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1. Introduction

Classical logic is the unification of absoluteness and relativity, and it is the foundation of all
knowledge and the fundamental portion of human total understanding and the base of all knowledge.
Deductive logic reasoning is binary logic, meaning there are only two options: true or false.
Uncertainty, on the other hand, isn't just true or false; it might also have multiple outcomes. Uncertainty
reasoning is an important aspect of artificial intelligence research, and examining it in the context of
logic is a scientific research approach. Wang [1] established the notion of Ro-algebra after explaining
the differences between uncertain logic and classical logic. This was specifically for the sake of
investigating fuzzy reasoning. Ro-algebra is slightly more powerful than implication lattice algebra. As
reasoning criteria in algebraic structure, filters, ideals, and sub algebras, play a crucial part in the study of
algebraic structure. There have been numerous studies on these reasoning criteria, such as Cheng's [2]
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basic structure of Ro-algebras, Li's [3] equivalent characterization of minimal reduction sets, and the
necessary and sufficient conditions for the existence of the maximal reduction Ro-algebra. Hua [4]
recently presented the concept of derivation in Ro-algebras and demonstrated how to make a filter a
perfect derivation filter. Zhang [5] introduced the generalized relative annihilator of Ro-algebras, and
studied equivalent characterization of minimal subtractive sets of Ro-algebras. Xin [6] introduced
monadic operator, defined and studied monadic Ro-algebra. He explained monadic filtering and
monadic congruence, as well as their qualities. Fan [7] investigated the equivalent characterization
of Boolean algebra and Ro-algebra by replacing Ro-algebra with Boolean atoms. Zadeh [8]
introduced fuzzy sets in 1965. Fuzzy sets and its expansions do well in dealing with uncertainty in a
variety of situations. People's interest in the use of fuzzy sets is developing rapidly all over the world,
and intuitionistic fuzzy sets [9] and bipolar valued fuzzy sets [10] have both been extensively
investigated. Fuzzification principles have also been extended to other algebraic structures, with a
series of conclusions emerging one after the other. For example, Liu et al. [11] explored and
addressed bipolar fuzzy ideals in negative non-involutive residual lattices, Zhang [12] developed
intuitionistic fuzzy filter theory in algebraic structures, and reference [13,14] has further conclusions.
There are several physical interpretations of abstract algebras. The physical interpretation of
noncommutative algebraic varieties has been introduced, where among other physical properties, the
theory of entanglement: A generalization of parameterizing the objects of physics was introduced
and discussed in detail [20]. On the other hand, the physical interpretation of bistable unidirectional
Ring-Laser operation was discussed. There are many other applications of some kinds of algebra,
for example (see [20,21]).

Torra [15] proposed hesitant fuzzy set theory in 2010, which is a great tool for expressing people's
indecision in real life and solves the problem of uncertainty. A hesitant fuzzy set is made up of hesitant
fuzzy elements, each of which is a collection of probable values from the unit [0,1] closed interval. As a
result, as compared to other extended versions of fuzzy sets, hesitant fuzzy sets can more extensively
and precisely reflect the hesitant information of decision makers. Hesitant fuzzy sets have also gotten a
lot of attention, and they're used in a variety of mathematical models [16—18]. The study of hesitation
fuzzy measure, multi-attribute decision-making model, and linguistic decision-making method is the
focus of hesitation fuzzy set theory. In real life, the solution to a problem is not unique, however, the
uncertain performance of hesitant fuzzy elements lead to a better illustration in such a problem. Ro-
algebra is a kind of important logic algebra, where filter is an important reasoning criterion for studying
logic algebra and Ro-algebra by studying filters in depth. The main contribution of the present paper
highlighted in the following lines:

As a result, studying the filter on Ro-algebra with hesitant fuzzy set is crucial. There are few
findings about the algebraic structure of hesitant fuzzy sets available at the moment. As a result, the
notions of hesitant fuzzy MP filter and hesitant fuzzy congruence relationship are presented in this
study. The relevant properties are also investigated. We also look at the connection between the
hesitant fuzzy MP filter and the hesitant fuzzy congruence. The following is how the rest of the
article is structured.

The second segment introduces fundamental definitions and knowledge. Section 3 discusses
the features and equivalent characterizations of hesitant fuzzy MP filters and hesitant fuzzy
congruence relations on Ro-algebras, as well as their lattice structures. This paper comes to an end
with Section 4.

AIMS Mathematics Volume 7, Issue 7, 13410-13422.
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2. Preliminaries

In this section, we recollect some basic definitions and knowledge which will be used in the
following.
Definition 2.1. [1] By a Ro-algebras, we shall mean an algebra (R;A,v,—,—,0,1) satisfying the
following axioms:
(R1) =x—>-y=y—>X,
R2) 1 =>x=X,x—>x=1,
(R3) Yy 2<(X=>Y)>(X—>12),
R4) X>(Y=>2)=y>(X—>12),
RS) x> (YA)=(X>Y)AX>2),X>(YVvI)=(X2>Y)A(X—>2),
(R6) (X—> Y)A((X—>Y)—>(—xAYy)) =1, forany X,Y¥,ZeR.
Where 1 is the largest element of R, then R is called a Ro-algebras.
Proposition 2.1. [3] Let R be a Ro-algebras, then for all X,yeR
(P1) x> y=1 ifandonlyif X<y,
(P2) X=X—>0,Xx=—X—>0,
(P3) X=>y)v(y—=>x=1,
(P4) Xvy=((X=>Y)=>Y) Ay = X)=>X),
(P5) (M,®,1) isacommutative semigroup with unit 1,
(P6) XQY<XAY,
(P7) x®y<zifandonly X<y—>1z,
(P8) X®(Yyvi)=(X®Yy)v(X®12),
Where X® Yy =—(X—> —y).
Definition 2.2. [2] Let R be a Ro-algebras, &J# AcC R.Then A isaMP-filter of R if, and only if:
() le A,
(i) If X€ AX—>YyeA. ThenyeA, forall X,yeA.
Definition 2.3. [8] A fuzzy setin R isamapping f:R—[0,1].
Definition 2.4. [19] A fuzzy set A in Ris called a fuzzy MP-filter of R ifiit satisfies the following
conditions:
(F1) Al)2A(X),
(F2) A(Y)2AX—>Y)AAX), forall X,yeR
Definition 2.5. [15] Let X be a reference set, then the set 7 is called a hesitant fuzzy set (briefly,
HF set) on X and is expressed as:

1 ={<%1(X) > 1(x) € P[0,]],x € X},
where P([0,1]) is, the power set of [0,1].
If there are hesitant fuzzy sets7and # on X  we define 7<H < (xe X)((X) < 1(X))  In[15],a
hesitant fuzzy set is defined by: Let X be a non-empty set, a hesitant fuzzy set h on X isa

function that when applied to X returns a subset of [0,1]. If we consider the case when h(X)

represents the possible membership values of the set at X. Then we have
e Empty set: h(x)={0} forevery x in X.
e Fullset: h(x)={1} forevery X in X .
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e Complete ignorance for X in X (all is possible): h(x)=[0,1].

e Set for a nonsense X: h(x)=0.

Keeping in view the above points, we can impose the constraint condition on a hesitant fuzzy h:
O0ch(x)c{l} forall x inX.

In other words, since a hesitant fuzzy set h is a collection of elements of the unit interval [0,1],
hence, the largest number of this collection, that is, union of this collection should be less than or equal

to 1.

There are different types of filters discussed in literature for several kinds of algebras. However,

we will collect only literature on (fuzzy) filters of Ro-algebra (see Table 1).

Table 1. literature on (fuzzy) filters of Ro-algebra.

order

Author Type of filter Type of algebra
number # P P &
I L.Z. Liu, K. T. Li [23] F.uzzy implicative and Boolean R -algebras

filters

J.S. Han, Y. B. Jun, H. S. !

2 , an un Fuzzy Fated-filters R,-algebras

Kim [24]

X.L.Ma,J Zhan, Y. X
3 2] s an Y Generalized fuzzy filters R, -algebras

J.Zhan, X. L. Ma, Y.B.J i
4 5] n . o (E, € V q)-fuzzy filters R, -algebras
5 Y.B. Jun, Y. J. Lee [26] Redefined fuzzy filters R, -algebras

_ R, -algebras

J. Zhan, Y. B. Jun, D. W. Pei . ) .. )

6 Falling fuzzy (implicative) filters

[27] and
application

MV-algebras, BL-algebras, Ro-

7 G.J. Wang [28] . .
algebras and multiple-valued logic

izati e, € -

g Y. B. Jun, S. Z. Song, J. Genera.llzatlons of (€, V q) R, -algebras

Zhan [29] fuzzy filters
9 Proposed Hesitant fuzzy MP filters and R, -algebras

Congruence relations

In literature, a lot of research work is demonstrated for fuzzy filters in several algebraic structures
including BCI /BCK -algebras, MTL -algebras, MV -algebras and others. The present work of
hesitant fuzzy set in MP filters of R -algebra is introduced for the first time. We hope that this work

will provide a strong foundation for researchers doing work in R, -algebras. In future work, we will

consider other types of fuzzy MP filters of R, -algebras, including: intuitionistic MP filters of R, -

algebras, interval-valued fuzzy MP filters of R -algebra and others.

AIMS Mathematics

Volume 7, Issue 7, 13410-13422.
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3. Hesitant fuzzy MP filters and congruence relation on Ro- algebras

In this section, we give the definitions of hesitant fuzzy MP filters and hesitant fuzzy congruence
relations on Ro- algebras. Then, we discuss their properties and equivalent characterizations. Finally,
their lattice structures are studied.

Let R be a Ro-algebra unless otherwise specified.

Definition 3.1. An HF set 7 of Ris called a hesitant fuzzy MP filter (briefly, HFMF) if it satisfies

the following conditions:

(1) n(x)=nd),

i) n(y)on(x)mnn(x—>vy) forall X,yeR.

Example 3.1. Let R =< {0, a,b,c, 1} ,A,Vv,—> be a set with the following tables (see Tables 2 and 3):

Table 2
- 0 a b c 1
0 1 1 1 1 1
a c 1 1 1 b
b b b 1 1 1
c a a b 1 1
1 0 a b c 1
Table 3
X —X
0 1
a c
b b
c a
1 0

Then R=<{0,a,b,c,1},A,v,—>> isa R -algebras. Forany xeR ,we define: 7(X) as follows:

n(0) = ,77(3) = ,ﬂ(b) = ,77(0) = 9 ,77(1) 1.
Then R is hesitant fuzzy MP ﬁlter of R.
Definition 3.2. Let R be R, -algebras and 8=1{<(X,Y),0(X,y)>|(X,yY) € RxR} is the hesitant
fuzzy equal relation (briefly, HFE) on R, and #:RxR —[0,1],0<8(X,y)<1. Then, & satisfy the
following conditions: forall X,y,Zz€R,
(i) 0(x,X)20(x,Y);
(i) 0(x,y)=06(y,X);
(iil) 6(x,2) 20(x,y)no(y,z).
Definition 3.3. Let R be a R, -algebras and & € HFHR], then for all X,y,zeR, # satisfy the

following conditions:

(iv) O(x > 2,y >2)20(X,Y), O(z—>X2>Y)D0(X,Y).

AIMS Mathematics Volume 7, Issue 7, 13410-13422.
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(V) 6xvz,yvz)o0(xy).

Then @ is called a hesitant fuzzy congruence relation (briefly, HFC) of R .
Theorem 3.1. Let 7€ HFMF[R] andX,Y,Z € R.Then

() If x<y,then n(X)=n(y),

(i) n(x > 2) 27(x > y) Ny > 2),

(iff) 7(X® ) 27() " 7(Y).

(iv) n(x®Yy) =n(x)"n(y),

(V) n(xAy)=n(x)nn(y),

(Vi) x<y > z2=n(2) 27(X) Nn(y).

Proof. (i).LetXx<y.Then X—Yy=1, which implies

n(y) 2n(X)Nn(x—y) =n(x)Nn(l) =n(x).

(if). Since x>y <(y—>2)—>(Xx—>2z) and (i), which implies that

(Y = 2) > (X—>2) 27(X—>Y)

by using Definition 3.1 (ii), we have

(X —2) 27(y > 2) (Y > 2) > (x> 2))

Therefore, we have (X —>2)on(X— y)nn(y = 2).

(iii). Since Y<X—>(X®Y) and using (i), we have (X —>X®Yy)on(y).
It follows from Definition 3.1 (ii)

n(X®Y) 2n(x) (X = X®Y) 27(X)N7(Y).

(iv). Since X®Yy<Xx,X®Yy<yand using (i), we have n(X®Yy)c<n(x),n(x®Yy)<n(y).Hence

n(x®y) < n(x)Nn(y), and by (iii) we have 7(x®Yy) =n(x)"n(y).

(V). By using (1) we have n(xAY)cn(X)nn(y). It from (i),(iv), that

nXAY) 2n(X®y) =n(x)Nn(y). Hence n(XAY)=n(X)Nn(y).

(vi). Assume that X<y —>Z,byusing X®Yy<z, (i) and (iii), we have

n(2) 2n(x®y)=n(x)Nn(y).

Theorem 3.2. Let 77 € HF[R]. The following are equivalent:

(i) ne HFMP[R],

(i) (vy e P([0,1])) R(A,y)# D implies R(A,y)#< isaMP filter of R.

Proof. (i)=(il). LetX,y €R be such that X,x —>YyeR(A y), forany yeP([0,1]).
Then 7(X)2y and n(X—Yy)2y.Hence n(y)on(x)Nn(x—>y)oy.

So yeR(Ay),wehave R(A,y)#O isa MP filter of R.

(i)=(). Let R(A,¥) beaMP filter of R, forany ye€P([0,]]) with R(A,y)=J.
Put 7(x)=y,, forany xe€R,then xeR(A ). Since R(A,»,) isa MP filter of R, we have
1eR(Ay,) andso (1) 2y, =n(X).

Now, forany X,yeR ,lety,=n(x) np(x—y).Then X,Xx—>YyeR(Ay,),so RAy)=J.
Hence R(A,y,) isa MP filter of R,so yeR(Ay,).Hence n(y)2y, =n(x)nn(x—=>Yy).
Theorem 3.3. Let 7,,7, € HFMFE(R), then 7, N1, e HFMF(R).

Proof. Let X,y en nn,. Then Xern, yen, and (7, nn,)(Y)=n(y)Nn,(y).

Now put X<y — z,which implies 7,(z) 27,(X) "17,(Y),77,(2) 27,(X) "7, (Y) -
Therefore (17, N1,)(2) =17,(2) N17,(2) 217, (X) N1 (Y) N7, (X) N1, (Y)

= (1, ")) N (17, N7, )(Y)

AIMS Mathematics Volume 7, Issue 7, 13410-13422.
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Hence, 7, nn, e HFMKR).

The above theorem can be generalized as follows.

Theorem 3.4. Let {7, |ie |} e HFMF(R). Then N7, € HFMF(R) where 7 =minn(X).
Theorem3.3 shows that, if 7,,77, e HFMF(R), then we have 7, N7, € HFMF(R). But the following
example shows that 77, U7, € HFMF(R) .

Example 3.2 R=1{0,a,b,1}, define two hesitant fuzzy set 7,1 in R by

n(0)=§,n(a):%,n(b)=§,n(l>=1,u(0>=§,u(a)=§,ﬂ(b>=3 ()=1;

3 9
So, we have 7,1 HFMF(R).
1 1
Let nUu=4{<X,n(X)Uu(X)>xeR}, in which (17U £)(0) =§,(77U/1)(a) =§,

(7w w)(b) = % (o)D) =1.But (7 u)b)< (7 L)0)N (77 )(0—>b), hence

nuu e HFMF(R).

After introducing the properties of HFMF, we discuss the properties of HFC on R, -algebra.
Theorem 3.5. Let R be a R, -algebra and @ € HFC(R). Then for any X,Y,Z <R the following
assertions are true:

(1) O(=x=y)=0(%.Y);

(i) OXAZ,YAZ)DO(XY), OX®Z,y®Z)26(X,Y);

(i) 0%, y)=0(y,Y);

(V) O(%,y)=0(x, XV Y)NO(XVY,Y),0(X,Y) = OX, XA Y) NO(XAY,Y);

V) 0X—>Yy,y—>xX)=0(1,x>Yy)ne1,y —>X);

(Vi) O(%Y)=0(X—>Y,y —>X);

(vii) If n(x)=6(1,x), thennn € HFMF(R).

Proof. Let X,Y,z€R

(i) Wehave @(—X,—y)=0(x—>0,y >0)26(X,Y).

Because —is reverse order of R, then 6(X,Y)=60(—X,—y) 2 0(—X,—Y),
Hence O(—X,—Yy)=0(X,Y).

(i) By using XAY=—(—XVv—Yy) and (i), which implies

OXAZ,YAZ) =0(—(—XV—=Z),~(—yV—2))=O0(—XV —Z,—yV—Z) DO0(—X,—y)=O0(X,Y) 5
Obviously, X®Yy=—(X—>—y) implies

OX®Y,y®2)=0(—~(X—>—=2),~(y >—2))=0(X>—Z,y >—Z) D 0(X,Y).

(iii) Obviously, 8(1,1)=0(xv1,xv1)D (X, X).

Conversely, by using (i) we have 0(X,X)=60(1AX,1AX)D20(L1).

Then O(X,y)=6(L1). Hence 6(X,y)=6(Y,Y).

(iv) Obviously, €(X,y) D 0(X,XVvYy)NnO(xXvYy,y).

Conversely, (X, XV Yy)=0(XvX,yvXx)20(X,y).

Similarly, we have O(XVY,Y)20(X,Y), OXXVY)NOXVY,y)DO(XY).

Hence €(X,Y)=0(X,XxVvY)NO(XVY,Y).

Similarly, we have 0(X,Yy)=0(X,XAY)NO(XAY,Y).

(V) Byusing (X—>Y)v(y—>X)=1and (iv), which implies
OX—>Y,y>X) =01, x> y)A0(LYy—>X).

AIMS Mathematics Volume 7, Issue 7, 13410-13422.
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(vi) Obviously, (X —> Y,y > X) D20(X—=> Y, X > X)NO(X—> X,y = X)
20(Y, X)NO(X, y)=0(X,Y).
Conversely, by using Xvy=((X—>Y)—>Y)A((Y—>X)—>X) and from (iv) and (V), we have
O(X,y) =0(X, XV Y)NO(XVY,Y)
=0(X,(X=>Y) 2> YAy > X) =>X)NO((X=>Y) > V)N (Y > X) > X),Y)
=0XA((X=>Y) =2 ¥), (Y > X) =>X)A(X=>Y) =)
NI((X=>Y) > V) ALY = X) > X), YA (Y = X) = X)),

20(X,(y > X) > X)NO(X—>Y) —>V,Y)
=01->X(y>X)>X)NI(X—>Y)—>Y,1->Y)
20(LYy—>X)NO(x—>V,1)
=01, X>y)NO1,y > X)=0(X>Y,y =>X).

Hence O(X,y)=0(X—>Y,y —>X).
(vii) Obviously, 7(1)=6(11) 2 6(1,x)=71(X).
n(y)=0(,y) 20(1Lx > y)NO(X—>Y,y) =0, x> y)NO(X > y,1>Y)
20(1L,x—>Y)NO(LX)=n(X)Nn(X—Y). Hence 7€ HFMF(R).

The following results are related with the equivalent characterization of hesitant fuzzy congruence
relations on R -algebra and hesitant fuzzy congruence relations on the direct product of R -algebra.

Theorem 3.6. Let R be a R, -algebra. dHFE(R), then 6 HFC(R)if and only if for all
X, Y, X, Y; € R(i =1,2), it satisfies the following conditions:

(1) O(=x,—X) 2 6(X,Y),

(i) 60, = %,, ¥, = ¥,) 200X, ¥) N O(X,,Y,) -

(i) 0%, v X, ¥, v ¥,) 2 0(X, ¥,) N O(X,,Y,)

Proof. The proofs are obvious.
Necessity. Let € e HFE[R] and for all X,y,x;,y, € R(i=1,2),

(i) O(—=x—=y)=0(x—>0,y >0)26(X,Yy).
(i) 00X = X%, ¥, = ¥,) 200X = X%, ¥, = %) MO, = X5, Y, = Y,)
20(%. %) N0, Y,).
(i) 00 v X, ¥,V Y,) 2006V X, ¥y V) NO(Y, v X, ¥,V Y,)
D 0%, Y,)NO(X,,Y,).
Therefore, @ € HFC[R].
Theorem 3.7. LetR,R, be two R, -algebra and 6, e HFC[R,], 6, e HFC[R,], we define
0,x0,: (R xR,)x(R xR,)—>[0,1]: (X5 Y1), (X, ¥,) € R xRy,
(6, x0)((X, Y1), (%, ¥,)) = 6, (X, %) N O, (Y, Y,) -
Then 6,x6, € HFC[R, xR,].
And any hesitant fuzzy congruence relation on 6, x6, has this representation.
Proof. First, we will prove 6, x6, € HFE[R, xR,] in the following three folds. For any
(X, y,)eR xR, (1=123),
(1) (6x6,)(04: Y1, Y1) = 6,065, %) N O,(Y1, 1) 26,0, %) N6, (Y, Y,)
=(6,x6,)((X,,Y,),(X,,Y,)). The reflexivity is established.

AIMS Mathematics Volume 7, Issue 7, 13410-13422.
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(i) (6 x0)((%, ), (%, ¥,)) = 6%, %) N6, (Y1,Y,) = 6(X, %) N O,(Y,, Y))
=(6,x6,)((X,,Y,),(X,Y,)) . The symmetry is established.

(ii) (6 xG)((X;, Y1), (X, ¥3)) = 6,(X, %) A O, (Y, Y3)

2 6,(X, %) NG (%, %) N0, (Y, Y,) N 6(Y,, Y3)

=(6,(X, %) N 6,(Y,,¥,)) N (6%, %) N6, (Y,, Y5))

=(6,x6,)((X,, ¥)), (X5, ¥,)) N (O, x6,)((X,,Y,), (X5, Y5)) . The transitivity is established.
Then we prove 6, x6, e HFC(R,xR,). Forany (x,y,)eR xR,(i=123),

(1) (G xO)((% Y1) = (% ¥3): (%, Y,) = (%, Y3))

= (01 ><l92)((X1 > XY, y3),(x2 XY, = ya))

=04 =%, % 2> X) N0, = Y5, Y, = Vs)

2 6,(X, %) N0, (Y, Y,) = (6, x0,)((X, ¥,), (X, ¥,)) -

Similarly, we have

(6, %0,)((%;, Y3) = (X, Y1), (X5, ¥3) = (%5, Y,)) 2(6,x0,)((%, ¥,),(X,, Y,)) -

(i) (6, x0)((%, YV (%5 Y3 (X5, Y1) V (%5, ¥3)

= (G x0)(% VX5, Y1V Y3), (6 V X, Y, v Y3))

=04V X X VX ) N0, (Y, V Yss Yo v Y3) 26,(X5 %) N6 (Y;5Y,)
=(6,x6,)((X,Y,),(X,,Y,)), hence, we have 6, x6, e HFC(R, xR,).

Let 0={<(XY),0(X,Y)> (X, y)e RxR} e HFC(R,xR,) and

6,:R xR, —>[0,1],0, :R xR, —>[0,1], as follows: For any X,X, €R,,Y,,Y, €R,,
‘91()(1’ Xz) = yke-éz ‘9(()(1’ Y),(XZ, ), ‘92()(1’ Xz) = y:éz 9(()(1’ Y (Xza ).

Then we prove 6, e HFC(R,), 6, e HFC(R,),and 6 =6, x0,.

First, we will take €, as an example to simplify the above equation. For any Y,Z€R,,
O((% Y A 2), (%0 Y A D) = 000X, Y) A (% ¥ X2, (%, Y) A (% V Xy, 2)

> 0((% ). (%, Y).

And 0((X,,2),(X,,2))=0((X, Y AZ) V(X A Xy, 2),(Xy, YAZ)V (X V Xy,2))
20((X, Y A2),(X,, YA Z)),

Hence, 0((X;,2),(X,,2)) 20((x,Y),(X,,Y)) .

Similarly, we can prove 6((X,Y),(X,,Y)) 2 0((X,,2),(X,,2)).

Hence 0((X,,Y),(X,,Y)) =0((x,2),(X,,2)) .

If the maximum element in R, is 1, then we have:

0, (X,%,) = 0((%,1),(X,,1)), forany X, X, €R,.

0,(¥,,¥,)=0((1,y,),(1,Y,)), forany V.Y, €R,.

Take 6, for example, to get ¢, € HFC(R)).

Firstly, we prove 6, e HFE(R)) ,forany X;,X, € R,, we prove it in the following three aspects.

Case 1. 6,(x,X)=06((x,D,(x,D) 20((x,1),(X,,1)) =6,(X;,%,),
Case 2. 49(X1, Xz) = 9(()(1 ,1),(X2,1)) = 9(()(2:1)’()(1’1)) = 9(X2, Xl),
Case 3. 006X =004, D.06,1) DA D, 06 DA D, 04 0) =A%) NG 06, %)
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Hence 6, € HFE(R)).
Then we prove 6, e HFC(R)) ,for any x €R (i=123), we prove it in the following two steps.
Casel. 91()(1 > X, X, ™ X3) = 9(()(1 - X3’1)1(X2 - X3’1))

= 0((%,1) = (%, 1), (%, 1) = (%, 1))

0%, 1), (%, ) = 6%, %,),
Similarly, 6(X, = X;,X, = X;) D 6(X,X,).
Case2. 6,(X, VX, X, vV X)=0((X VX,1),(X, v X,1))

= (% )V (%, 1, 0, DV (%, 1)

D 0((X,,1),(x,,1)) =6 (X, X,), Hence 6, e HFC(R)).
Finally, we prove 6 =0, x0, for any (X,¥,),(X,,Y,) € R xR,.
(6, x0,)((%, Y1) (X, Y,)) =6, (X, X,) N E,(Y,, Y,)
= 0((%, 1), 06, 1) MO, Y,), (1, Y,)
= 0((% YOV (% A X D (X, YV 0% AX DO, YV LY, AY,). 06 YV (LY, AY)
NO(%, Y1), (X5 ¥,)) = 0((X;, ¥,),(X,, Y,)) . Hence 6 < 6, %6, .
Conversely,
0% ¥1): (%, ¥,) 200X, Y1) (%0, YD) N O(Xy5 Y1), (%5 ¥2)) = 6, (X, %,) N O, (Y, Y,)
= (G xE)(%, Y1) (%, ¥,)) -
Then we have 8 > 6, x6,. Hence 0 =6, x6,.
Theorem 3.8. Let77€ HFMF(R), @ is the hesitation fuzzy relationship defined below. For any

X,YyeR, 0={<(XY),0(x,Yy)>(X,y)€R} , such that O(X,y)=n(X—Yy)nn(y —>X) .Then we
have €€ HFC(R).

Proof. Forany X,Y,Z€ R,

0(X,2) ={<(X,2),0(X,2) > (X,2) € R} . By using 77 € HFMF(R), we have

n(X—2) 2n(X—>y)Nn(y =>2),7(2 > X) 2172 = y) iy = X).

Hence, O(X,z)=n(X—>z)Nn(z— X)

2 ((X—=>y)nn(y = 2)) N (17(z = Y) Ny = X))

=X =>y)An(y = X)) N7z = y) Ny = 2))

=0(x,y)no(y,2),

ForanyX,Yy,Z€ R, we have 0(X,2) 2 0(X,y)NO(y,z).

Hence €€ HFC(R).

Finally, we discuss the relationship between HFMF and HFC in R, -algebra.

Theorem 3.9. (HFC(R)y,A) and (HFMF(R)y,A) is a complete lattice isomorphism.

Proof. @ is a hesitant fuzzy congruence relation of R, -algebra.

Let@={<(X,¥),0(X,¥) > (X,y) e RxR}and 1 ={<X,77(X)>| X € R}is the hesitation fuzzy MP filter.
We defined f :HFC(R) > HFMF(R).

and f(O)={<x,n(X)>xeR},n(x)=6(1,X), forall xeR.

First, according to Theorem 3.5 (vii)and f(6) € HFMF(M), and so the definition of f is reasonable.
Second, it is proved that f is a one-to-one mapping. If 7,(X) =17,(X), then we have
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foranyXxe R, 6,(1,X)=6,(1,X).

By using Theorem 3.5(V) and (vi), for any X,y € R ,we have

O(%Y)=6(X=>Y,y >X)=6(1,x>y)n6(Ly—>X)

=0,(Lx>Y)NO,(LYy->X)=6,(X> Y,y >X)=6,(XY),

Thatis, f is monotonic.

For any X,y € R ,define €={<(X,¥),0(X,¥)>(X,y¥) € RxR} as a hesitant fuzzy relation of R and
O(%, Y) =7(X = Y) \1(y > X).

It can be verified that @ meets all the conditions in Definitions 3.2 and 3.3, then € € HFC(R) and
f(@)=n. Therefore, f isfull. So f isa one-to-one mapping.

Finally, ensure the arbitrary union and arbitrary intersection of f .

Let {6.},., c HFC(R), define igle , ikEJIQ: RxR —[0,1] as follows:

(WO Y) = (U (X = V) (LY = X).

Then obviously, we have f (ig 6,)(1,x) = Y f(6)(1,x)= U1 (x).

Put (0 G)(1,X) =7, () =1(x),

Because it can be verified that Qé’i e HFC(R, we just verify that for any x e R,7(X) =07 (X)
is established and 6,(1,X) = 77,(X) .

Because 7(X)= N 6.(1,x) = Q(Qi (1,x)) = oy (x). Thus, f is lattice isomorphism.

4. Conclusions

The notions of hesitant fuzzy MP filter and hesitant fuzzy congruence relation of Ro-algebras were
explored in this article. The attributes of many equivalent characterizations and characterizations are next
investigated. The relationships between the hesitant fuzzy MP filter and the hesitant fuzzy congruence
relation have been discovered. The results obtained in this study, in our opinion, can be applied to
expanding other algebraic systems, such as BF-algebras and MV-algebras. We hope that this
publication has paved the way for future research into the theory of other logical algebras.

Summary of the manuscript
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