3-space. The study of a curve’s focal surface can yield useful geometric data about a certain curve, and
conversely. Darboux discovered how to calculate a curve’s evolutes, or the curves whose tangents are
normals of ϕ. Furthermore, he demonstrated (confirmed) that the evolutes foliate the focal surface of
ϕ or that all of these lay on the focal surface, see [4]. Let M : Ψ(ς, ω) be a surface associated with a
single real-valued function, and N(ς, ω) be Ψ’s unit normal vector. The parameterized description of
the focal surface is included

Ψ∗(ς, ω) = Ψ(ς, ω) + κ−1
j (ς, ω)N(ς, ω),

at which κ1 and κ2 are the Ψ’s principal curvature functions [5]. Some studies on focal surfaces can be
found here [7, 11, 12, 14, 17]. Within that work, we investigate the focal surfaces of a tubular surface
created by {µ1, µ2,B} and {T,N1,N2}. The mean and Gaussian curvatures of the focal surfaces are
calculated, and the conditions as these surfaces to become minimal and flat are determined.

2. Preliminaries

Let E3 be a three-dimensional Euclidean space. The metric is provided in within it as

〈, 〉 = du2
1 + du2

2 + du2
3,

where (u1, u2, u3) ∈ E3’s coordinate system.
Symbolize the moving Frenet frame along its regular curve ϕ = ϕ(ς) using {T,N,B} and curvature

functions κ and τ in E3, the Frenet formulae is given by [5]:
T(ς)
N(ς)
B(ς)


ς

=


0 κ(ς) 0
−κ(ς) 0 τ(ς)

0 −τ(ς) 0




T(ς)
N(ς)
B(ς)

 , (2.1)

where 〈B,B〉 = 1, 〈T,T〉 = 1, 〈N,N〉 = 1 and 〈T,N〉 = 〈T,B〉 = 〈N,B〉 = 0.
For any arbitrary curve ϕ(ς) with τ , 0 in E3, ψ’s type-2 Bishop frame is handed by [18]:

µ1(ς)
µ2(ς)
B(ς)


ς

=


0 0 −k1(ς)
0 0 −k2(ς)

k1(ς) k2(ς) 0



µ1(ς)
µ2(ς)
B(ς)

 , (2.2)

where k1 and k2 are the type-2 Bishop curvatures and the relation matrix given by
T(ς)
N(ς)
B(ς)

 =


sin υ(ς) − cos υ(ς) 0
cos υ(ς) sin υ(ς) 0

0 0 1



µ1(ς)
µ2(ς)
B(ς)

 ,
where υ(ς) = arctan

( k2
k1

)
and

k1 = −τ cos υ(ς), k2 = −τ sin υ(ς).
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For a curve ϕ(ς) lying on surfaceM = Ψ(ς, ω). Recognize the Darboux frame on the surface {T,G,N},
where G = N × T and N is just surface’s normal [6]. Then

T(ς)
G(ς)
N(ς)


ς

=


0 κg(ς) κn(ς)

−κg(ς) 0 τg(ς)
−κn(ς) −τg(ς) 0




T(ς)
G(ς)
N(ς)

 , (2.3)

where even the geodesic curvature κg, normal curvature κn, and relative torsion τg are defined as:

τg = 〈G′,N〉, κn = 〈T′,N〉, κg = 〈T′,G〉.

In matrix form, the B-Darboux frame’s variation equation {T,N1,N2} on the surface is as shown
below [6]: 

T(ς)
N1(ς)
N2(ς)


ς

=


0 %1(ς) %2(ς)

−%1(ς) 0 0
−%2(ς) 0 0




T(ς)
N1(ς)
N2(ς)

 , (2.4)

where %1 and %2 the B-Darboux curvatures are acquired in the following way:

%1 = κg sin υ + κn cos υ,
%2 = κn sin υ − κg cos υ.

Also, the relation matrix given by
T(ς)
N1(ς)
N2(ς)

 =


1 0 0
0 sin υ cos υ
0 − cos υ sin υ




T(ς)
G(ς)
N(ς)

 ,
such that angle υ between N and N1 is acquired around υ− υ0 =

∫
τg dt, for any arbitrary constant υ0.

LetM : Υ(ς, ω) be regular surface Υ in E3, then the Υ’s unit normal vector V can be written as

V =
Υς × Υω

‖Υς × Υω‖
,

where Υς =
∂Υ

∂ς
and Υω =

∂Υ

∂ω
. The Gaussian K and mean H curvature were also provided by [2,5,9]:

K =
`n − m2

EG − F2 ,

H =
En + G` − 2mF

2(EG − F2)
,

where E = ‖Υς‖
2, F = 〈Υς,Υω〉, G = ‖Υω‖

2, ` = 〈Υςς,V〉, m = 〈Υςω,V〉 and n = 〈Υωω,V〉.
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3. Obtaining the focal surface of tubular surface due to B-Darboux frame

Let ϕ(ς) be an arc-length-parameterized curve in E3. Then, the tubular surface due to the B-Darboux
frame has the parametrization [8, 10, 15]:

Ω(ς, ω) = ϕ(ς) + r[cosωN1(ς) + sinωN2(ς)], (3.1)

for which r = const. be spheres’s radius. The Ω’s velocity vectors are

Ως = [1 − r f (ς, ω)]T,
Ωω = (−r sinω)N1 + (r cosω)N2,

where f (ς, ω) = %1(ς) cosω + %2(ς) sinω. As a result, the trying to follow are the features of Ω’s first
fundamental form: E = (1 − r f )2, F = 0, G = r2. The Ω’s unit surface normal vector NΩ, from the
other hand, is acquired by

NΩ =
Ως ×Ωω

‖Ως ×Ωω‖
= − cosωN1 − sinωN2. (3.2)

Ω’s second order partial diffrentials are discovered as

Ωςς = (−r fς)T + %1(1 − r f )N1 + %2(1 − r f )N2,

Ωςω = (−r fω)T,
Ωωω = (−r cosω)N1 + (−r sinω)N2.

The second fundamental form coefficients are calculated using (3.2) and that the last three equations,
as shown below

` = − f (1 − r f ), m = 0, n = r.

Thus, the Gaussian KΩ and mean curvature HΩ functions are calculated as

KΩ = −
f

r(1 − r f )
, HΩ =

1 − 2r f
2r(1 − r f )

. (3.3)

Corollary 3.1. The tubular surface M : Ω(ς, ω) due to the B-Darboux frame defined by (3.1) has a
constant Gaussian curvature iff

f =
rc

1 + r2c
,

for some real constant c.

Corollary 3.2. The tubular surface M : Ω(ς, ω) due to the B-Darboux frame defined by (3.1) has a
constant mean curvature iff

f =
2rc − 1

2r(1 + rc)
,

for some real constant c.

Corollary 3.3. The tubular surface M : Ω(ς, ω) due to the B-Darboux frame defined by (3.1) is a
(KΩ,HΩ)-Weingarten surface.
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Corollary 3.4. The tubular surface M : Ω(ς, ω) due to the B-Darboux frame defined by (3.1) is a
(KΩ,HΩ)-linear Weingarten surface iff

f =
rc + c2

2(c1 + c2 − rc)
,

where c1, c2 and c are not all zero real numbers.

We now concentrate on the parametrization of M∗ focal surface of M by using (3.3) as well as

the equation κ j = HΩ ±

√
H2

Ω
− KΩ, j = (1, 2), yields the principal curvature performs the following

functions
κ1 =

1
r
, κ2 = −

f
1 − r f

. (3.4)

Through using Eq (3.4) we defineM∗ as

Ω∗(ς, ω) = ϕ(ς) +
1
f

[
cosωN1(ς) + sinωN2(ς)

]
, (3.5)

where f (ς, ω) = %1(ς) cosω + %2(ς) sinω. The Ω∗’s velocity vectors are

Ω∗ς = −
1
f 2

[
fς cosω

]
N1 −

1
f 2

[
fς sinω

]
N2,

Ω∗ω = −
1
f 2

[
fω cosω + f sinω

]
N1 −

1
f 2

[
fω sinω − f cosω

]
N2.

As a result, the features of Ω∗’s first fundamental form:

E∗ =
f 2
ς

f 4 , F∗ =
fς fω
f 4 , G∗ =

f 2
ω + f 2

f 4 .

The Ω∗’s unit surface normal vector N∗
Ω

, from the other hand, is acquired by

N∗Ω∗ = −T. (3.6)

Ω∗’s second order partial diffrentials are discovered as

Ω∗ςς = −

( fς
f

)
T −

( fς
f 2

)
ς

cosωN1 −

( fς
f 2

)
ς

sinωN2,

Ω∗ςω =

[
−

( fς
f 2

)
ω

cosω +

( fς
f 2

)
sinω

]
N1 −

[( fς
f 2

)
ω

sinω +

( fς
f 2

)
cosω

]
N2,

Ω∗ωω = −
1
f 2

[
fω cosω + f sinω

]
ω

N1 −
1
f 2

[
fω sinω − f cosω

]
ω

N2.

The second fundamental form coefficients are calculated using (3.6) and that the last three equations,
as shown below

`∗ =
fς
f
, m∗ = 0, n∗ = 0.

Thus, the Gaussian K∗
Ω∗

and mean curvature H∗
Ω∗

functions are calculated as

K∗Ω∗ = 0, H∗Ω∗ =
f ( f 2

ω + f 2)
2 fς

. (3.7)
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Theorem 3.1. The focal surface M∗ defined by (3.5) via B-Darboux frame is flat surface.

Theorem 3.2. The tubular surfaceM has no minimal focal surfaceM∗ defined through it.

Corollary 3.5. Let M∗ be focal surface (3.5) via B-Darboux frame in E3. Then the following is
satisfied:

(1)M∗’s ς-parameter curves not possible asymptotic curves.

(2)M∗’s ω-parameter curves are asymptotic curves.

Corollary 3.6. Let M∗ be focal surface (3.5) via B-Darboux frame in E3. Then the following holds:

(1)M∗’s ς-parameter curves are geodesic curves iff f fςς − 2( fς)2 = 0.

(2)M∗’s ω-parameter curves are not geodesic curves.

Example 3.1. Let ϕ be a circular helix parameterized as

ϕ(ς) =

(
cos

(
ς
√

2

)
, sin

(
ς
√

2

)
,
ς
√

2

)
.

Then, the curve’s Darboux frame and curvatures κg, κn and τg are dictated by

T(ς) =
1
√

2

(
− sin

(
ς
√

2

)
, cos

(
ς
√

2

)
, 1

)
,

G(ς) =
1
√

2

(
− cos

(
ς
√

2

)
+

1
√

2
sin

(
ς
√

2

)
, sin

(
ς
√

2

)
−

1
√

2
cos

(
ς
√

2

)
,

1
√

2

)
,

N(ς) =
1
√

2

(
cos

(
ς
√

2

)
+

1
√

2
sin

(
ς
√

2

)
,− sin

(
ς
√

2

)
+

1
√

2
cos

(
ς
√

2

)
,

1
√

2

)
,

κg =
1

2
√

2
, κn =

1

2
√

2
, τg =

1
2
.

Now,

υ =

∫ ς

0
τg dt =

∫ ς

0

1
2

dt =
ς

2
.

So, the B-Darboux curvatures are calculated as

%1 =
1

2
√

2

[
sin

(
ς

2

)
+ cos

(
ς

2

)]
,

%2 =
1

2
√

2

[
sin

(
ς

2

)
− cos

(
ς

2

)]
.
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Then the B-Darboux frame are given as

T(ς) =
1
√

2

(
− sin

( ς
√

2

)
, cos

( ς
√

2

)
, 1

)
,

N1(ς) =
1
√

2

[
cos

( ς
√

2

)[
cos

(ς
2

)
− sin

(ς
2

)]
+

1
√

2
sin

( ς
√

2

)[
cos

(ς
2

)
+ sin

(ς
2

)]
,

sin
( ς
√

2

)[
cos

(ς
2

)
− sin

(ς
2

)]
−

1
√

2
cos

( ς
√

2

)[
cos

(ς
2

)
+ sin

(ς
2

)]
,

1
√

2

[
cos

(ς
2

)
+ sin

(ς
2

)]]
N2(ς) =

1
√

2

[
cos

( ς
√

2

)[
cos

(ς
2

)
+ sin

(ς
2

)]
−

1
√

2
sin

( ς
√

2

)[
cos

(ς
2

)
− sin

(ς
2

)]]
,

sin
( ς
√

2

)[
cos

(ς
2

)
+ sin

(ς
2

)]
−

1
√

2
cos

( ς
√

2

)[
cos

(ς
2

)
− sin

(ς
2

)]
,−

1
√

2

[
cos

(ς
2

)
− sin

(ς
2

)]]
.

As a result and taking r =
√

2, the parameterization of the tubular surfaceM1 over the curve ϕ can be
compiled in Darboux frame as (see Figure 1)

Ω1(ς, ω) =

[
cos

( ς
√

2

)[
1 − cosω + sinω

]
+

1
√

2
sin

( ς
√

2

)[
cosω + sinω

]]
,

sin
( ς
√

2

)[
1 − cosω + sinω

]
−

1
√

2
cos

( ς
√

2

)[
cosω + sinω

]
,

1
√

2

[
ς + cosω + sinω

]]
.

The tubular surfaceM2 over the curve ϕ via B-Darboux frame can be given as (see Figure 2)

Ω2(ς, ω) =

[
cos

( ς
√

2

)
+

[
cos

(ς
2

)
− sin

(ς
2

)][
cosω cos

( ς
√

2

)
−

1
√

2
sinω sin

( ς
√

2

)]
+

[
cos

(ς
2

)
+ sin

(ς
2

)][
sinω cos

( ς
√

2

)
+

1
√

2
cosω sin

( ς
√

2

)]
,

sin
( ς
√

2

)
+

[
cos

(ς
2

)
− sin

(ς
2

)][
cosω sin

( ς
√

2

)
−

1
√

2
sinω cos

( ς
√

2

)]
−

[
cos

(ς
2

)
+ sin

(ς
2

)][
sinω sin

( ς
√

2

)
+

1
√

2
cosω cos

( ς
√

2

)]
,

1
√

2

[
ς + cos

( √2ω + ς
√

2

)
− sin

( √2ω − ς
√

2

)]]
.

The focal surfaceM∗1 ofM1 via Darboux frame can be given as (see Figure 3)

Ω∗1(ς, ω) =

[√
2 sin

( ς
√

2

)
+ cos

( ς
√

2

)[3 sinω − cosω
cosω + sinω

]
,−
√

2 cos
( ς
√

2

)
+ sin

( ς
√

2

)[3 sinω − cosω
cosω + sinω

]
,
ς + 2
√

2

]
.
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The focal surfaceM∗2 ofM2 via B-Darboux frame can be given as (see Figure 4)

Ω∗2(ς, ω) = cos
( ς
√

2

)
+

1

sin
(ς
2

)[
cosω + sinω

]
+ cos

(ς
2

)[
cosω − sinω

][[ cos
(ς
2

)
− sin

(ς
2

)][
cosω cos

( ς
√

2

)
−

1
√

2
sinω sin

( ς
√

2

)]
+

[
cos

(ς
2

)
+ sin

(ς
2

)][
sinω cos

( ς
√

2

)
+

1
√

2
cosω sin

( ς
√

2

)]]
,

sin
( ς
√

2

)
+

1

sin
(ς
2

)[
cosω + sinω

]
+ cos

(ς
2

)[
cosω − sinω

][[ cos
(ς
2

)
− sin

(ς
2

)][
cosω sin

( ς
√

2

)
−

1
√

2
sinω cos

( ς
√

2

)]
−

[
cos

(ς
2

)
+ sin

(ς
2

)][
sinω sin

( ς
√

2

)
+

1
√

2
cosω cos

( ς
√

2

)]]
,

ς
√

2
+

2
[

cos
( √

2ω+ς
√

2

)
− sin

( √
2ω−ς
√

2

)]
sin

(ς
2

)[
cosω + sinω

]
+ cos

(ς
2

)[
cosω − sinω

]].

Figure 1. M1 due to Darboux frame.

Figure 2. M2 via B-Darboux frame.
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Figure 3. Focal surfaceM∗1 via Darboux frame.

Figure 4. Focal surfaceM∗2 via B-Darboux frame.

4. Obtaining the focal surface of tubular surface due to type-2 Bishop frame

Let ϕ : (x, y)→ E3 be a finite-length smooth unit speed curve that is embedded in E3 topologically.
The way to allocate Nϕ of the ϕ(x, y)’s normal bundle in E3 is innately diffeomorphic to the direct
product (x, y) × E2 due to transcription together with regard to the resulting connection normally. For
a relatively tiny r > 0, the tube of radius r about the curve ϕ is the set (see [10]):

Tr(ϕ) = {expϕ(ς) u|u ∈ Nϕ(ς), ‖u‖ = r, x < ς < y}.

In E3, the tube Tr(ϕ) is a smooth surface for sufficiently small r > 0. Using {µ1, µ2,B}, we can write the
tube surface as shown below.

M : Φ(ς, ω) = ϕ(ς) + r[cosωµ2(ς) + sinωB(ς)]. (4.1)

The following are the Φ’s derivative formulations for type-2 Bishop frame partial differentiation with
respect to ς and ω.

Φς = [1 − rk1 sinω]µ1 + (rk2 sinω)µ2 − (rk2 cosω)B,
Φω = −(r sinω)µ2 + (r cosω)B.

As a consequence, the features of Φ’s first fundamental form

E = (1 − r f )2, F = 0, G = r2.
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From the other hand, the Φ’s unit surface normal vector NΦ is acquired by

NΦ = − cosωµ2 − sinωB. (4.2)

Φ’s second order partial diffrentials are discovered as

Φςς = [rk′1 sinω − rk1k2 cosω]µ1 + [rk′2 sinω − rk2
2 cosω]µ2 − [k1 + rτ2 sinω + rk′2 cosω]B,

Φςω = (rk1 cosω)µ1 + (rk2 cosω)µ2 + (rk2 sinω)B,
Φωω = −(r cosω)µ2 − (r sinω)B.

The explanatory variables of the second fundamental form were also calculated using (4.2) and the last
three equations, which are shown below

` = rk2
2 + rk2

1 sinω + k1 sinω, m = −rk2, n = r.

Thus, the Gaussian KΦ and mean curvature HΦ are calculated as

KΦ =
k1 sinω

r(1 + rk1 sinω)
, HΦ =

1 − 2rk1 sinω
2r(1 + rk1 sinω)

. (4.3)

The principal curvatures κ1 and κ2 of Φ are the root of

det(WII − κWI) = 0,

where WI =

(
E F
F G

)
, WII =

(
` m
m n

)
. Then the Φ’s principal curvatures are

κ1 =
1
r
, κ2 =

k1 sinω
1 + rk1 sinω

. (4.4)

Corollary 4.1. The tubular surfaceM : Φ(ς, ω) due to the type-2 Bishop frame defined by (4.1) has a
constant Gaussian curvature iff

κ1 =
rc

(1 − r2c) sinω
,

for some real constant c.

Corollary 4.2. The tubular surfaceM : Φ(ς, ω) due to the type-2 Bishop frame defined by (4.1) has a
constant mean curvature iff

κ1 =
2rc − 1

2r(1 − rc) sinω
,

for some some real constant c.

Corollary 4.3. The tubular surface M : Φ(ς, ω) due to the type-2 Bishop frame defined by (4.1) is a
(KΦ,HΦ)-Weingarten surface.

Corollary 4.4. The tubular surface M : Φ(ς, ω) due to the type-2 Bishop frame defined by (4.1) is a
(KΦ,HΦ)-linear Weingarten surface iff

κ1 =
2rc − b

2(a + rb + rc) sinω
,

where a, b and c are not all zero real numbers.
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Now, by using (4.4) we can derive the focal surfaceM∗ ofM from the definition of the focal surface
of a given surface

Φ∗(ς, ω) = ϕ(ς) −
1

k1 sinω

[
cosωµ2(ς) + sinωB(ς)

]
. (4.5)

The Φ∗’s velocity vectors are

Φ∗ς = −
1

k2
1 sinω

[
k′1 cosω − k1k2 sinω

]
µ2 +

1
k2

1 sinω

[
k′1 sinω + k1k2 cosω

]
B,

Φ∗ω =
[ 1
k1 sin2 ω

]
µ2.

As a consequence, the following are the parts of Φ’s first fundamental form:

E∗ =
k′1

2 + k2
1k2

2

k4
1 sin2 ω

, F∗ =
k′1 cosω − k1k2 sinω

k3
1 sin3 ω

, G∗ =
1

k2
1 sin4 ω

.

The Φ∗’s unit surface normal vector N∗
Φ

, from the other hand, is acquired by

N∗Φ∗ = −µ1. (4.6)

Φ∗’s second order partial diffrentials are discovered as

Φ∗ςς =
[k′1 sinω + k1k2 cosω

k2
1 sinω

]
µ1 +

[[k′1 cosω − k1k2 sinω
k2

1 sinω

]
ς

+ k2

[k′1 sinω + k1k2 cosω
k2

1 sinω

]]
µ2

−

[[k′1 sinω + k1k2 sinω
k2

1 cosω

]
ς
− k2

[k′1 cosω − k1k2 sinω
k2

1 sinω

]]
B,

Φ∗ςω =
[ −k′1
k2

1 sin2 ω

]
µ2 +

[ −k2

k1 sin2 ω

]
B,

Φ∗ωω =
[−2 cosω

k1 sinω

]
µ2.

The second fundamental form coefficients are calculated using (4.6) as shown below

`∗ = −
[k′1 sinω + k1k2 cosω

k2
1 sinω

]
, m∗ = 0, n∗ = 0.

Thus, the Gaussian K∗
Φ∗

and mean curvature H∗
Φ∗

functions are calculated as

K∗Φ∗ = 0, H∗Φ∗ = −
k3

1 sinω(k′1 sinω + k1k2 cosω)

2
[
k′1

2 + k2
1k2

2 −
(
k′1 cosω − k1k2 sinω

)2
] . (4.7)

Theorem 4.1. The focal surface M∗ defined by (4.1) via type-2 Bishop frame is flat surface.

Theorem 4.2. The tubular surfaceM has no minimal focal surfaceM∗ defined through it.

Corollary 4.5. Let M∗ be focal surface (4.5) via type-2 Bishop frame in E3. Then the following is
satisfied:

(1)M∗’s ς-parameter curves are not asymptotic curves.
(2)M∗’ ω-parameter curves are asymptotic curves.
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Corollary 4.6. Let M∗ be a focal surface (4.5) via type-2 Bishop frame in E3. Then the following
holds:

(1)M∗’s ς-parameter curves are geodesic curves iff k′1 + k1k2 cotω = 0.
(2)M∗’s ω-parameter curves are not geodesic curves.

Example 4.1. Let ϕ be a curve parameterized as ϕ(ς) =

(
cos

(
ς
2

)
, sin

(
ς
2

)
,
√

3 ς
2

)
. Then, the curve’s

Frenet invariants are dictated by

T(ς) =
1
2

(
− sin

(
ς

2

)
, cos

(
ς

2

)
,
√

3
)
,

N(ς) =

(
− cos

(
ς

2

)
,− sin

(
ς

2

)
, 0

)
,

B(ς) =

 √3
2

sin
(
ς

2

)
,−

√
3

2
cos

(
ς

2

)
,

1
2

 ,
κ =

1
4
, τ =

√
3

4
.

Now, υ =

∫ ς

0
κ dt =

∫ ς

0

1
4

dt =
ς

4
. So, the type-2 Bishop curvatures are calculated as

k1 = −

√
3

4
cos

(
ς

4

)
, k2 = −

√
3

4
sin

(
ς

4

)
.

Then the type-2 Bishop frame are given as

µ1(ς) =

[
− cos

(
ς

2

)
cos

(
ς

4

)
−

1
2

sin
(
ς

2

)
sin

(
ς

4

)
,− sin

(
ς

2

)
cos

(
ς

4

)
+

1
2

cos
(
ς

2

)
sin

(
ς

4

)
,

√
3

2
sin

(
ς

4

)]
,

µ2(ς) =

[
− cos

(
ς

2

)
sin

(
ς

4

)
+

1
2

sin
(
ς

2

)
cos

(
ς

4

)
,− sin

(
ς

2

)
sin

(
ς

4

)
−

1
2

cos
(
ς

2

)
cos

(
ς

4

)
,−

√
3

2
cos

(
ς

4

)]
,

B(ς) =

 √3
2

sin
(
ς

2

)
,−

√
3

2
cos

(
ς

2

)
,

1
2

 .
Taking r = 2, the parameterization of the tubular surface M over ϕ can be compiled in type-2 Bishop
frame as (see Figure 5)

Φ(ς, ω) =

{
sin

(ς
2

)[ √3
2

+ cosω cos
(
ς

4

)]
+ cos

(ς
2

)[
1 − cosω sin

(
ς

4

)]
,

sin
(ς
2

)[
1 − cosω sin

(
ς

4

)]
− cos

(ς
2

)[ √3
2

+ cosω cos
(
ς

4

)]
,

1
2

[√
3 ς − 2

√
3 cosω cos

(
ς

4

)
+ 1

]}
.
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The focal surfaceM∗ ofM via type-2 Bishop frame can be given as (see Figure 6)

Φ∗(ς, ω) =

{
cos

(ς
2

)[
1 +

4
√

3
cotω tan

(
ς

4

)]
− 2 sin

(ς
2

)[
cscω sec

(
ς

4

)
+

1
√

3
cotω

]
,

sin
(ς
2

)[
1 +

4
√

3
cotω tan

(
ς

4

)]
+ 2 cos

(ς
2

)[
cscω sec

(
ς

4

)
+

1
√

3
cotω

]
,

√
3 ς
2

+ 2 cscω
[
1 −

2
√

3
cos

(
ς

4

)]}
.

Figure 5. M due to type-2 Bishop frame.

Figure 6. M∗ via type-2 Bishop frame.

5. Conclusions

The focal surface of a space curve in Euclidean space is the equivalent of the evolute of some well
plane curve that is a smooth curve far from the plane curve’s inflection points. It is the critical value
of a Lagrangian map and the local bifurcation set of the family of distance squared functions on a
planar curve. As a result, it solely possesses Lagrangian singularities. We may deduce that for places
corresponding to ordinary vertices of a plane curve, the evolute possesses an ordinary cusp singularity.
The tubular surfaces in E3 are supplied with regard to the B-Darboux frame and type-2 Bishop frame.
The focal surfaces of these tubular surfaces are then specified. We obtain some results for these kinds
of surfaces as Weingarten, flat, linear Weingarten conditions, and we show that in E3, a tubular surface
has no minimal focal surface.
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