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Abstract: By the principle of differential subordination and the q-derivative operator, we introduce
the q-analog SPq

snail(λ;α, β, γ) of certain class of analytic functions associated with the generalized
Pascal snail. Firstly, we obtain the coefficient estimates and Fekete-Szegö functional inequalities
for this class. Meanwhile, we also estimate the corresponding symmetric Toeplitz determinant.
Secondly, for all the above results we provide the corresponding results for the reduced classes
SP

q
snail(α, β, γ) and RPq

snail(α, β, γ). Thirdly, we characterize the Bohr radius problems for the function
class SPq

snail(α, β, γ). Lastly, we establish certain results for some new subclasses of functions defined
by the neutrosophic Poisson distribution series.
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1. Introduction

Recall that the complex valued mapping Lα,β,γ : D→ C is defined by

Lα,β,γ(z) =
(2 − 2γ)z

(1 − αz)(1 − βz)
(1.1)

=

∞∑
n=1

Mn(α, β, γ)zn,
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where

Mn(α, β, γ) := Mn =

 (2 − 2γ)
∑∞

n=1

(
αn−βn

α−β

)
zn, if α , β,

(2 − 2γ)
∑∞

n=1 nαn−1zn, if α = β,
(1.2)

for 0 ≤ α, β ≤ 1 (αβ , ±1) and 0 ≤ γ < 1, whose image is in the domain ∆(α, β, γ) with the boundary

∂∆(α, β, γ) =

{
w = u + vi ∈ C :

[2(1 − γ)u + (α + β)(u2 + v2)]2

(1 + αβ)2 = (u2 + v2)2 −
4(1 − γ)2v2

(1 − αβ)2

}
, (1.3)

that is called the generalized Pascal snail [16] (see Figures 1 and 2). It is well known that Pascal snail is
the inversion of conic sections with respect to a focus. Note that M1 = 2−2γ and M2 = (2−2γ)(α+β).

(a) α = −0.93, β = 0.4, γ = 0.93 (b) α = −0.4, β = 0.93, γ = 0.93

Figure 1. The image of D under Lα,β,γ(z).

(a) α = −0.4, β = −0.93, γ = 0.93 (b) α = 0.93, β = 0.4, γ = 0.93

Figure 2. The image of D under Lα,β,γ(z).
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Define byA the class of analytic functions f which are expanded with the Taylor-Maclaurin’s series

f (z) = z +

∞∑
n=2

anzn (1.4)

in the open unit disk D = {z ∈ C :| z |< 1}. Further, if f ∈ A is univalent in D, then we denote such
class of functions by S. For two analytic functions F and G in D, if there has a Schwarz function
ω ∈ Ω with ω(0) = 0 and | ω(z) |< 1 for z ∈ D, such that F(z) = G(ω(z)), then F is subordinate to G in
D, i.e. F ≺ G. In addition, if G ∈ S, then there exists the following equivalent relation [20]:

F ≺ G ⇔ F(0) = G(0) and F(D) ⊂ G(D).

Besides, if ω(z) = z, then F is majorized by G in D, i.e. F � G.
Lately, the study of the q-calculus has riveted the rigorous consecration of researchers. The great

attention is due to its gains in many areas of mathematics and physics. The significance of the q-
derivative operatorDq is quite evident by its applications in the study of several subclasses of analytic
functions. Initially, in 1990, Ismail et al. [14] gave the idea of q-starlike functions. Nevertheless, a
firm base of the usage of the q-calculus in the context of geometric function theory was efficiently
established (refer to the work by Purohit and Raina [24]), and the use of the generalized basic
(or q-) hypergeometric functions in geometric function theory was made by Srivastava (see [25] for
more details). After that, the extraordinary studies have been done by many mathematicians, which
offer a significant part in the encroachment of geometric function theory (see [27–31, 33]).

For f ∈ A, its q-derivative or the q-differenceDq f (z) is given by

Dq f (z) = 1 +

∞∑
n=2

[n]qanzn−1, 0 < q < 1,

where the q-derivative operatorDq f (z) (refer to [15]) of f is defined by

Dq f (z) :=

 f (z)− f (qz)
(1−q)z , z , 0, 0 < q < 1,

f ′(0), z = 0,

provided that f ′(0) exists, and the q-number [n]q is exactly [ς]q when ς = n ∈ N, with

[ς]q =

 1−qς

1−q , for ς ∈ C,∑ς−1
k=0 qk, for ς = n ∈ N.

Note thatDq f (z)→ f ′(z) when q→ 1−, where f ′ is the ordinary derivative of f .
For f ∈ A, we recall the symmetric determinant matrix T j(n) given in [9] as below:

T j(n) =

∣∣∣∣∣∣∣∣∣∣∣∣
an an+1 · · · an+ j−1

an+1 an · · · an+ j
...

...
. . .

...

an+ j−1 an+ j · · · an

∣∣∣∣∣∣∣∣∣∣∣∣ .
AIMS Mathematics Volume 7, Issue 7, 13423–13441.
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Here, we also point out that

T2(2) =

∣∣∣∣∣∣a2 a3

a3 a2

∣∣∣∣∣∣ = a2
2 − a2

3

and

T3(1) =

∣∣∣∣∣∣∣∣∣
1 a2 a3

a2 1 a2

a3 a2 1

∣∣∣∣∣∣∣∣∣ = 1 + 2a2
2a3 − 2a2

2 − a2
3.

Let the image of the analytic function g(z) =
∑∞

n=0 bnzn in D belong to Ω ⊆ D. In 1914, Harald
Bohr [10] showed that the inequality

∑∞
n=0 |bnzn| ≤ 1 in the disc Dδ = {z||z| ≤ δ} with δ ≥ 1

6 . Because
of the works of Weiner, Riesz and Schur, we know that r∗ = 1

3 is best number and called Bohr radius
that named after Niels Bohr, the founder of quantum theory [23]. Further, the corresponding inequality
(the called Bohr inequality) can be denoted by

d(
∞∑

n=0

|an||z|n, |a0|) ≤ d( f (0), ∂ f (D)),

for |z| < rΩ with respect to the Euclidean distance d. The largest radius rΩ is called the Bohr radius
for the corresponding class. For more details for the Bohr radius and Bohr inequality, we can refer
to [2, 6, 7, 12, 17].

Recently, Kanas and Masih [16] considered the analytic representation of the domain by a
generalized Pascal snail. Besides, Allu and Halder [5] investigated Bohr radius for certain classes
of starlike and convex univalent functions (also refer to [8, 11]). Thomas et al. [9, 34] studied
the symmetric Toeplitz determinants for starlike and close-to-convex functions. Stimulated by
recent studies [1, 3, 4, 18, 25, 26], we introduce and study certain new subclasses of analytic
functions associated with the generalized Pascal snail involving q-derivative operator, and obtain
the corresponding upper estimates of the initial coefficients a2 and a3 of Taylors series and Fekete-
Szegö functional inequalities for functions of the new subclasses given in Definition 1.1. In addition,
we characterize the Bohr radius problems for certain reduced version of this class. Srivastava and
Porwal [32] ever investigated the coefficient inequalities of Poisson distribution series in conic domain
related to uniformly convex, k-spiralike and starlike functions. Along this line, Oladipo [21] estimated
the bound on the first few coefficients and classical Fekete-Szegö problem for Poisson and neutrosophic
Poisson distribution series connected with Chebyshev polynomials. As an application, all our results
are almost generalized into the new class related with the neutrosophic Poisson distribution series.

Now, by term of the unified subordination technique by Ma-Mind [19], we introduce the following
subclass of analytic and univalent functions associated with the generalized Pascal snail and q-
derivative operator.

Definition 1.1. LetLα,β,γ be given by (1.1). A function f ∈ A is said to be in the classSPq
snail(λ;α, β, γ)

if the following subordination:

zDq f (z)
(1 − λ) f (z) + λz

≺ 1 +Lα,β,γ(z) (1.5)

holds for z ∈ D, where 0 ≤ λ ≤ 1.

AIMS Mathematics Volume 7, Issue 7, 13423–13441.
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Note that by specializing the parameter λ, we get the reduced classes below:

(1) SPq
snail(0;α, β, γ) ≡ SPq

snail(α, β, γ) = { f ∈ A : zDq f (z)
f (z) ≺ 1 +Lα,β,γ(z)},

(2) SPq
snail(1;α, β, γ) ≡ RPq

snail(α, β, γ) = { f ∈ A : Dq f (z) ≺ 1 +Lα,β,γ(z)}.

Denote by P the class of all analytic and univalent functions h(z) of the following form:

h(z) = 1 +

∞∑
n=1

cnzn, z ∈ D, (1.6)

satisfying < [h(z)] > 0 and h(0) = 1. To proceed our results, we are ready for some indispensable
Lemmas given below.

Lemma 1.1. [13] Let h(z) ∈ P. Then the sharp estimates

| cn |≤ 2, n ∈ N,

are true. In particular, the equality holds for all n for the following function:

h(z) =
1 + z
1 − z

= 1 +

∞∑
n=1

2zn.

Lemma 1.2. [19] If h(z) ∈ P, then, for any complex κ ∈ C,

|c2 − κc2
1| ≤ 2 max {1, |2κ − 1|} ,

and the sharp result holds for the functions

h(z) =
1 + z
1 − z

or h(z) =
1 + z2

1 − z2 , z ∈ D.

Lemma 1.3. [19] Assume that the function h(z) ∈ P and κ ∈ R. Then

| c2 − κc2
1 |≤


−4κ + 2, if κ ≤ 0,
2, if 0 ≤ κ ≤ 1,
4κ − 2, if κ ≥ 1.

For κ < 0 or κ > 1, the inequality holds literally if and only if h(z) = 1+z
1−z or one of its rotations. If

0 < κ < 1, the inequality holds literally if and only if h(z) = 1+z2

1−z2 or one of its rotations. In particular,
if κ = 0, then the sharp result holds for the following function:

h(z) =

(
1
2

+
η

2

)
1 + z
1 − z

+

(
1
2
−
η

2

)
1 − z
1 + z

, 0 ≤ η ≤ 1,

or one of its rotations. If κ = 1, then the sharp result holds for the following function:

1
h(z)

=

(
1
2

+
η

2

)
1 + z
1 − z

+

(
1
2
−
η

2

)
1 − z
1 + z

, 0 ≤ η ≤ 1,

or one of its rotations. If 0 < κ < 1, then the upper bound is sharp as follows:

|c2 − κc2
1| + κ|c1|

2 ≤ 2, 0 < κ ≤
1
2
,

and
|c2 − κc2

1| + (1 − κ)|c1|
2 ≤ 2,

1
2
< κ < 1.
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2. Coefficient bounds and Fekete-Szegö inequalities for f ∈ SPq
snail(λ;α, β, γ)

Denote the function h ∈ P by

h(z) =
1 + u(z)
1 − u(z)

= 1 +

∞∑
n=1

cnzn.

Then, from (1.6) we derive that

u(z) =
h(z) − 1
h(z) + 1

=
c1

2
z +

(
c2

2
−

c2
1

4

)
z2 +

(
c3

2
−

c2c1

2
+

c3
1

8

)
z3 + . . . , z ∈ Dp, (2.1)

such that u(z) ∈ Ω. By (1.1) and (2.1), we imply that

Lα,β,γ(u(z)) =
M1c1

2
z +

[
M1c2

2
+

(M2 − M1)c2
1

4

]
z2

+

[
M1c3

2
+

(M2 − M1)c2c1

2
+

(M1 − 2M2 + M3)c3
1

8

]
z3 + . . . , z ∈ D. (2.2)

Throughout our study unless otherwise stated we note that

M1 = 2 − 2γ > 0 and M2 = (2 − 2γ)(α + β).

Now, we characterize the functional estimates for the class SPq
snail(λ;α, β, γ) and establish the next

theorems for the coefficient bounds and the corresponding Feteke-Szegö problems.

Theorem 2.1. If f (z) given by (1.4) belongs to the class SPq
snail(λ;α, β, γ), then

|a2| ≤
M1

[2]q + λ − 1
(2.3)

and

|a3| ≤
M1 + |M2 − M1|

[3]q + λ − 1
+

(1 − λ)M2
1

([3]q + λ − 1)([2]q + λ − 1)
. (2.4)

Proof. Assume that f ∈ SPq
snail(λ;α, β, γ). Then, there exists a Schwarz function u(z) ∈ Ω so that

zDq f (z)
(1 − λ) f (z) + λz

= 1 +Lα,β,γ(u(z)). (2.5)

Since

zDq f (z)
(1 − λ) f (z) + λz

= 1 +
(
[2]q + λ − 1

)
a2z + [

(
[3]q + λ − 1

)
a3 − (1 − λ)([2]q + λ − 1)a2

2]z2 + · · · (2.6)

for f ∈ A, combing (2.5) and (2.6), with (2.2) we get that

M1c1

2
=

(
[2]q + λ − 1

)
a2

AIMS Mathematics Volume 7, Issue 7, 13423–13441.
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and

M1c2

2
+

(M2 − M1)c2
1

4
=

(
[3]q + λ − 1

)
a3 − (1 − λ)([2]q + λ − 1)a2

2,

such that

a2 =
M1c1

2([2]q + λ − 1)
(2.7)

and

a3 =
2M1c2 + (M2 − M1)c2

1

4([3]q + λ − 1)
+

(1 − λ)M2
1c2

1

4([3]q + λ − 1)([2]q + λ − 1)
. (2.8)

By Lemma 1.1 we assert that Theorem 2.1 holds true. �

By taking λ = 0 in Theorem 2.1, we deduce the corollary below.

Corollary 2.1. If f (z) given by (1.4) belongs to the class SPq
snail(α, β, γ), then

|a2| ≤
M1

[2]q − 1

and

|a3| ≤
M1 + |M2 − M1|

[3]q − 1
+

M2
1

([3]q − 1)([2]q − 1)
.

By taking λ = 1 in Theorem 2.1, we deduce the corollary below.

Corollary 2.2. If f (z) given by (1.4) belongs to the class RPq
snail(α, β, γ), then

|a2| ≤
M1

[2]q

and

|a3| ≤
M1 + |M2 − M1|

[3]q
+

M2
1

[3]q[2]q
.

Theorem 2.2. If f (z) given by (1.4) belongs to the class SPq
snail(λ;α, β, γ), then

|a3 − µa2
2| ≤

M1 max {1, |2ρ − 1|}
[3]q + λ − 1

(2.9)

holds for µ ∈ C, where

ρ =
µ([3]q + λ − 1)M1

2([2]q + λ − 1)2 −
M2 − M1

2M1
−

(1 − λ)M1

2([2]q + λ − 1)
.

AIMS Mathematics Volume 7, Issue 7, 13423–13441.
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Proof. For µ ∈ C, by using (2.7) and (2.8), we infer that

a3 − µa2
2 =

M1

2([3]q + λ − 1)

(
c2 − ρc2

1

)
, (2.10)

where

ρ =
µ([3]q + λ − 1)M1

2([2]q + λ − 1)2 −
M2 − M1

2M1
−

(1 − λ)M1

2([2]q + λ − 1)
.

Hence, we apply Lemma 1.2 to Eq (2.10) and show that Theorem 2.2 holds true. �

Corollary 2.3. If f (z) given by (1.4) belongs to the class SPq
snail(α, β, γ), then

|a3 − µa2
2| ≤

M1 max {1, |2ρ − 1|}
[3]q − 1

holds for µ ∈ C, where

ρ =
µ([3]q − 1)M1

2([2]q − 1)2 −
M2 − M1

2M1
−

M1

2([2]q − 1)
.

Corollary 2.4. If f (z) given by (1.4) belongs to the class RPq
snail(α, β, γ), then

|a3 − µa2
2| ≤

M1 max {1, |2ρ − 1|}
[3]q

holds for µ ∈ C, where

ρ =
µ[3]qM1

2[2]2
q
−

M2 − M1

2M1
.

If we let µ ∈ R, then we are based on the proof of Theorem 2.2 and Lemma 1.3 to establish the
Fekete-Szegö functional inequality for SPq

snail(λ;α, β, γ).

Theorem 2.3. For µ ∈ R, if f (z) ∈ A belongs to the class SPq
snail(λ;α, β, γ), then

|a3 − µa2
2| ≤


M1(−2ρ+1)
[3]q+λ−1 , µ ≤ ℵ1,

M1
[3]q+λ−1 , ℵ1 ≤ µ ≤ ℵ2,

M1(2ρ−1)
[3]q+λ−1 , µ ≥ ℵ2,

where ρ is the same as in Theorem 2.2,

ℵ1 =
([2]q + λ − 1)2(M2 − M1)

([3]q + λ − 1)M2
1

+
(1 − λ)([2]q + λ − 1)

[3]q + λ − 1

and

ℵ2 =
([2]q + λ − 1)2(M2 + M1)

([3]q + λ − 1)M2
1

+
(1 − λ)([2]q + λ − 1)

[3]q + λ − 1
.
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In addition, we fix

ℵ3 =
([2]q + λ − 1)2M2

([3]q + λ − 1)M2
1

+
(1 − λ)([2]q + λ − 1)

[3]q + λ − 1
.

Then, each of the following inequalities holds:
(A) For µ ∈ [ℵ1,ℵ3],

|a3 − µa2
2| +

2ρ([2]q + λ − 1)2

([3]q + λ − 1)M1
|a2|

2 ≤
M1

[3]q + λ − 1
;

(B) For µ ∈ [ℵ3,ℵ2],

|a3 − µa2
2| +

2(1 − ρ)([2]q + λ − 1)2

([3]q + λ − 1)M1
|a2|

2 ≤
M1

[3]q + λ − 1
.

Proof. For µ ∈ R and ρ in Theorem 2.2, if we let ρ ≤ 0, then we know that

µ([3]q + λ − 1)M1

2([2]q + λ − 1)2 −
M2 − M1

2M1
−

(1 − λ)M1

2([2]q + λ − 1)
≤ 0

and obtain

µ ≤
([2]q + λ − 1)2(M2 − M1)

([3]q + λ − 1)M2
1

+
(1 − λ)([2]q + λ − 1)

[3]q + λ − 1
:= ℵ1.

Similarly, we get that for ρ ≥ 1,

µ ≥
([2]q + λ − 1)2(M2 + M1)

([3]q + λ − 1)M2
1

+
(1 − λ)([2]q + λ − 1)

[3]q + λ − 1
:= ℵ2,

and for ρ = 1
2 ,

µ =
([2]q + λ − 1)2M2

([3]q + λ − 1)M2
1

+
(1 − λ)([2]q + λ − 1)

[3]q + λ − 1
:= ℵ3.

Therefore, together with Lemma 1.3 and Eqs (2.7) and (2.10), we can prove that Theorem 2.3
holds true. �

Corollary 2.5. For µ ∈ R, if f (z) ∈ A belongs to the class SPq
snail(α, β, γ), then

|a3 − µa2
2| ≤


M1(−2ρ+1)

[3]q−1 , µ ≤ ℵ1,

M1
[3]q−1 , ℵ1 ≤ µ ≤ ℵ2,

M1(2ρ−1)
[3]q−1 , µ ≥ ℵ2,

where ρ is the same as in Corollary 2.3,

ℵ1 =
([2]q − 1)2(M2 − M1)

([3]q − 1)M2
1

+
[2]q − 1
[3]q − 1
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and

ℵ2 =
([2]q − 1)2(M2 + M1)

([3]q − 1)M2
1

+
[2]q − 1
[3]q − 1

.

In addition, we fix

ℵ3 =
([2]q − 1)2M2

([3]q − 1)M2
1

+
[2]q − 1
[3]q − 1

.

Then, each of the following inequalities holds:
(A) For µ ∈ [ℵ1,ℵ3],

|a3 − µa2
2| +

2ρ([2]q − 1)2

([3]q − 1)M1
|a2|

2 ≤
M1

[3]q − 1
;

(B) For µ ∈ [ℵ3,ℵ2],

|a3 − µa2
2| +

2(1 − ρ)([2]q − 1)2

([3]q − 1)M1
|a2|

2 ≤
M1

[3]q − 1
.

Corollary 2.6. For µ ∈ R, if f (z) ∈ A belongs to the class RPq
snail(α, β, γ), then

|a3 − µa2
2| ≤


M1(−2ρ+1)

[3]q
, µ ≤ ℵ1,

M1
[3]q
, ℵ1 ≤ µ ≤ ℵ2,

M1(2ρ−1)
[3]q

, µ ≥ ℵ2,

where ρ is the same as in Corollary 2.4,

ℵ1 =
[2]2

q(M2 − M1)

[3]qM2
1

and ℵ2 =
[2]2

q(M2 + M1)

[3]qM2
1

.

In addition, we put

ℵ3 =
[2]2

qM2

[3]qM2
1

.

Then, each of the following inequalities holds:
(A) For µ ∈ [ℵ1,ℵ3],

|a3 − µa2
2| +

2ρ[2]2
q

[3]qM1
|a2|

2 ≤
M1

[3]q
;

(B) For µ ∈ [ℵ3,ℵ2],

|a3 − µa2
2| +

2(1 − ρ)[2]2
q

[3]qM1
|a2|

2 ≤
M1

[3]q
.
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3. Symmetric Toeplitz determinants for SPq
snail(λ;α, β, γ)

Now we pay attention to the symmetric Toeplitz determinants T2(2) and T3(1) for the class
SP

q
snail(λ;α, β, γ). From (2.7) and (2.8), in view of Lemma 1.1, we easily obtain the theorem below.

Theorem 3.1. If f (z) given by (1.4) belongs to the class SPq
snail(λ;α, β, γ), then

| T2(2) | ≤
M2

1

([2]q + λ − 1)2 +

[
M1 + |M2 − M1|

[3]q + λ − 1
+

(1 − λ)M2
1

([3]q + λ − 1)([2]q + λ − 1)

]2

.

Corollary 3.1. If f (z) given by (1.4) belongs to the class SPq
snail(α, β, γ), then

| T2(2) | ≤
M2

1

([2]q − 1)2 +

[
M1 + |M2 − M1|

[3]q − 1
+

M2
1

([3]q − 1)([2]q − 1)

]2

.

Corollary 3.2. If f (z) given by (1.4) belongs to the class RPq
snail(α, β, γ), then

| T2(2) | ≤
M2

1

[2]2
q

+
[M1 + |M2 − M1|]2

[3]2
q

.

Based on the proof of Theorem 2.2 and Lemma 1.2, we consider the symmetric determinant T3(1)
for SPq

snail(λ;α, β, γ) and establish the next theorem.

Theorem 3.2. If f (z) ∈ A belongs to the class SPq
snail(λ;α, β, γ), then

|T3(1)| ≤
(
1 +

M1 max {1, |2ρ − 1|}
[3]q + λ − 1

)
×

[
1 +

M1 + |M2 − M1|

[3]q + λ − 1
+

(1 − λ)M2
1

([3]q + λ − 1)([2]q + λ − 1)

]
holds, where

ρ =
([3]q + λ − 1)M1

([2]q + λ − 1)2 −
M2 − M1

2M1
−

(1 − λ)M1

2([2]q + λ − 1)
.

Proof. According to the definition of symmetric Toeplitz determinant, we remark that

|T3(1)| = |(1 + a3 − 2a2
2)(1 − a3)| ≤ (1 + |a3 − 2a2

2|)(1 + |a3|). (3.1)

Therefore, with (2.8) we apply Theorem 2.2 into the inequality (3.1) to ensure Theorem 3.2 is true. �

Corollary 3.3. If f (z) ∈ A belongs to the class SPq
snail(α, β, γ), then

|T3(1)| ≤
(
1 +

M1 max {1, |2ρ − 1|}
[3]q − 1

)
×

[
1 +

M1 + |M2 − M1|

[3]q − 1
+

M2
1

([3]q − 1)([2]q − 1)

]
holds, where

ρ =
([3]q − 1)M1

([2]q − 1)2 −
M2 − M1

2M1
−

M1

2([2]q − 1)
.
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Corollary 3.4. If f (z) ∈ A belongs to the class RPq
snail(α, β, γ), then

|T3(1)| ≤
(
1 +

M1 max {1, |2ρ − 1|}
[3]q

)
×

(
1 +

M1 + |M2 − M1|

[3]q

)
holds, where

ρ =
[3]qM1

[2]2
q
−

M2 − M1

2M1
.

Similarly, from Theorem 2.3 and Lemma 1.3, we also estimate the symmetric determinant T3(1) for
SP

q
snail(λ;α, β, γ).

Theorem 3.3. If f (z) ∈ A belongs to the class SPq
snail(λ;α, β, γ), then

|T3(1)| ≤



(
1 +

M1(−2ρ+1)
[3]q+λ−1

)
×

[
1 + M1+|M2−M1 |

[3]q+λ−1 +
(1−λ)M2

1
([3]q+λ−1)([2]q+λ−1)

]
, Ξ ≤ M2 − M1,(

1 + M1
[3]q+λ−1

)
×

[
1 + M1+|M2−M1 |

[3]q+λ−1 +
(1−λ)M2

1
([3]q+λ−1)([2]q+λ−1)

]
, M2 − M1 ≤ Ξ ≤ M2 + M1,(

1 +
M1(2ρ−1)
[3]q+λ−1

)
×

[
1 + M1+|M2−M1 |

[3]q+λ−1 +
(1−λ)M2

1
([3]q+λ−1)([2]q+λ−1)

]
, M2 + M1 ≤ Ξ,

where ρ is the same as in Theorem 2.2, and

Ξ =
2([3]q + λ − 1)M2

1

([2]q + λ − 1)2 −
(1 − λ)M2

1

[2]q + λ − 1
.

Proof. Assume that µ = 2 in Theorem 2.3. Then, we derive that

|a3 − 2a2
2| ≤


M1(−2ρ+1)
[3]q+λ−1 , 2 ≤ ℵ1,

M1
[3]q+λ−1 , ℵ1 ≤ 2 ≤ ℵ2,

M1(2ρ−1)
[3]q+λ−1 , 2 ≥ ℵ2,

where ℵi (i = 1, 2) are the same as in Theorem 2.3. If 2 ≤ ℵ1, then we infer that

M2 − M1 ≥
2([3]q + λ − 1)M2

1

([2]q + λ − 1)2 −
(1 − λ)M2

1

[3]q + λ − 1
:= Ξ.

Similarly, we see that ℵ1 ≤ 2 ≤ ℵ2 and 2 ≥ ℵ2 are equivalent to M2 − M1 ≤ Ξ ≤ M2 + M1 and
Ξ ≥ M2 + M1, respectively. Moreover, together with (2.8) and the inequality (3.1) we complete the
proof of Theorem 3.3. �

Corollary 3.5. If f (z) ∈ A belongs to the class SPsnail(α, β, γ),

|T3(1)| ≤



(
1 +

M1(−2ρ+1)
[3]q−1

)
×

[
1 + M1+|M2−M1 |

[3]q−1 +
M2

1
([3]q−1)([2]q−1)

]
, Ξ ≤ M2 − M1,(

1 + M1
[3]q−1

)
×

[
1 + M1+|M2−M1 |

[3]q−1 +
M2

1
([3]q−1)([2]q−1)

]
, M2 − M1 ≤ Ξ ≤ M2 + M1,(

1 +
M1(2ρ−1)

[3]q−1

)
×

[
1 + M1+|M2−M1 |

[3]q−1 +
M2

1
([3]q−1)([2]q−1)

]
, M2 + M1 ≤ Ξ,

where ρ is the same as in Corollary 2.3, and

Ξ =
2([3]q − 1)M2

1

([2]q − 1)2 −
M2

1

[2]q − 1
.
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Corollary 3.6. If f (z) ∈ A belongs to the class RPq
snail(α, β, γ), then

|T3(1)| ≤



(
1 +

M1(−2ρ+1)
[3]q

)
×

(
1 + M1+|M2−M1 |

[3]q

)
,

2[3]q M2
1

[2]2
q
≤ M2 − M1,(

1 + M1
[3]q

)
×

(
1 + M1+|M2−M1 |

[3]q

)
, M2 − M1 ≤

2[3]q M2
1

[2]2
q
≤ M2 + M1,(

1 +
M1(2ρ−1)

[3]q

)
×

(
1 + M1+|M2−M1 |

[3]q

)
, M2 + M1 ≤

2[3]q M2
1

[2]2
q
,

where ρ is the same as in Corollary 2.4.

4. Bohr radius problems for SPsnail(α, β, γ)

Next we study the Bohr radius problems for SPsnail(α, β, γ). Here, we following the methods of
Allu and Halder [5]. Define the following function ~ ∈ S by

zDq~(z)
~(z)

= 1 +Lα,β,γ(z). (4.1)

Note that ~ is the same role as Kobe function for the class SPsnail(α, β, γ). Now, without proof we state
our results as follows.

Theorem 4.1. If f (z) given by (1.4) belongs to the class SPq
snail(α, β, γ) and 1+Lα,β,γ(z) is in the Hardy

classH2 of analytic functions in D, then

|z| +
∞∑

n=2

|an||z|n ≤ d(0, ∂ f (D)) (4.2)

for |z| < max{r∗, 1/3}, where r∗ is the smallest positive solution of

~(r) + ~(−1) = 0

in (0, 1), and ~(z) is defined by (4.1) with

~(r) = r exp

 ∞∑
n=1

Mn(α, β, γ)
rn

n

 .
In this case, the class SPq

snail(α, β, γ) is said to satisfy the Bohr phenomenon.

5. Application to functions defined by neutrosophic Poisson distribution series

From now on, by letting ℘N(z) as the neutrosophic Poisson distribution series, we study the
following problems. As is well known that the classical probability distributions only deal with
specified data and specified parameter values, while the neutrosophic probability distribution is deeply
concerned with some more general and clear ones. In fact, neutrosophic Poisson distribution of a
discrete variable ξ is a classical Poisson distribution of x with the imprecise parameter value. A variable
ξ is said to have the neutrosophic Poisson distribution if its probability with the value k ∈ N∗ = N∪{0} is

NP(ξ = k) =
(mN)k

k!
e−mN ,
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where the distribution parameter mN is the expected value and the variance, that is to say, NE(x) =

NV(x) = mN for the neutrosophic statistical number N = d + I (refer to [22] and the references cited).
Define a power series whose coefficients are probabilities of neutrosophic Poisson distribution by

Φ(mN , z) = z +

∞∑
n=2

(mN)n−1

(n − 1)!
e−mN zn, z ∈ D.

For f ∈ A, we take the convolution operator ∗ to introduce the linear operator N : A → A

defined by

N f (z) = Φ(mN , z) ∗ f (z) = z +

∞∑
n=2

(mN)n−1

(n − 1)!
e−mN anzn

= z +

∞∑
n=2

E(mN , n)anzn, (5.1)

where

En := E(mN , n) =
(mN)n−1

(n − 1)!
e−mN .

Specially

E2 := mNe−mN , E3 :=
(mN)2

2
e−mN .

Referring to Definition 1.1, now we introduce the new class associated with the neutrosophic
Poisson distribution series.

Definition 5.1. Let Lα,β,γ be given by (1.1). For 0 ≤ λ ≤ 1, a function f ∈ A is said to be in the class
NSP

q
snail(λ;α, β, γ) if the following subordination

zDq[N f (z)]
(1 − λ)N f (z) + λz

≺ 1 +Lα,β,γ(z) (5.2)

holds for z ∈ D, where N f (z) is given by (5.1).

As the similar as Definition 1.1, we denote that

NSP
q
snail(0;α, β, γ) = NSP

q
snail(α, β, γ)

and
NSP

q
snail(1;α, β, γ) = NRP

q
snail(α, β, γ).

By applying Theorems 2.1–2.3, we can deduce the theorems below.

Theorem 5.1. If f (z) given by (1.4) belongs to the class NSPq
snail(λ;α, β, γ), then

|a2| ≤
M1

([2]q + λ − 1)E2
, (5.3)

|a3| ≤
M1 + |M2 − M1|

([3]q + λ − 1)E3
+

(1 − λ)M2
1

([3]q + λ − 1)([2]q + λ − 1)E3
(5.4)
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and

|a3 − µa2
2| ≤

M1 max {1, |2% − 1|}
([3]q + λ − 1)E3

(5.5)

holds for µ ∈ C, where

% =
µ([3]q + λ − 1)M1E3

2([2]q + λ − 1)2E2
2

−
M2 − M1

2M1
−

(1 − λ)M1

2([2]q + λ − 1)
.

Theorem 5.2. For µ ∈ R, if f (z) ∈ A belongs to the class NSPq
snail(λ;α, β, γ), then

|a3 − µa2
2| ≤


M1(−2%+1)

([3]q+λ−1)E3
, µ ≤ Υ1,

M1
([3]q+λ−1)E3

, Υ1 ≤ µ ≤ Υ2,

M1(2%−1)
([3]q+λ−1)E3

, µ ≥ Υ2,

where % is the same as in Theorem 5.1,

Υ1 =
([2]q + λ − 1)2(M2 − M1)E2

2

([3]q + λ − 1)M2
1 E3

+
(1 − λ)([2]q + λ − 1)E2

2

([3]q + λ − 1)E3

and

Υ2 =
([2]q + λ − 1)2(M2 + M1)E2

2

([3]q + λ − 1)M2
1 E3

+
(1 − λ)([2]q + λ − 1)E2

2

([3]q + λ − 1)E3
.

In addition, we fix

Υ3 =
([2]q + λ − 1)2M2E2

2

([3]q + λ − 1)M2
1 E3

+
(1 − λ)([2]q + λ − 1)E2

2

([3]q + λ − 1)E3
.

Then, each of the following inequalities holds:
(A) For µ ∈ [Υ1,Υ3],

|a3 − µa2
2| +

2%([2]q + λ − 1)2E2
2

([3]q + λ − 1)M1E3
|a2|

2 ≤
M1

([3]q + λ − 1)E3
;

(B) For µ ∈ [Υ3,Υ2],

|a3 − µa2
2| +

2(1 − %)([2]q + λ − 1)2E2
2

([3]q + λ − 1)M1E3
|a2|

2 ≤
M1

([3]q + λ − 1)E3
.

Similarly, by applying Theorems 3.1–3.3, we can establish the theorems below.

Theorem 5.3. If f (z) given by (1.4) belongs to the class NSPq
snail(λ;α, β, γ), then

| T2(2) | ≤
M2

1

([2]q + λ − 1)2E2
2

+

[
M1 + |M2 − M1|

([3]q + λ − 1)E3
+

(1 − λ)M2
1

([3]q + λ − 1)([2]q + λ − 1)E3

]2

.
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Theorem 5.4. If f (z) ∈ A belongs to the class NSPq
snail(λ;α, β, γ), then

|T3(1)| ≤
(
1 +

M1 max {1, |2% − 1|}
([3]q + λ − 1)E3

)
×

[
1 +

M1 + |M2 − M1|

([3]q + λ − 1)E3
+

(1 − λ)M2
1

([3]q + λ − 1)([2]q + λ − 1)E3

]
holds, where

% =
([3]q + λ − 1)M1E3

([2]q + λ − 1)2E2
2

−
M2 − M1

2M1
−

(1 − λ)M1

2([2]q + λ − 1)
.

Theorem 5.5. If f (z) ∈ A belongs to the class NSPq
snail(λ;α, β, γ), then

|T3(1)| ≤



(
1 +

M1(−2%+1)
([3]q+λ−1)E3

)
×

[
1 + M1+|M2−M1 |

([3]q+λ−1)E3
+

(1−λ)M2
1

([3]q+λ−1)([2]q+λ−1)E3

]
, Π ≤ M2 − M1,(

1 + M1
([3]q+λ−1)E3

)
×

[
1 + M1+|M2−M1 |

([3]q+λ−1)E3
+

(1−λ)M2
1

([3]q+λ−1)([2]q+λ−1)E3

]
, M2 − M1 ≤ Π ≤ M2 + M1,(

1 +
M1(2%−1)

([3]q+λ−1)E3

)
×

[
1 + M1+|M2−M1 |

([3]q+λ−1)E3
+

(1−λ)M2
1

([3]q+λ−1)([2]q+λ−1)E3

]
, M2 + M1 ≤ Π,

where % is the same as in Theorem 5.4, and

Π =
2([3]q + λ − 1)M2

1 E3

([2]q + λ − 1)2E2
2

−
(1 − λ)M2

1

[2]q + λ − 1
.

6. Conclusions

By involving the generalized Pascal snail and q-derivative operator, certain new subclass of analytic
and univalent functions can be defined to improve the classical starlike functions. In our main results,
for this class we obtain the corresponding the Fekete-Szegö functional inequalities and the symmetric
Toeplitz determinants as well as the bound estimates of the coefficients a2 and a3. In addition, we
characterize the Bohr radius problems for the reduced version of this class. Moreover, the above results
are applied to the neutrosophic Poisson distribution series. Besides, some other problems like Hankel
determinant, partial sum inequalities, and many more can be discussed for this class as the future
work. In fact, we also replace the generalized Pascal snail by the other Limaçons. In the neutrosophic
logic sense, other types of probability distributions, for example, exponential distributions, Bernoulli
distributions and uniform distributions, can be studied in various classes of analytic functions.
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inequality for classes of (p, q)-starlike and (p, q)-convex functions, RACSAM, 113 (2019), 3563–
3584. https://doi.org/10.1007/s13398-019-00713-5

AIMS Mathematics Volume 7, Issue 7, 13423–13441.

http://dx.doi.org/https://doi.org/10.3934/math.2021073
http://dx.doi.org/https://doi.org/10.1201/9781482289817
http://dx.doi.org/https://doi.org/10.1155/2014/984135
http://dx.doi.org/https://doi.org/10.1112/S0024611502013692
http://dx.doi.org/https://doi.org/10.1007/s40995-019-00815-0
http://dx.doi.org/https://doi.org/10.2298/FIL1909613S
http://dx.doi.org/https://doi.org/10.3390/math7020181
http://dx.doi.org/https://doi.org/10.14492/hokmj/1562810517
http://dx.doi.org/https://doi.org/10.1216/RMJ-2019-49-7-2325
http://dx.doi.org/https://doi.org/10.3390/math7080706
http://dx.doi.org/https://doi.org/10.1007/s13398-019-00713-5


13441

32. D. Srivastava, S. Porwal, Some sufficient conditions for Poisson distribution series associated with
conic regions, Int. J. Adv. Technol. Eng. Sci., 3 (2015), 229–236.

33. H. M. Srivastava, M. Tahir, B. Khan, Q. Z. Ahmad, N. Khan, Some general classes of
q-starlike functions associated with the Janowski functions, Symmetry, 11 (2019), 1–14.
https://doi.org/10.3390/sym11020292

34. D. K. Thomas, S. A. Halim, Retracted article: Toeplitz matrices whose elements are the coefficients
of starlike and close-to-convex functions, Bull. Malays. Math. Sci. Soc., 40 (2017), 1781–1790.
https://doi.org/10.1007/s40840-016-0385-4

© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 7, Issue 7, 13423–13441.

http://dx.doi.org/https://doi.org/10.3390/sym11020292
http://dx.doi.org/https://doi.org/10.1007/s40840-016-0385-4
http://creativecommons.org/licenses/by/4.0

	Introduction
	Coefficient bounds and Fekete-Szegö inequalities for fSPqsnail(;,,)
	Symmetric Toeplitz determinants for SPqsnail(;,,)
	Bohr radius problems for SPsnail(,,)
	Application to functions defined by neutrosophic Poisson distribution series
	Conclusions

