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Abstract: By the principle of differential subordination and the g-derivative operator, we introduce
the g-analog SP? _(1;a,B,7y) of certain class of analytic functions associated with the generalized
Pascal snail. Firstly, we obtain the coefficient estimates and Fekete-Szegd functional inequalities
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1. Introduction
Recall that the complex valued mapping L, 5, : D — C is defined by

3 2-2y)z
Lopy(2) = d— a0 -5 (1.1)

D M@y,
n=1
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where

Q-2)32 (5F) e, if azp,

1.2
2-2y) 2.5 na 7", if =4, (1.2)

Ml’l(a’ﬁ’ 7) = Ml’l = {

forO<a,B<1(af # +1)and 0 <y < 1, whose image is in the domain A(«, 3, y) with the boundary

_ 2, N2 22
GA(a,ﬁ,7)={w=u+vi€C: 2 =Y+ (@+ A +v)] =(M2+V2)2—M}, (1.3)

(1 + aB)? (1 - ap)?

that is called the generalized Pascal snail [16] (see Figures 1 and 2). It is well known that Pascal snail is
the inversion of conic sections with respect to a focus. Note that M| = 2—-2y and M, = 2-2y)(a +J).
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Figure 1. The image of D under L, 3, (2).
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Figure 2. The image of D under L, 3, (2).
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Define by (A the class of analytic functions f which are expanded with the Taylor-Maclaurin’s series
=2+ ) az (1.4)
n=2

in the open unit disk D = {z € C :| z |< 1}. Further, if f € A is univalent in D, then we denote such
class of functions by S. For two analytic functions F and G in D, if there has a Schwarz function
w € Q with w(0) = 0 and | w(z) |< 1 for z € D, such that F(z) = G(w(z)), then F is subordinate to G in
D, i.e. F < G. In addition, if G € S, then there exists the following equivalent relation [20]:

F <G & F(0) = G(0) and F(D) c G(D).

Besides, if w(z) = z, then F is majorized by G in D, i.e. F < G.

Lately, the study of the g-calculus has riveted the rigorous consecration of researchers. The great
attention is due to its gains in many areas of mathematics and physics. The significance of the g-
derivative operator O, is quite evident by its applications in the study of several subclasses of analytic
functions. Initially, in 1990, Ismail et al. [14] gave the idea of g-starlike functions. Nevertheless, a
firm base of the usage of the g-calculus in the context of geometric function theory was efficiently
established (refer to the work by Purohit and Raina [24]), and the use of the generalized basic
(or g-) hypergeometric functions in geometric function theory was made by Srivastava (see [25] for
more details). After that, the extraordinary studies have been done by many mathematicians, which
offer a significant part in the encroachment of geometric function theory (see [27-31,33]).

For f € A, its g-derivative or the g-difference D, f(z) is given by

D,f@) =1+ Y [nla,d™, 0<q<l,
n=2

where the g-derivative operator D, f(z) (refer to [15]) of f is defined by

fQ-fg2)
D, f(2) := d-gz ° z#0,0<g<1,
q) \& )
f(o)a Z:O’

provided that f”(0) exists, and the g-number [n], is exactly [¢], when ¢ = n € N, with

1-¢°
(s, = l—q_; for ¢ € C,
i0d for ¢=neN.

Note that D, f(z) — f’(z) when ¢ — 17, where f” is the ordinary derivative of f.
For f € A, we recall the symmetric determinant matrix 7 ;(n) given in [9] as below:

a, pyl 0 Aptj-1
an+1 a e ap+ j
T i(n) =
an+j—l an+j e ay
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Here, we also point out that

a daz
T22) =] o =a; - a;
and
1 a, as
Ts()=|ay 1 a|=1+2a5a;—2a;-aj.
as dp 1

Let the image of the analytic function g(z) = -, b,z" in D belong to Q C D. In 1914, Harald
Bohr [10] showed that the inequality " 1b,z"| < 1 in the disc Ds = {z]|z] < ¢} with § > %. Because
of the works of Weiner, Riesz and Schur, we know that " = % is best number and called Bohr radius
that named after Niels Bohr, the founder of quantum theory [23]. Further, the corresponding inequality

(the called Bohr inequality) can be denoted by

d()  lallzl", laol) < d(f(0),0f(D)),

n=0

for |z| < ro with respect to the Euclidean distance d. The largest radius rq is called the Bohr radius
for the corresponding class. For more details for the Bohr radius and Bohr inequality, we can refer
to [2,6,7,12,17].

Recently, Kanas and Masih [16] considered the analytic representation of the domain by a
generalized Pascal snail. Besides, Allu and Halder [5] investigated Bohr radius for certain classes
of starlike and convex univalent functions (also refer to [8, 11]). Thomas et al. [9, 34] studied
the symmetric Toeplitz determinants for starlike and close-to-convex functions. Stimulated by
recent studies [1, 3, 4, 18, 25, 26], we introduce and study certain new subclasses of analytic
functions associated with the generalized Pascal snail involving g-derivative operator, and obtain
the corresponding upper estimates of the initial coefficients a, and a3 of Taylors series and Fekete-
Szego functional inequalities for functions of the new subclasses given in Definition 1.1. In addition,
we characterize the Bohr radius problems for certain reduced version of this class. Srivastava and
Porwal [32] ever investigated the coefficient inequalities of Poisson distribution series in conic domain
related to uniformly convex, k-spiralike and starlike functions. Along this line, Oladipo [21] estimated
the bound on the first few coeflicients and classical Fekete-Szego problem for Poisson and neutrosophic
Poisson distribution series connected with Chebyshev polynomials. As an application, all our results
are almost generalized into the new class related with the neutrosophic Poisson distribution series.

Now, by term of the unified subordination technique by Ma-Mind [19], we introduce the following
subclass of analytic and univalent functions associated with the generalized Pascal snail and g-
derivative operator.

Definition 1.1. Let L, 3, be given by (1.1). A function f € Ais said to be in the class SPznaﬂ(/l; a,fB,y)
if the following subordination:

ZZ)qf (2)
(1 -Df()+ Az

<1+ Lypy(2) (1.5)

holds forz € D, where 0 < 4 < 1.

AIMS Mathematics Volume 7, Issue 7, 13423—-13441.



13427

Note that by specializing the parameter A, we get the reduced classes below:
(1) 8P, 8,7) = SP (@, fy) = {f € A TLE < 1+ Log, D),

snai

(2) S0, 7) = RP (@, B,7) = (] € A: Dyf (D) < 1+ Lagy(2)).

Denote by % the class of all analytic and univalent functions /(z) of the following form:

h@) =1+ ) e, z€D, (1.6)

n=1
satisfying R [A(z)] > 0 and 2(0) = 1. To proceed our results, we are ready for some indispensable
Lemmas given below.

Lemma 1.1. [13] Let h(z) € P. Then the sharp estimates
lcnl€2, neN,
are true. In particular, the equality holds for all n for the following function:

1+z =
h(z) =——=1 27"

Lemma 1.2. [19] If h(z) € P, then, for any complex k € C,
lcy — kc?| < 2max {1, 2« — 1]},
and the sharp result holds for the functions

1+z 1+7
h(z)=—— or h)= —, z€D.
1-z 1-z2

Lemma 1.3. [19] Assume that the function h(z) € P and k € R. Then
—4k+2, if k<0,
Icz—Kc%IS 2, if 0<k<l,
4k — 2, if k>1.
For k < 0 or k > 1, the inequality holds literally if and only if h(z) = i—f; or one of its rotations. If
0 < k < 1, the inequality holds literally if and only if h(z) = }i—; or one of its rotations. In particular,
if k = 0, then the sharp result holds for the following function:

1 n\l+z I n\l1-z
W@ =(=+2) e[z -0) =% o<p<t,
@ (2+2)1—z+(2 2)l+z g

or one of its rotations. If k = 1, then the sharp result holds for the following function:
1 1 n\1+z (1 n\l-z
— =+ |—+|z—-z]—, 0<np<],
Q) (2 2)1—z (2 2)1+z 7
or one of its rotations. If 0 < k < 1, then the upper bound is sharp as follows:

1
ley — kel +Klelf <2, 0<k< X

and

1
|c2—ch|+(1 —KeiF <2, > <k<l.
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2. Coefficient bounds and Fekete-Szego inequalities for f € SP? (1;a,8,7)

snail

Denote the function & € P by

_1+u(z)_ = "
h(z) = 1_M(Z)_1+chz.

n=1

Then, from (1.6) we derive that

h(z)—1 ¢ lo C% , [c3 e C? 3
_ _a (e _a G_2% S)53,. . .eDp 2.1
“ = T 2”(2 1) T\2 Tyt TEPP 21

such that u(z) € Q. By (1.1) and (2.1), we imply that

Lo pyu(z)) =

M]C] + M1C2+(M2_M1)C% 2
2 ‘T2 4 ¢

Mic;  (My—Mycyer  (My=2M; + M3)c;
s > + :

]z3+..., zeD. (2.2)

Throughout our study unless otherwise stated we note that
M, =2-2y>0 and M;=Q2-2y)a+p).

Now, we characterize the functional estimates for the class SP‘SIMH(A; a,3,7v) and establish the next
theorems for the coeflicient bounds and the corresponding Feteke-Szegd problems.

Theorem 2.1. If f(z) given by (1.4) belongs to the class SP?! (A;a,pB,v), then

snail

M,
< — 2.
ol < o 2.3)

and

M1+|M2—M1|+ (I—A)M%
[Bl;,+1-1 ([Bl,+A-D((2],+2-1)

(2.4)

las| <

Proof. Assume that f € SP?! _(1;a,B,7y). Then, there exists a Schwarz function u(z) € Q so that

Zqu ()
(I=-Df(2)+ Az

=1+ Lyp,(u(2)). (2.5)

Since

Zqu(Z) _
(1-Df(@)+ Az

for f € A, combing (2.5) and (2.6), with (2.2) we get that

L+ (121, + A= 1) axz +[([3], + A= 1) a3 = (1 = D([2], + = D3] + -+ (2.6)

M1C1
2

= (121, + 1 - 1)a
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and
Mic (M, — M,))c?
; 2 4 7 ! :([3]q+/l—1)a3—(1_/1)([2]q+/1_1)a§,
such that
M]C]
0 =—
TRl + A1)
and
2M ¢y + (My — My)c; (1 - M3
as =

+ .
4(3],+1-1) 43l +A-D(2];,+2-1)
By Lemma 1.1 we assert that Theorem 2.1 holds true.

By taking A = 0 in Theorem 2.1, we deduce the corollary below.

Corollary 2.1. If f(z) given by (1.4) belongs to the class SP! _(a,B,v), then

snai

4 < =201
a
TRy, -1
and
M, +|M,— M M?
|(13| S 1 | 2 l|+ 1

3], -1 (131, - HA2l, - 1
By taking A = 1 in Theorem 2.1, we deduce the corollary below.

Corollary 2.2. If f(z) given by (1.4) belongs to the class RP? _(a,B,y), then

M,
lay| < —

(2],
and

M, +|M; — M| N M}
(3], (31,021,

las| <

Theorem 2.2. If f(z) given by (1.4) belongs to the class SP? (A;a,pB,7), then

snail

M, max {1,12p — 1]}
[Bl,+4-1

2
laz — /Jazl <

holds for u € C, where

_ Bl +A-DM, M, - M, 1 -9M,

2([2], + A - 1)? oM, 2(2],+A-1)

2.7)

(2.8)

(2.9)
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Proof. For u € C, by using (2.7) and (2.8), we infer that

as — pa; = ﬁ (cz - pc%) , (2.10)
where
_ p(3lg +A-=DM, M, -M,  (1-DM,
2(12], + A - 1)? 2M, 2(2],+A-1)
Hence, we apply Lemma 1.2 to Eq (2.10) and show that Theorem 2.2 holds true. m|

Corollary 2.3. If f(z) given by (1.4) belongs to the class SP? . («,p,7y), then

snail

M; max {1,[2p - 1]}

2
- <
|as /lazl = [S]q 1
holds for u € C, where
_ KBl =DMy My -M, M,
2([2], - 1)? 2M, 2([21, - 1)

Corollary 2.4. If f(z) given by (1.4) belongs to the class RP? (a,pB,7y), then

snail

M, max {1, 2p - 1}

2
las — paz| <

(31,
holds for u € C, where
_ HBlgMy - My - M,
-2 2M,

If we let u € R, then we are based on the proof of Theorem 2.2 and Lemma 1.3 to establish the
Fekete-Szego functional inequality for SP? . (1; ., B, 7).

snai

Theorem 2.3. For u € R, if f(z) € A belongs to the class SP? . (A;a,p,7y), then

snail
Mi(=2p+1)
Bt > H< N,
2 M
las —pas| < e NiSu<Ny,
Mi(2p-1)
Bl M= R,

where p is the same as in Theorem 2.2,

(21 + A= D)X (M, — M) N I-D2];+1-1)
(Bl +A- DM 3], +1-1

1

and

(21, + A= DX(Ma + M) N (I-D(2];+1-1)
(Bl +A- DM 3], + 11

2
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In addition, we fix

_ @l A= DM (1= D(2)+ A1)
C (Bl + - DM [3],+4-1

3

Then, each of the following inequalities holds:
(A) For p € [Ny, N3],

210([2]q+ﬂ—1)2a|2< M
Bl +A-DM; 2 T [Bl,+4-1

2
laz — /lazl +

(B) FO}",L[ € [N3,N2],

2(1-p)([2l,+A-1)* M,
lay|” £ ——.
(B3], + 1 — DM, Bl +1—1

2
las — pas| +

Proof. For u € R and p in Theorem 2.2, if we let p < 0, then we know that
M3l +A-DMy  My—M,  (1- )M,

2([2],+ A—1)? oM, 22l +A-1) "

and obtain

C 2l - DMy = M) (1=-D([2];+2-1) o

(3], + A — DM? BT — Ni-
Similarly, we get that for p > 1,
5 ([2], + A= DX (M, + M) N (I=-D(2],+a-1) — N,
([31, + A — DHM? 3], +1-1
and for p = %,

(2l +1- 1)2M2 (I-D(2];+2-1) .
M= + = 83.
([31, + A — DHM? 3], +1-1

Therefore, together with Lemma 1.3 and Eqgs (2.7) and (2.10), we can prove that Theorem 2.3

holds true. m|
Corollary 2.5. For i € R, if f(z) € A belongs to the class SP! . (a,p,7y), then
%’ <Ny,
las —,ua%l < [;]wﬁ, N1 <u <N,
ek s,

where p is the same as in Corollary 2.3,

_ (@l - 1)*(M, — M) N 2], -1
(131, - DM 3141

1
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and

(121, = D*(Ma + M) N 2], -1

Ny = .
? (31 - DM% (31, -1

In addition, we fix

(2, - 1My 2], 1
Bl - LM " Bl - 1

3

Then, each of the following inequalities holds:
(A) For p € [Ny, N3],

2p([2]q - 1)2 |Cl |2 < Ml
2

— 2 —_— .
A TR A R

(B) For p € [N3, 8],

2(1-p)([21, - 1* M,
lay|” < .
(31, - HM, [3], -1

2
laz — /,t612| +

Corollary 2.6. For i € R, if f(z) € A belongs to the class RP? _(«.,B,7y), then

snai

M o,
laz — uad| < []‘34—];, NI Su <Ny,
MO,
where p is the same as in Corollary 2.4,
[212(M, — M) 212(M, + M)
1= ————— and Ny=———7"—7—
[31,M [31,M]
In addition, we put
21 M
N3 = 1 i
[31,M;

Then, each of the following inequalities holds:
(A) FOr,U € [Nl’ N3],

2p121; wff < M,

Bl,M, > T3],

2
laz — ,uazl +

(B) For j € [N3,8,],

2(1 - p)[2]?
(1-pl ]qmz'2 < M,

laz — a2|+— .
3THOIT TR Y 31,

AIMS Mathematics Volume 7, Issue 7, 13423—-13441.
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3. Symmetric Toeplitz determinants for SP? _(1;a,B,7y)

snail

Now we pay attention to the symmetric Toeplitz determinants 7,(2) and 73(1) for the class
SP? (A, a,B,7y). From (2.7) and (2.8), in view of Lemma 1.1, we easily obtain the theorem below.

snail

Theorem 3.1. If f(z) given by (1.4) belongs to the class SP? .(A;a,B,v), then

M, + M, — M| (1 - )M} ]2

Bl,+A-1 (Bl +1- D2, +A-1)

2

M
| 722) | < -
([2],, +1-1)

Corollary 3.1. If f(z) given by (1.4) belongs to the class SP? . (a,B,7y), then

M? M, +\M, - M M?
)| < | L+ My — M| 1

2
QL-0 | Bl -1 +mn4mm—J'

Corollary 3.2. If f(z) given by (1.4) belongs to the class RP? _(a,p,7v), then

snail

M} M, + M, — M|]?
|%@|s[m+ 30

Based on the proof of Theorem 2.2 and Lemma 1.2, we consider the symmetric determinant 75(1)
for SP? (A;a,pB,7y) and establish the next theorem.

snail

Theorem 3.2. If f(z) € A belongs to the class SP? (1;a,B,y), then

snail

_ 2
mmm@+memm—m%P M, + My~ M| (1 - )M

Bl + -1 Bl,+A-1 (Bl + - D2, +A-1)
holds, where

([Blg+A-DM, M, - M, (1 -HM,

(2], + A —1)* 2M, _2([2]q+/l—1)'
Proof. According to the definition of symmetric Toeplitz determinant, we remark that
73D = |(1 + a3 = 2a3)(1 — a3)| < (1 +laz = 2a3])(1 + |az)). (3.1)

Therefore, with (2.8) we apply Theorem 2.2 into the inequality (3.1) to ensure Theorem 3.2 is true. 0O

Corollary 3.3. If f(z) € A belongs to the class SP?! . (a,B,7y), then

M, max {1,2p — 1|}) [ M, +|M, — M| M3
(D) < (1 1
'*”<(+ Bl,-1 ) T B, -1 Bl -2, - D
holds, where
p:([3]q_l)Ml  M-M, M,

(121, — 1)? 2M, 2121, - 1)

AIMS Mathematics Volume 7, Issue 7, 13423—-13441.
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Corollary 3.4. If f(z) € A belongs to the class RP? _(a,B,y), then

snail
M, max {1, |2p — 1|}) o (1 N M, + M, — M|
[3]q [3]q

17531 < {1+

holds, where
_ BlMy - My - M,

[2]2 2M,
Similarly, from Theorem 2.3 and Lemma 1.3, we also estimate the symmetric determinant 75(1) for
q .
Spsnail(/l’ a/’ﬁ’ ')/)
Theorem 3.3. If f(z) € A belongs to the class SP! . (A;a,B,y), then
Mi(=2p+1) M +My—M,| (=DM} = _
(1 MEET) ) X [1 R P S N T s ) el BRI M, - M),
M, My +|Mr—M,| (1-HM} -
|T5(1)| < (1 + m) X [1 + Tmaet T ([3][/”_1)([2][,”_1)], M, -M, <E<M,+ M,
M,i(2p-1) M, +IMo— M| (1-vmi =
(1 t Bl ) X [1 RN ET T ([3],1+z—1)([2]q+1—1)]’ M + My < &,

where p is the same as in Theorem 2.2, and
2([3]; + A - 1)Mf ~ (1- /l)Mf
([2],]+/l—1)2 [2]q+/1—1'

(1]

Proof. Assume that u = 2 in Theorem 2.3. Then, we derive that

M (=2p+1) 7 < Nl

Blg+A-1
2 M,
|613 - 2612| < Bl -1 Nl <2< Nz,
M (2p-1)
Blg+A-1° 228,

where N; (i = 1,2) are the same as in Theorem 2.3. If 2 < N, then we infer that
23], +A-DHM; (1 -)M; .
(21, +21-12  [3],+A-1""

Similarly, we see that §; < 2 < N; and 2 > N, are equivalent to M, — M; < E < M, + M; and

2 > M, + M, respectively. Moreover, together with (2.8) and the inequality (3.1) we complete the

My, — M, >

[

proof of Theorem 3.3. O
Corollary 3.5. If f(z) € A belongs to the class SP sqi(a, B,7),
Mi(=2p+1) My+My=M| M = _
(1+ 45 [1 A= ([3]q—1>([2]q—1)]’ E< M- M,
M, Mi+IMr—Mi| M} =
< ——l_ - =<
Tl < ¢ (1+ ) [1 = <[3L,—1)([2]q—1>]’ M, - M < =< My + M,
Mi(2p-1) My+My=M| M} =
(1+5557) [1 M= ([3]q—1>([2]q—1>]’ M+ M <&,

where p is the same as in Corollary 2.3, and
2131, - DMz M}
Co@L-n RLE-

[1]

AIMS Mathematics Volume 7, Issue 7, 13423—-13441.
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Corollary 3.6. If f(z) € A belongs to the class RP? . (a,B,7y), then

snai

(1 n M1(—2P+1)) x (1 + M1+|M2—M1\)’ 2[3]qM12 < ]w2 _ Ml,

(314 131 212
M M+ My -My| _ 2(31,M?
IT5(1)] < (1 + [3]q) X (1 + 5 ) M, - M, < o <M, + M,,
M) ( M1+|M2—M1|) 203],M3
(1 o T ), Med My

where p is the same as in Corollary 2.4.
4. Bohr radius problems for SP;,.;(a, S, y)

Next we study the Bohr radius problems for SPg,..;(a,8,v). Here, we following the methods of
Allu and Halder [5]. Define the following function 7 € S by

DA
h(Z) =1+ £(t,ﬁ,y(Z)- (41)

Note that 7 is the same role as Kobe function for the class SPy,.i(a, 5, y). Now, without proof we state
our results as follows.

Theorem 4.1. If f(z) given by (1.4) belongs to the class SP? . (a,B,y) and 1+ L, 3,(2) is in the Hardy
class H? of analytic functions in D, then

|z + Z laullzl" < d(0,df(D)) (4.2)
n=2

for |z| < max{r*, 1/3}, where r* is the smallest positive solution of
W(r)+h(-1)=0

in (0, 1), and h(z) is defined by (4.1) with
N r
h(r) = rexp [Z M, (a,p, y);).
n=1

In this case, the class SP? . (a,B,v) is said to satisfy the Bohr phenomenon.

snail

5. Application to functions defined by neutrosophic Poisson distribution series

From now on, by letting ¢y(z) as the neutrosophic Poisson distribution series, we study the
following problems. As is well known that the classical probability distributions only deal with
specified data and specified parameter values, while the neutrosophic probability distribution is deeply
concerned with some more general and clear ones. In fact, neutrosophic Poisson distribution of a
discrete variable ¢ is a classical Poisson distribution of x with the imprecise parameter value. A variable
£ 1s said to have the neutrosophic Poisson distribution if its probability with the value k € N* = NU{0} is

(my)* —my

NP =k) = 7 e,
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where the distribution parameter my is the expected value and the variance, that is to say, NE(x) =
NV(x) = my for the neutrosophic statistical number N = d + I (refer to [22] and the references cited).
Define a power series whose coeflicients are probabilities of neutrosophic Poisson distribution by

O(my,z) =z+ Z

n=2

For f € A, we take the convolution operator * to introduce the linear operator %t : A — A
defined by

( )n 1 _m .
NfE@) = Olmy.2)*f) =2+ Z e
= z+ Z E(my, n)a,?", (5.1)
where |
._ _(my)
E, = E(my,n) = = 1)!e
Specially
2
E2 = mNe_’”N, E3 = (mg) B

Referring to Definition 1.1, now we introduce the new class associated with the neutrosophic
Poisson distribution series.

Definition 5.1. Let £, 4, be given by (1.1). For 0 < A < 1, a function f € A is said to be in the class
NSP? (A;a,p,7) if the following subordination

snail
2D [N f(2)] -
(1 - DNf(2) + Az

holds for z € D, where 9 f(z) is given by (5.1).

‘La,ﬁ,y(z) (52)

As the similar as Definition 1.1, we denote that

NSP?! (0;a,B,7) = NSP! (a,B,y)

snail

and
NSP!

snail

(L, B,7) = NRP], (. B, ).
By applying Theorems 2.1-2.3, we can deduce the theorems below.

Theorem 5.1. If f(z) given by (1.4) belongs to the class NSP! (A;,p,), then

M,
@l < s DE (5.3)

M, -I-|M2—M1| (l_ﬂ)M%
las| < (131, + 1 - 1)E; * (Bl + A= 1)([2], + 1 = 1)E;3 oD
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and
M, max {1, 20 — 1}

([31g + A= DE;3

laz — pa3) <
holds for u € C, where

_uBlg+A=-DMEs  My-M;  (1-DM,
22, + A - 1)2E? M, 22l +A-1)

Theorem 5.2. For u € R, if f(z) € A belongs to the class NSP? .(1;a,B,7), then

M (=20+1)

Bl rinE M S T,
2 M,
|a3 _,uazl S ([3]q+/l—l)E3’ Tl S /’l S T2’
Mi(20-1)

BGl,+A-DE> M =

where o is the same as in Theorem 5.1,

_ ([2]; + 2 — D*(My — M))ES N (1-D(2],+1- DE;
([31; + A — DM?E; ([Bl; +A-1Es

1

and

(21, + A= D*(My + M))E2 L (= 2],+ - 1)E2
(3], + 1 - HM2E; (3], + A — DE;

2:

In addition, we fix

(12, + A - 1’ MyE3 LU= (2], + A - 1)E?
(Bl + - DM2E; ([3], + A - 1)E;

3

Then, each of the following inequalities holds:
(A) For u € [y, T3],

oo 2021, +A-1E5 M,
las — pa;| + lar|” < ;
([3]q +A-1)ME; ([3]q +A-1)E;
(B) For p € [Y3,2],
2(1 - 0)([2], + - 1)’E3 M,

2 2
a5 — ) + ol < ¢

([3l; + A= 1)M  E; 3], +A1— 1DE;’

Similarly, by applying Theorems 3.1-3.3, we can establish the theorems below.

Theorem 5.3. If f(z) given by (1.4) belongs to the class NSP! (A;,p,), then

snai

M? M, + M, — M 1 - )M?
1722) | < ! L+ My - M| (=DM,

([2]; + 21— 1)?E3 i (Bl +A-1Es " ([3l; +A—=1)([2], + 2= 1)E;3

(5.5)
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Theorem 5.4. If f(z) € A belongs to the class NSP? (A, a,B,v), then

snail

Ty < (1 . M;max {1,20 — 1|}
([3lg + 41— DE;3
[ +M1+|M2—M1|+ (1—/1)M12
([3l;+A-DE; (3], + 41— D(2]; + 1 - DE;3

holds, where

_Blg+A-DME;  My-M,  (1-)M,
C (21, +A-12E? 2M, 2([2],+ A - 1)

Theorem 5.5. If f(z) € A belongs to the class NSP? (A, a,B,v), then

snail

Mi(=20+1) ) [ MMMy (1-)M? ] ~
(1+ Blnis) X |1+ Tlrens T Geenaeng |0 1S Mo = My,

M, [ My +|My—M;| (1—/1)M]2
Tl < 9§ (1+ gtins) X |1 + B + Geenm, s | Ma— M <TI< Mo+ M,
M) [ MMy (1-)M2 ]
(1+ Fs) X |1+ Gleaone, + Grena,aengs |- M2+ Mol

where o is the same as in Theorem 5.4, and

2Bl +A-DMZEs  (1- )M
T2l +A-12E2 Rl +A-1

6. Conclusions

By involving the generalized Pascal snail and g-derivative operator, certain new subclass of analytic
and univalent functions can be defined to improve the classical starlike functions. In our main results,
for this class we obtain the corresponding the Fekete-Szego functional inequalities and the symmetric
Toeplitz determinants as well as the bound estimates of the coefficients a, and a3. In addition, we
characterize the Bohr radius problems for the reduced version of this class. Moreover, the above results
are applied to the neutrosophic Poisson distribution series. Besides, some other problems like Hankel
determinant, partial sum inequalities, and many more can be discussed for this class as the future
work. In fact, we also replace the generalized Pascal snail by the other Limagons. In the neutrosophic
logic sense, other types of probability distributions, for example, exponential distributions, Bernoulli
distributions and uniform distributions, can be studied in various classes of analytic functions.
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