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Abstract: Recently different definitions of fractional derivatives are proposed for the development 

of real-world systems and mathematical models. In this paper, our main concern is to develop and 

analyze the effective numerical method for fractional order HIV/ AIDS model which is advanced 

approach for such biological models. With the help of an effective techniques and Sumudu transform, 

some new results are developed. Fractional order HIV/AIDS model is analyzed. Analysis for 

proposed model is new which will be helpful to understand the outbreak of HIV/AIDS in a 

community and will be helpful for future analysis to overcome the effect of HIV/AIDS. Novel 

numerical procedures are used for graphical results and their discussion. 
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1. Introduction 

Biomathematics is basically the theoretical analysis of mathematical models and abstraction of 

living organism to investigate the principle that governs the structure development and behavior of 

system [1]. HIV contaminates the enthusiastic cells and tissues of the human immune system. This 

infection in the absence of antiretroviral treatment (ART), medication treatment that evades or 

moderates the infection, develop rapidly. Generally, HIV is diffused from perinatal or blood diffusion 

and sexual transmission. The symptoms of HIV at initial stage may incorporate joint agony, fever, 

muscle throbs, chills, sore throat, broadened organs, sweats (especially during the evening), a red 

rash, shortcoming, tiredness and inadvertent weight reduction thrush [2–4]. The HIV plague is 

perceived as the plainest debacle in current era. Regardless of advances in the biomedical front to the 

mind-boggling standard of the individuals who require it the treatment remains inaccessible and the 

plague keeps on spreading [5]. NSFD techniques by Mickens [6] are practical for numerical mix of 

differential conditions logically [7]. Effect by changing fractional order on the disease spread is also 

studied in some models. HIV fractional order models have continuously been under discussion of 

researchers due to the dynamics of HIV epidemics [8–14]. The fractional order model that involves 

integration and transects differentiation with the help of fractional calculus can also help to 

understand better the explanation of real-world problems than ordinary derivatives [15,16]. Based on the 

power law, fractional derivative idea was introduced by Riemann Liouville. The new fractional 

derivative by utilizing the exponential kernel is proposed by Atangana [17,18]. Non-singular kernel 

fractional derivative that includes the trigonometric and exponential function related problems [19–

22] shows some related approaches for the models of epidemic. Recently a numerical scheme to 

solve the nonlinear fractional differential equation has been presented [28,29]. The proposed 

outbreak of this virus which effectively catches the time line for the COVID-19 disease conceptual 

model [23–25] is under discussion too nowadays. 

The feasible and accurate technique for obtaining numerical solutions for a class of partial 

integro-differential equations of fractional order in Hilbert space within appropriate kernel functions 

is studied in [30]. The solution methodology lies in generating an infinite conformable series solution 

with reliable wave pattern by minimizing the residual error functions and its related PDE’s are 

analyzed in [31–33]. The multistep generalized differential transform method is applied to solve the 

fractional-order multiple chaotic FitzHugh-Nagumo (FHN) neurons model [34]. Investigation of a 

novel fractional-order mathematical model that explains the behavior of COVID-19 in Ethiopia has 

been studied in [35]. The transmission of influenza has been explained by analyzing a diffusive 

epidemic model in [36]. The analysis of general fractional order system is investigated under ABC 

fractional order derivative [37]. 

In this paper, Section 2 consists of some basic fractional order derivative which is helpful to 

solve the epidemiological model. Sections 3 and 4 consist of generalized form of the model with 

Atangana-Baleanu in Caputo sense using Sumudu transforms, uniqueness and stability analysis of 

the model. A new technique with exponential decay kernel and Mittag-Leffler kernel respectively 

has been given in Section 5. Results and conclusion are discussed in Section 6 and Section 7 

respectively. 

2. Basic definitions 

Definition 2.1. Atangana-Baleanu in Caputo sense (ABC) is given by [18]: 

https://www.sciencedirect.com/topics/mathematics/hilbert-spaces
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𝐷𝜏
𝛼(𝜙(𝜏)) =

𝐴𝐵(𝛼)

𝑛−𝛼
∫

𝑑𝑛

𝑑𝑤𝑛
𝑓(𝑤)𝐸𝛼 {−𝛼

(𝜏−𝑤)𝛼

𝑛−𝛼
} 𝑑𝑤, 𝑛 − 1 < 𝛼 < 𝑛,

𝜏

𝑎𝑎
𝐴𝐵𝐶   (1) 

where 𝐸𝛼 is Mittag-Leffler function, 𝐴𝐵(𝛼) is normalization function and 𝐴𝐵(0) = 𝐴𝐵(1) = 1. 
The Laplace transform is obtained by: 

[ 𝐷𝜏
𝛼

𝑎
𝐴𝐵𝐶 𝜙(𝜏)](𝑠) =

𝐴𝐵(𝛼)

1−𝛼

𝑠𝛼𝐿[𝜙(𝜏)](𝑠)−𝑠𝛼−1𝜙(0)

𝑠𝛼+
𝑎

1−𝑎

.     (2) 

By using Sumudu transform (ST) for (1), we obtain 

𝑆𝑇[ 𝐷𝜏
𝛼

0
𝐴𝐵𝐶 𝜙(𝜏)](𝑠) =

𝐵(𝛼)

1−𝛼
{𝛼Γ(𝛼 + 1)𝐸𝛼 (−

1

1−𝛼
𝑤𝛼)} × [𝑆𝑇(𝜙(𝑡)) − 𝜙(0)].  (3) 

Definition 2.2. Atangana-Baleanu fractional integral of a function 𝜙(𝑡) of order 𝛼 is given by: 

𝐼𝜏
𝛼

𝑎
𝐴𝐵𝐶 (𝜙(𝜏)) =

1−𝛼

𝐵−𝛼
𝜙(𝜏) +

𝛼

𝐵(𝛼)Γ(𝛼)
∫ 𝜙(𝑠)(𝜏 − 𝑠)𝛼−1𝑑𝑠.
𝜏

𝑎
    (4) 

3. Fractional order HIV/AIDS model 

In this section, we consider the HIV/AIDS epidemic model proposed by Huo et al. [26] with a 

treatment compartment. By transforming the model given in [26] into Mittag-Leffler kernel with 

Atangana-Baleanu Caputo derivative is given in the following equations: 

𝐷𝑡
𝛼𝑆 =0

𝐴𝐵𝐶 Λ − 𝛽𝐼𝑆 − 𝜇1𝑆 − 𝑑𝑆, 

𝐷𝑡
𝛼𝐼 =0

𝐴𝐵𝐶 𝛽𝐼𝑆 + 𝛼1𝑇 − 𝑑𝐼 − 𝑘1𝐼 − 𝑘2𝐼, 

𝐷𝑡
𝛼𝐴 =0

𝐴𝐵𝐶 𝑘1𝐼 − (𝛿1 + 𝑑)𝐴 + 𝛼2𝑇, 

𝐷𝑡
𝛼𝑇 =0

𝐴𝐵𝐶 𝑘2𝐼 − 𝛼1𝑇 − (𝑑 + 𝛿2 + 𝛼2)𝑇, 

𝐷𝑡
𝛼𝑅 =0

𝐴𝐵𝐶 𝜇1𝑆 − 𝑑𝑅,           (5) 

with initial conditions 

𝐼(0) = 𝐼0, 𝑆(0) = 𝑆0, 𝐴(0) = 𝐴0, 𝑅(0) = 𝑅0, 𝑇(0) = 𝑇0 .    (6) 

Here susceptible patients is S(t), I(t) is infectious HIV-positive individuals, 𝐴(𝑡) is the number of 

people with full-blown AIDS, T(t) is the total number of people being treated with ARV and R(t) is 

recovered populations. Λ is the rate of recruitment of susceptible individuals into the population, 𝛽 

represents the interaction rate between susceptible individuals and infectious individuals, 𝜇1 is the 

rate at which susceptible individuals change their sexual behaviors per unit time, d is the natural 

death rate, 𝛼1 is the rate at which treated individuals leave T(t) compartment, 𝑘1 is the rate at 

which people leave the infectious class and become people with full-blown AIDS, 𝑘2 is the rate at 

which people with HIV are treated, 𝛿1 and 𝛿2 are the disease-induced death rates for people in A(t) 

and T(t) compartments, respectively. 𝛼2 represents the rate at which treated individuals leave the 

treated class and enter the AIDS compartment 𝐴(𝑡). By putting left hand side equal to zero, we get 

disease free and endemic equilibrium point. Disease-free equilibrium point is given as: 

𝐸∗ = (𝑆∗, 𝐼∗, 𝐴∗, 𝑇∗, 𝑅∗) = (
Λ

𝜇1 + 𝑑
, 0,0,0,

Λμ1
𝑑(𝑑 + 𝜇1)

) 
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and EEP is given as: 

𝑆0 =
Λ

𝛽𝐼0 + 𝜇1 + 𝑑
,               𝐼0 =

(𝑅0 − 1)(𝜇1 + 𝑑)

𝛽
,            𝐴0 =

𝑘1𝐼
0 + 𝛼2𝑇

0

𝑑 + 𝛿1
, 

𝑇0 =
𝑘2𝐼

0

𝛼1 + 𝑑 + 𝛿2 + 𝛼2
,            𝑅0 =

𝜇1Λ

𝑑(𝛽𝐼0 + 𝜇1 + 𝑑)
. 

Reproductive number of the system [27] is given as: 

𝑅0 =
𝛽𝛬(𝑑 + 𝛿2 + 𝛼1 + 𝛼2)

(𝜇1 + 𝑑)(𝑑 + 𝑘1 + 𝑘2)(𝑑 + 𝛿2 + 𝛼1 + 𝛼2) − 𝛼1𝑘2
. 

4. Mittag-Leffler kernel with Atangana-Baleanu Caputo derivative 

Applying Mittag-Leffler kernel with Atangana-Baleanu Caputo derivative on system (5), we get 

𝐵(𝛼)𝛼Γ(𝛼 + 1)

1 − 𝛼
𝐸𝛼 (−

1

1 − 𝛼
𝑤𝛼) 𝑆𝑇{𝑆(𝑡) − 𝑆(0)} = 𝑆𝑇[Λ − 𝛽𝐼𝑆 − 𝜇1𝑆 − 𝑑𝑆], 

𝐵(𝛼)𝛼Γ(𝛼 + 1)

1 − 𝛼
𝐸𝛼 (−

1

1 − 𝛼
𝑤𝛼) 𝑆𝑇{𝐼(𝑡) − 𝐼(0)} = 𝑆𝑇[𝛽𝐼𝑆 + 𝛼1𝑇 − 𝑑𝐼 − 𝑘1𝐼 − 𝑘2𝐼], 

𝐵(𝛼)𝛼Γ(𝛼+1)

1−𝛼
𝐸𝛼 (−

1

1−𝛼
𝑤𝛼) 𝑆𝑇{𝐴(𝑡) − 𝐴(0)} = 𝑆𝑇[𝑘1𝐼 − (𝛿1 + 𝑑)𝐴 + 𝛼2𝑇],   (7) 

𝐵(𝛼)𝛼Γ(𝛼 + 1)

1 − 𝛼
𝐸𝛼 (−

1

1 − 𝛼
𝑤𝛼) 𝑆𝑇{𝑇(𝑡) − 𝑇(0)} = 𝑆𝑇[𝑘2𝐼 − 𝛼1𝑇 − (𝑑 + 𝛿2 + 𝛼2)𝑇], 

𝐵(𝛼)𝛼Γ(𝛼 + 1)

1 − 𝛼
𝐸𝛼 (−

1

1 − 𝛼
𝑤𝛼) 𝑆𝑇{𝑅(𝑡) − 𝑅(0)} = 𝑆𝑇[𝜇1𝑆 − 𝑑𝑅]. 

Rearranging the above equations yields: 

𝑆𝑇(𝑆(𝑡)) = 𝑆(0) +
1 − 𝛼

𝐵(𝛼)𝛼Γ(𝛼 + 1)𝐸𝛼 (−
1

1 − 𝛼𝑤
𝛼)
× 𝑆𝑇[Λ − 𝛽𝐼𝑆 − 𝜇1𝑆 − 𝑑𝑆], 

𝑆𝑇(𝐼(𝑡)) = 𝐼(0) +
1 − 𝛼

𝐵(𝛼)𝛼Γ(𝛼 + 1)𝐸𝛼 (−
1

1 − 𝛼𝑤
𝛼)
× 𝑆𝑇[𝛽𝐼𝑆 + 𝛼1𝑇 − 𝑑𝐼 − 𝑘1𝐼 − 𝑘2𝐼], 

𝑆𝑇(𝐴(𝑡)) = 𝐴(0) +
1 − 𝛼

𝐵(𝛼)𝛼Γ(𝛼 + 1)𝐸𝛼 (−
1

1 − 𝛼𝑤
𝛼)
× 𝑆𝑇[𝑘1𝐼 − (𝛿1 + 𝑑)𝐴 + 𝛼2𝑇], (07) 

𝑆𝑇(𝑇(𝑡)) = 𝑇(0) +
1 − 𝛼

𝐵(𝛼)𝛼Γ(𝛼 + 1)𝐸𝛼 (−
1

1 − 𝛼𝑤
𝛼)
× 𝑆𝑇[𝑘2𝐼 − 𝛼1𝑇 − (𝑑 + 𝛿2 + 𝛼2)𝑇], 

𝑆𝑇(𝑅(𝑡)) = 𝑅(0) +
1 − 𝛼

𝐵(𝛼)𝛼Γ(𝛼 + 1)𝐸𝛼 (−
1

1 − 𝛼𝑤
𝛼)
× 𝑆𝑇[𝜇1𝑆 − 𝑑𝑅]. 

Using inverse transform on (7) gives 
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𝑆(𝑡) = 𝑆(0) + 𝑆𝑇−1 [
1 − 𝛼

𝐵(𝛼)𝛼Γ(𝛼 + 1)𝐸𝛼 (−
1

1 − 𝛼𝑤
𝛼)
× 𝑆𝑇{Λ − 𝛽𝐼𝑆 − 𝜇1𝑆 − 𝑑𝑆}], 

𝐼(𝑡) = 𝐼(0) + 𝑆𝑇−1 [
1 − 𝛼

𝐵(𝛼)𝛼Γ(𝛼 + 1)𝐸𝛼 (−
1

1 − 𝛼𝑤
𝛼)
× 𝑆𝑇{𝛽𝐼𝑆 + 𝛼1𝑇 − 𝑑𝐼 − 𝑘1𝐼 − 𝑘2𝐼}], 

𝐴(𝑡) = 𝐴(0) + 𝑆𝑇−1 [
1 − 𝛼

𝐵(𝛼)𝛼Γ(𝛼 + 1)𝐸𝛼 (−
1

1 − 𝛼𝑤
𝛼)
× 𝑆𝑇{𝑘1𝐼 − (𝛿1 + 𝑑)𝐴 + 𝛼2𝑇}], 

𝑇(𝑡) = 𝑇(0) + 𝑆𝑇−1 [
1 − 𝛼

𝐵(𝛼)𝛼Γ(𝛼 + 1)𝐸𝛼 (−
1

1 − 𝛼𝑤
𝛼)
× 𝑆𝑇{𝑘2𝐼 − 𝛼1𝑇 − (𝑑 + 𝛿2 + 𝛼2)𝑇}], 

𝑅(𝑡) = 𝑅(0) + 𝑆𝑇−1 [
1 − 𝛼

𝐵(𝛼)𝛼Γ(𝛼 + 1)𝐸𝛼 (−
1

1 − 𝛼𝑤
𝛼)
× 𝑆𝑇{𝜇1𝑆 − 𝑑𝑅}]. 

We next obtain the following recursive formula: 

𝑆𝑛+1(𝑡) = 𝑆𝑛(0) + 𝑆𝑇
−1 [

1 − 𝛼

𝐵(𝛼)𝛼Γ(𝛼 + 1)𝐸𝛼 (−
1

1 − 𝛼𝑤
𝛼)
× 𝑆𝑇{Λ − 𝛽𝐼𝑛𝑆𝑛 − 𝜇1𝑆𝑛 − 𝑑𝑆𝑛}], 

𝐼𝑛+1(𝑡) = 𝐼𝑛(0) + 𝑆𝑇
−1 [

1 − 𝛼

𝐵(𝛼)𝛼Γ(𝛼 + 1)𝐸𝛼 (−
1

1 − 𝛼𝑤
𝛼)
× 𝑆𝑇{𝛽𝐼𝑛𝑆𝑛 + 𝛼1𝑇𝑛 − 𝑑𝐼𝑛 − 𝑘1𝐼𝑛 − 𝑘2𝐼𝑛}], 

𝐴𝑛+1(𝑡) = 𝐴𝑛(0) + 𝑆𝑇
−1 [

1 − 𝛼

𝐵(𝛼)𝛼Γ(𝛼 + 1)𝐸𝛼 (−
1

1 − 𝛼𝑤
𝛼)
× 𝑆𝑇{𝑘1𝐼𝑛 − (𝛿1 + 𝑑)𝐴𝑛 + 𝛼2𝑇𝑛}], 

𝑇𝑛+1(𝑡) = 𝑇𝑛(0) + 𝑆𝑇
−1 [

1 − 𝛼

𝐵(𝛼)𝛼Γ(𝛼 + 1)𝐸𝛼 (−
1

1 − 𝛼𝑤
𝛼)
× 𝑆𝑇{𝑘2𝐼𝑛 − 𝛼1𝑇𝑛 − (𝑑 + 𝛿2 + 𝛼2)𝑇𝑛}] , 

𝑅𝑛+1(𝑡) = 𝑅𝑛(0) + 𝑆𝑇
−1 [

1−𝛼

𝐵(𝛼)𝛼Γ(𝛼+1)𝐸𝛼(−
1

1−𝛼
𝑤𝛼)

× 𝑆𝑇{𝜇1𝑆𝑛 − 𝑑𝑅𝑛}].      (8) 

And the solution of (8) is provided by 

𝑆(𝑡) = lim
𝑛→∞

𝑆𝑛(𝑡),          𝐼(𝑡) = lim
𝑛→∞

𝐼𝑛(𝑡) , 𝐴(𝑡) = lim
𝑛→∞

𝐴𝑛(𝑡), 

𝑇(𝑡) = lim
𝑛→∞

𝑇𝑛(𝑡) , 𝑅(𝑡) = lim
𝑛→∞

𝑅𝑛(𝑡). 

Theorem 4.1. Let (𝑋, |. |) be a Banach space and H a self-map of 𝑋satisfying 

‖𝐻𝑥 − 𝐻𝑟‖ ≤ 𝜃‖𝑋 − 𝐻𝑥‖ + 𝜃‖𝑥 − 𝑟‖, 

for all 𝑥, 𝑟 ∈ 𝑋, where 0 ≤ 𝜃 < 1. Suppose that H is Picard H-Stable. Let us consider Eq (8), and 
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we get 

𝑆𝑛+1(𝑡) = 𝑆𝑛(0) + 𝑆𝑇
−1 [

1 − 𝛼

𝐵(𝛼)𝛼Γ(𝛼 + 1)𝐸𝛼 (−
1

1 − 𝛼𝑤
𝛼)
× 𝑆𝑇{Λ − 𝛽𝐼𝑛𝑆𝑛 − 𝜇1𝑆𝑛 − 𝑑𝑆𝑛}], 

𝐼𝑛+1(𝑡) = 𝐼𝑛(0) + 𝑆𝑇
−1 [

1 − 𝛼

𝐵(𝛼)𝛼Γ(𝛼 + 1)𝐸𝛼 (−
1

1 − 𝛼
𝑤𝛼)

× 𝑆𝑇{𝛽𝐼𝑛𝑆𝑛 + 𝛼1𝑇𝑛 − 𝑑𝐼𝑛 − 𝑘1𝐼𝑛 − 𝑘2𝐼𝑛}], 

𝐴𝑛+1(𝑡) = 𝐴𝑛(0) + 𝑆𝑇
−1 [

1 − 𝛼

𝐵(𝛼)𝛼Γ(𝛼 + 1)𝐸𝛼 (−
1

1 − 𝛼
𝑤𝛼)

× 𝑆𝑇{𝑘1𝐼𝑛 − (𝛿1 + 𝑑)𝐴𝑛 + 𝛼2𝑇𝑛}], 

𝑇𝑛+1(𝑡) = 𝑇𝑛(0) + 𝑆𝑇
−1 [

1 − 𝛼

𝐵(𝛼)𝛼Γ(𝛼 + 1)𝐸𝛼 (−
1

1 − 𝛼𝑤
𝛼)
× 𝑆𝑇{𝑘2𝐼𝑛 − 𝛼1𝑇𝑛 − (𝑑 + 𝛿2 + 𝛼2)𝑇𝑛}], 

𝑅𝑛+1(𝑡) = 𝑅𝑛(0) + 𝑆𝑇
−1 [

1 − 𝛼

𝐵(𝛼)𝛼Γ(𝛼 + 1)𝐸𝛼 (−
1

1 − 𝛼𝑤
𝛼)
× 𝑆𝑇{𝜇1𝑆𝑛 − 𝑑𝑅𝑛}], 

where 
1−𝛼

𝐵(𝛼)𝛼Γ(𝛼+1)𝐸𝛼(−
1

1−𝛼
𝑤𝛼)

 is the fractional Lagrange multiplier. 

Theorem 4.2. 

𝐾[𝑆𝑛+1(𝑡)] = 𝑆(𝑛+1)(𝑡) 

= 𝑆𝑛(𝑡) + 𝑆𝑇
−1 [

1 − 𝛼

𝐵(𝛼)𝛼Γ(𝛼 + 1)𝐸𝛼 (−
1

1 − 𝛼𝑤
𝛼)
× 𝑆𝑇{Λ − 𝛽𝐼𝑛𝑆𝑛 − 𝜇1𝑆𝑛 − 𝑑𝑆𝑛}], 

𝐾[𝐼𝑛+1(𝑡)] = 𝐼(𝑛+1)(𝑡) 

= 𝐼𝑛(𝑡) + 𝑆𝑇
−1 [

1 − 𝛼

𝐵(𝛼)𝛼Γ(𝛼 + 1)𝐸𝛼 (−
1

1 − 𝛼
𝑤𝛼)

× 𝑆𝑇{𝛽𝐼𝑛𝑆𝑛 + 𝛼1𝑇𝑛 − 𝑑𝐼𝑛 − 𝑘1𝐼𝑛 − 𝑘2𝐼𝑛}], 

𝐾[𝐴𝑛+1(𝑡)] = 𝐴(𝑛+1)(𝑡) 

= 𝐴𝑛(𝑡) + 𝑆𝑇
−1 [

1−𝛼

𝐵(𝛼)𝛼Γ(𝛼+1)𝐸𝛼(−
1

1−𝛼
𝑤𝛼)

× 𝑆𝑇{𝑘1𝐼𝑛 − (𝛿1 + 𝑑)𝐴𝑛 + 𝛼2𝑇𝑛}],    (9) 

𝐾[𝑇𝑛+1(𝑡)] = 𝑇(𝑛+1)(𝑡) 

= 𝑇𝑛(𝑡) + 𝑆𝑇
−1 [

1 − 𝛼

𝐵(𝛼)𝛼Γ(𝛼 + 1)𝐸𝛼 (−
1

1 − 𝛼
𝑤𝛼)

× 𝑆𝑇{𝑘2𝐼𝑛 − 𝛼1𝑇𝑛 − (𝑑 + 𝛿2 + 𝛼2)𝑇𝑛}], 

𝐾[𝑅𝑛+1(𝑡)] = 𝑅(𝑛+1)(𝑡) 

= 𝑅𝑛(𝑡) + 𝑆𝑇
−1 [

1 − 𝛼

𝐵(𝛼)𝛼Γ(𝛼 + 1)𝐸𝛼 (−
1

1 − 𝛼𝑤
𝛼)
× 𝑆𝑇{𝜇1𝑆𝑛 − 𝑑𝑅𝑛}] 
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where K be a self-map. 

Proof. Using triangular inequality property with norm yields: 

                                ‖𝐾[𝑆𝑛(𝑡)] − 𝐾[𝑆𝑚(𝑡)]‖

≤ ‖𝑆𝑛(𝑡) − 𝑆𝑚(𝑡)‖

+ 𝑆𝑇−1 [
1 − 𝛼

𝐵(𝛼)𝛼Γ(𝛼 + 1)𝐸𝛼 (−
1

1 − 𝛼
𝑤𝛼)

× 𝑆𝑇{Λ + 𝛽‖(𝐼𝑛𝑆𝑛 − 𝐼𝑚𝑆𝑚)‖ + 𝜇1‖(𝑆𝑛 − 𝑆𝑚)‖ + 𝑑‖(𝑆𝑛 − 𝑆𝑚)‖}], 

                                ‖𝐾[𝐼𝑛(𝑡)] − 𝐾[𝐼𝑚(𝑡)]‖

≤ ‖𝐼𝑛(𝑡) − 𝐼𝑚(𝑡)‖

+ 𝑆𝑇−1 [
1 − 𝛼

𝐵(𝛼)𝛼Γ(𝛼 + 1)𝐸𝛼 (−
1

1 − 𝛼𝑤
𝛼)

× 𝑆𝑇{𝛽‖(𝐼𝑛𝑆𝑛 − 𝐼𝑚𝑆𝑚)‖ + 𝛼1‖(𝑇𝑛 − 𝑇𝑚)‖ + 𝑑‖(𝐼𝑛 − 𝐼𝑚)‖ + 𝑘1‖(𝐼𝑛 − 𝐼𝑚)‖

+ 𝑘2‖(𝐼𝑛 − 𝐼𝑚)‖}], 

                                ‖𝐾[𝐴𝑛(𝑡)] − 𝐾[𝐴𝑚(𝑡)]‖

≤ ‖𝐴𝑛(𝑡) − 𝐴𝑚(𝑡)‖

+ 𝑆𝑇−1 [
1 − 𝛼

𝐵(𝛼)𝛼Γ(𝛼 + 1)𝐸𝛼 (−
1

1 − 𝛼𝑤
𝛼)

× 𝑆𝑇{𝑘1‖(𝐼𝑛 − 𝐼𝑚)‖ + (𝛿1 + 𝑑)‖(𝐴𝑛 − 𝐴𝑚)‖ + 𝛼2‖(𝑇𝑛 − 𝑇𝑚)‖}], 

                                ‖𝐾[𝑇𝑛(𝑡)] − 𝐾[𝑇𝑚(𝑡)]‖

≤ ‖𝑇𝑛(𝑡) − 𝑇𝑚(𝑡)‖

+ 𝑆𝑇−1 [
1 − 𝛼

𝐵(𝛼)𝛼Γ(𝛼 + 1)𝐸𝛼 (−
1

1 − 𝛼𝑤
𝛼)

× 𝑆𝑇{𝑘2‖(𝐼𝑛 − 𝐼𝑚)‖ + 𝛼1‖(𝑇𝑛 − 𝑇𝑚)‖ + (𝑑 + 𝛿2 + 𝛼2)‖(𝑇𝑛 − 𝑇𝑚)‖}], 

‖𝐾[𝑅𝑛(𝑡)] − 𝐾[𝑅𝑚(𝑡)]‖ ≤ ‖𝑅𝑛(𝑡) − 𝑅𝑚(𝑡)‖ 

+𝑆𝑇−1 [
1−𝛼

𝐵(𝛼)𝛼Γ(𝛼+1)𝐸𝛼(−
1

1−𝛼
𝑤𝛼)

× 𝑆𝑇{𝜇1‖𝑆𝑛 − 𝑆𝑚‖ + 𝑑‖(𝑅𝑛 − 𝑅𝑚)‖}]. (10) 
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It’s satisfied the condition given in Theorem 4.1, when 

𝜃 = (0,0,0,0,0), 

𝜃 =

{
 
 
 
 
 
 

 
 
 
 
 
 
‖𝑆𝑛(𝑡) − 𝑆𝑚(𝑡)‖ × ‖−(𝑆𝑛(𝑡) − 𝑆𝑚(𝑡))‖ + Λ − 𝛽‖(𝐼𝑛𝑆𝑛 − 𝐼𝑚𝑆𝑚)‖

−𝜇1‖(𝑆𝑛 − 𝑆𝑚)‖ − 𝑑‖(𝑆𝑛 − 𝑆𝑚)‖

× ‖(𝐼𝑛(𝑡) − 𝐼𝑚(𝑡))‖ × ‖−(𝐼𝑛(𝑡) − 𝐼𝑚(𝑡))‖ + 𝛽‖(𝐼𝑛𝑆𝑛 − 𝐼𝑚𝑆𝑚)‖

+𝛼1‖(𝑇𝑛 − 𝑇𝑚)‖ − 𝑑‖(𝐼𝑛 − 𝐼𝑚)‖

−𝑘1‖(𝐼𝑛 − 𝐼𝑚)‖ − 𝑘2‖(𝐼𝑛 − 𝐼𝑚)‖

× ‖𝐴𝑛(𝑡) − 𝐴𝑚(𝑡)‖ × ‖−(𝐴𝑛(𝑡) − 𝐴𝑚(𝑡))‖+𝑘1‖(𝐼𝑛 − 𝐼𝑚)‖

−(𝛿1 + 𝑑)‖(𝐴𝑛 − 𝐴𝑚)‖ + 𝛼2‖(𝑇𝑛 − 𝑇𝑚)‖

× ‖𝑇𝑛(𝑡) − 𝑇𝑚(𝑡)‖ × ‖−(𝑇𝑛(𝑡) − 𝑇𝑚(𝑡))‖

+𝑘2‖(𝐼𝑛 − 𝐼𝑚)‖ − 𝛼1‖(𝑇𝑛 − 𝑇𝑚)‖

−(𝑑 + 𝛿2 + 𝛼2)‖(𝑇𝑛 − 𝑇𝑚)‖

× ‖𝑅𝑛(𝑡) − 𝑅𝑚(𝑡)‖ × ‖𝑅𝑛(𝑡) − 𝑅𝑚(𝑡)‖

+𝜇1‖𝑆𝑛 − 𝑆𝑚‖ − 𝑑‖(𝑅𝑛 − 𝑅𝑚)‖

. 

Hence, it’s stable. 

Theorem 4.3. The special solution of Eq (5) using the iteration method is unique singular solution. 

Proof. Take into consideration the following Hilbert space 𝐻 = 𝐿2((𝑝, 𝑞) × (0, 𝑇)) which can be 

defined as 

ℎ: (𝑝, 𝑞) × (0, 𝑇) → ℝ, ∬𝑔ℎ𝑑𝑔𝑑ℎ < ∞. 

Considering the following operator, we have 

𝜃(0,0,0,0,0), 𝜃 =

{
 
 

 
 

Λ − 𝛽𝐼𝑆 − 𝜇1𝑆 − 𝑑𝑆,
𝛽𝐼𝑆 + 𝛼1𝑇 − 𝑑𝐼 − 𝑘1𝐼 − 𝑘2𝐼,

𝑘1𝐼 − (𝛿1 + 𝑑)𝐴 + 𝛼2𝑇,

𝑘2𝐼 − 𝛼1𝑇 − (𝑑 + 𝛿2 + 𝛼2)𝑇,
𝜇1𝑆 − 𝑑𝑅.

 

By using 

𝑃((𝑆11 − 𝑆12, 𝐼21 − 𝐼22, 𝐴31 − 𝐴32, 𝑇41 − 𝑇42, 𝑅51 − 𝑅52), (𝑉1, 𝑉2, 𝑉3, 𝑉4, 𝑉5)). 

Where 

(𝑆11 − 𝑆12, 𝐼21 − 𝐼22, 𝐴31 − 𝐴32, 𝑇41 − 𝑇42, 𝑅51 − 𝑅52), 

we have 

{Λ − 𝛽(𝐼21 − 𝐼22)(𝑆11 − 𝑆12) − 𝜇1(𝑆11 − 𝑆12) − 𝑑(𝑆11 − 𝑆12)} 

≤ Λ‖𝑉1‖ + 𝛽‖𝐼21 − 𝐼22‖‖𝑆11 − 𝑆12‖‖𝑉1‖ 

+𝜇1‖𝑆11 − 𝑆12‖‖𝑉1‖ + 𝑑‖𝑆11 − 𝑆12‖‖𝑉1‖, 
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{
𝛽(𝐼21 − 𝐼22)(𝑆11 − 𝑆12) + 𝛼1(𝑇41 − 𝑇42)

−𝑑(𝐼21 − 𝐼22) − 𝑘1(𝐼21 − 𝐼22) − 𝑘2(𝐼21 − 𝐼22)
} 

≤ 𝛽‖𝐼21 − 𝐼22‖‖𝑆11 − 𝑆12‖‖𝑉2‖ + 𝛼1‖𝑇41 − 𝑇42‖‖𝑉2‖ 

+𝑑‖𝐼21 − 𝐼22‖‖𝑉2‖ + 𝑘1‖𝐼21 − 𝐼22‖‖𝑉2‖ + 𝑘2‖𝐼21 − 𝐼22‖‖𝑉2‖, 

{𝑘1(𝐼21 − 𝐼22) − (𝛿1 + 𝑑)(𝐴31 − 𝐴32) + 𝛼2(𝑇41 − 𝑇42)} 

≤ 𝑘1‖𝐼21 − 𝐼22‖‖𝑉3‖ + (𝛿1 + 𝑑)‖𝐴31 − 𝐴32‖‖𝑉3‖ + 𝛼2‖𝑇41 − 𝑇42‖‖𝑉3‖, 

{𝑘2(𝐼21 − 𝐼22) − 𝛼1(𝑇41 − 𝑇42) − (𝑑 + 𝛿2 + 𝛼2)(𝑇41 − 𝑇42)} 

≤ 𝑘2‖𝐼21 − 𝐼22‖‖𝑉4‖ + 𝛼1‖𝑇41 − 𝑇42‖‖𝑉4‖ + (𝑑 + 𝛿2 + 𝛼2)‖𝑇41 − 𝑇42‖‖𝑉4‖, 

{𝜇1(𝑆11 − 𝑆12) − 𝑑(𝑅51 − 𝑅52)} ≤ 𝜇1‖𝑆11 − 𝑆12‖‖𝑉5‖ + 𝑑‖𝑅51 − 𝑅52‖‖𝑉5‖. 

For convergence solution, we have 

‖𝑆 − 𝑆11‖, ‖𝑆 − 𝑆12‖ ≤
𝜒𝑒1
𝜛
, 

‖𝐼 − 𝐼21‖, ‖𝐼 − 𝐼22‖ ≤
𝜒𝑒2
𝜍
, 

‖𝐴 − 𝐴31‖, ‖𝐴 − 𝐴32‖ ≤
𝜒𝑒3
𝜐
, 

‖𝑇 − 𝑇41‖, ‖𝑇 − 𝑇42‖ ≤
𝜒𝑒4
𝜅
, 

and 

‖𝑅 − 𝑅51‖, ‖𝑅 − 𝑅52‖ ≤
𝜒𝑒5
𝜚
. 

Where 

𝜛 = 5(Λ + 𝛽‖𝐼21 − 𝐼22‖‖𝑆11 − 𝑆12‖ + 𝜇1‖𝑆11 − 𝑆12‖ + 𝑑‖𝑆11 − 𝑆12‖)‖𝑉1‖, 

𝜍 = 5(𝛽‖𝐼21 − 𝐼22‖‖𝑆11 − 𝑆12‖ + 𝛼1‖𝑇41 − 𝑇42‖ + 𝑑‖𝐼21 − 𝐼22‖ + 𝑘1‖𝐼21 − 𝐼22‖

+ 𝑘2‖𝐼21 − 𝐼22‖)‖𝑉2‖, 

𝜐 = 5(𝑘1‖𝐼21 − 𝐼22‖ + (𝛿1 + 𝑑)‖𝐴31 − 𝐴32‖ + 𝛼2‖𝑇41 − 𝑇42‖)‖𝑉3‖, 

𝜅 = 5(𝑘2‖𝐼21 − 𝐼22‖ + 𝛼1‖𝑇41 − 𝑇42‖ + (𝑑 + 𝛿2 + 𝛼2)‖𝑇41 − 𝑇42‖)‖𝑉4‖, 

𝜚 = 5(𝜇1‖𝑆11 − 𝑆12‖ + 𝑑‖𝑅51 − 𝑅52‖)‖𝑉5‖. 

But it is obvious that 

(Λ + 𝛽‖𝐼21 − 𝐼22‖‖𝑆11 − 𝑆12‖ + 𝜇1‖𝑆11 − 𝑆12‖ + 𝑑‖𝑆11 − 𝑆12‖) ≠ 0, 

(𝛽‖𝐼21 − 𝐼22‖‖𝑆11 − 𝑆12‖ + 𝛼1‖𝑇41 − 𝑇42‖ + 𝑑‖𝐼21 − 𝐼22‖ + 𝑘1‖𝐼21 − 𝐼22‖ + 𝑘2‖𝐼21 − 𝐼22‖) ≠ 0, 

(𝑘1‖𝐼21 − 𝐼22‖ + (𝛿1 + 𝑑)‖𝐴31 − 𝐴32‖ + 𝛼2‖𝑇41 − 𝑇42‖) ≠ 0, 

(𝑘2‖𝐼21 − 𝐼22‖ + 𝛼1‖𝑇41 − 𝑇42‖ + (𝑑 + 𝛿2 + 𝛼2)‖𝑇41 − 𝑇42‖) ≠ 0, 
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(𝜇1‖𝑆11 − 𝑆12‖ + 𝑑‖𝑅51 − 𝑅52‖) ≠ 0. 

Where ‖𝑉1‖, ‖𝑉2‖, ‖𝑉3‖, ‖𝑉4‖, ‖𝑉5‖ ≠ 0. 

Therefore, we have 

‖𝑆11 − 𝑆12‖ = 0, ‖𝐼21 − 𝐼22‖ = 0, ‖𝐴31 − 𝐴32‖ = 0, 

‖𝑇41 − 𝑇42‖ = 0, ‖𝑅51 − 𝑅52‖ = 0. 

Which yields that 

𝑆11 = 𝑆12,  𝐼21 = 𝐼22,  𝐴31 = 𝐴32,  𝑇41 = 𝑇42,  𝑅51 = 𝑅52. 

We get required results. Hence, it’s proved. 

5. Numerical scheme 

We consider the following non-linear fractional ordinary equation [28,29]. 

𝑆(𝑡) − 𝑆(0) =
(1 − 𝛼)

𝐴𝐵𝐶(𝛼)
{Λ − 𝛽𝐼(𝑡)𝑆(𝑡) − 𝜇1𝑆(𝑡) − 𝑑𝑆(𝑡)}

+
𝛼

Γ(𝛼) × 𝐴𝐵𝐶(𝛼)
∫ {Λ − 𝛽𝐼(𝜏)𝑆(𝜏) − 𝜇1𝑆(𝜏) − 𝑑𝑆(𝜏)}(𝑡 − 𝜏)

𝛼−1𝑑𝜏,
𝑡

0

 

𝐼(𝑡) − 𝐼(0) =
(1 − 𝛼)

𝐴𝐵𝐶(𝛼)
{𝛽𝐼(𝑡)𝑆(𝑡) + 𝛼1𝑇(𝑡) − 𝑑𝐼(𝑡) − 𝑘1𝐼(𝑡) − 𝑘2𝐼(𝑡)}

+
𝛼

Γ(𝛼) × 𝐴𝐵𝐶(𝛼)
∫ {𝛽𝐼(𝜏)𝑆(𝜏) + 𝛼1𝑇(𝜏) − 𝑑𝐼(𝜏) − 𝑘1𝐼(𝜏)
𝑡

0

− 𝑘2𝐼(𝜏)}(𝑡 − 𝜏)
𝛼−1𝑑𝜏, 

𝐴(𝑡) − 𝐴(0) =
(1 − 𝛼)

𝐴𝐵𝐶(𝛼)
{𝑘1𝐼(𝑡) − (𝛿1 + 𝑑)𝐴(𝑡) + 𝛼2𝑇(𝑡)} 

+
𝛼

Γ(𝛼)×𝐴𝐵𝐶(𝛼)
∫ {𝑘1𝐼(𝜏) − (𝛿1 + 𝑑)𝐴(𝜏) + 𝛼2𝑇(𝜏)}(𝑡 − 𝜏)

𝛼−1𝑑𝜏,
𝑡

0
 (11) 

𝑇(𝑡) − 𝑇(0) =
(1 − 𝛼)

𝐴𝐵𝐶(𝛼)
{𝑘2𝐼(𝑡) − 𝛼1𝑇(𝑡) − (𝑑 + 𝛿2 + 𝛼2)𝑇(𝑡)}

+
𝛼

Γ(𝛼) × 𝐴𝐵𝐶(𝛼)
∫ {𝑘2𝐼(𝜏) − 𝛼1𝑇(𝜏) − (𝑑 + 𝛿2 + 𝛼2)𝑇(𝜏)}(𝑡 − 𝜏)

𝛼−1𝑑𝜏,
𝑡

0

 

𝑅(𝑡) − 𝑅(0) =
(1 − 𝛼)

𝐴𝐵𝐶(𝛼)
{𝜇1𝑆(𝑡) − 𝑑𝑅(𝑡)} +

𝛼

Γ(𝛼) × 𝐴𝐵𝐶(𝛼)
∫ {𝜇1𝑆(𝜏) − 𝑑𝑅(𝜏)}(𝑡 − 𝜏)

𝛼−1𝑑𝜏.
𝑡

0

 

At a given point 𝑡𝑛+1, 𝑛 = 0,1,2,3, …, the above equation is reformulated as 

                                𝑆(𝑡𝑛+1) − 𝑆(0)

=
(1 − 𝛼)

𝐴𝐵𝐶(𝛼)
{Λ − 𝛽𝐼(𝑡𝑛)𝑆(𝑡𝑛) − 𝜇1𝑆(𝑡𝑛) − 𝑑𝑆(𝑡𝑛)}

+
𝛼

Γ(𝛼) × 𝐴𝐵𝐶(𝛼)
∫ {Λ − 𝛽𝐼(𝜏)𝑆(𝜏) − 𝜇1𝑆(𝜏) − 𝑑𝑆(𝜏)}(𝑡𝑛+1 − 𝜏)

𝛼−1𝑑𝜏,
𝑡𝑛+1

0
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                                𝐼(𝑡𝑛+1) − 𝐼(0)

=
(1 − 𝛼)

𝐴𝐵𝐶(𝛼)
{𝛽𝐼(𝑡𝑛)𝑆(𝑡𝑛) + 𝛼1𝑇(𝑡𝑛) − 𝑑𝐼(𝑡𝑛) − 𝑘1𝐼(𝑡𝑛) − 𝑘2𝐼(𝑡𝑛)}

+
𝛼

Γ(𝛼) × 𝐴𝐵𝐶(𝛼)
∫ {𝛽𝐼(𝜏)𝑆(𝜏) + 𝛼1𝑇(𝜏) − 𝑑𝐼(𝜏) − 𝑘1𝐼(𝜏)
𝑡𝑛+1

0

− 𝑘2𝐼(𝜏)}(𝑡𝑛+1 − 𝜏)
𝛼−1𝑑𝜏, 

                                 𝐴(𝑡𝑛+1) − 𝐴(0)

=
(1 − 𝛼)

𝐴𝐵𝐶(𝛼)
{𝑘1𝐼(𝑡𝑛) − (𝛿1 + 𝑑)𝐴(𝑡𝑛) + 𝛼2𝑇(𝑡𝑛)}

+
𝛼

Γ(𝛼) × 𝐴𝐵𝐶(𝛼)
∫ {𝑘1𝐼(𝜏) − (𝛿1 + 𝑑)𝐴(𝜏) + 𝛼2𝑇(𝜏)}(𝑡𝑛+1 − 𝜏)

𝛼−1𝑑𝜏,
𝑡𝑛+1

0

 

                                 𝑇(𝑡𝑛+1) − 𝑇(0)

=
(1 − 𝛼)

𝐴𝐵𝐶(𝛼)
{𝑘2𝐼(𝑡𝑛) − 𝛼1𝑇(𝑡𝑛) − (𝑑 + 𝛿2 + 𝛼2)𝑇(𝑡𝑛)}

+
𝛼

Γ(𝛼) × 𝐴𝐵𝐶(𝛼)
∫ {𝑘2𝐼(𝜏) − 𝛼1𝑇(𝜏) − (𝑑 + 𝛿2 + 𝛼2)𝑇(𝜏)}(𝑡𝑛+1 − 𝜏)

𝛼−1𝑑𝜏,
𝑡𝑛+1

0

 

                                𝑅(𝑡𝑛+1) − 𝑅(0)

=
(1 − 𝛼)

𝐴𝐵𝐶(𝛼)
{𝜇1𝑆(𝑡𝑛) − 𝑑𝑅(𝑡𝑛)}

+
𝛼

Γ(𝛼) × 𝐴𝐵𝐶(𝛼)
∫ {𝜇1𝑆(𝜏) − 𝑑𝑅(𝜏)}(𝑡𝑛+1 − 𝜏)

𝛼−1𝑑𝜏.
𝑡𝑛+1

0

 

Also, we have 

                                𝑆(𝑡𝑛+1) − 𝑆(0)

=
(1 − 𝛼)

𝐴𝐵𝐶(𝛼)
{Λ − 𝛽𝐼(𝑡𝑛)𝑆(𝑡𝑛) − 𝜇1𝑆(𝑡𝑛) − 𝑑𝑆(𝑡𝑛)}

+
𝛼

Γ(𝛼) × 𝐴𝐵𝐶(𝛼)
∑∫ {Λ − 𝛽𝐼(𝜏)𝑆(𝜏) − 𝜇1𝑆(𝜏) − 𝑑𝑆(𝜏)}(𝑡𝑛+1 − 𝜏)

𝛼−1𝑑𝜏,
𝑡𝑗+1

𝑡𝑗

𝑛

𝑗=0

 

                               𝐼(𝑡𝑛+1) − 𝐼(0)

=
(1 − 𝛼)

𝐴𝐵𝐶(𝛼)
{𝛽𝐼(𝑡𝑛)𝑆(𝑡𝑛) + 𝛼1𝑇(𝑡𝑛) − 𝑑𝐼(𝑡𝑛) − 𝑘1𝐼(𝑡𝑛) − 𝑘2𝐼(𝑡𝑛)}

+
𝛼

Γ(𝛼) × 𝐴𝐵𝐶(𝛼)
∑∫ {𝛽𝐼(𝜏)𝑆(𝜏) + 𝛼1𝑇(𝜏) − 𝑑𝐼(𝜏) − 𝑘1𝐼(𝜏)

𝑡𝑗+1

𝑡𝑗

𝑛

𝑗=0

− 𝑘2𝐼(𝜏)}(𝑡𝑛+1 − 𝜏)
𝛼−1𝑑𝜏, 

𝐴(𝑡𝑛+1) − 𝐴(0) 

=
(1 − 𝛼)

𝐴𝐵𝐶(𝛼)
{𝑘1𝐼(𝑡𝑛) − (𝛿1 + 𝑑)𝐴(𝑡𝑛) + 𝛼2𝑇(𝑡𝑛)} 

+
𝛼

Γ(𝛼)×𝐴𝐵𝐶(𝛼)
∑ ∫ {𝑘1𝐼(𝜏) − (𝛿1 + 𝑑)𝐴(𝜏) + 𝛼2𝑇(𝜏)}(𝑡𝑛+1 − 𝜏)

𝛼−1𝑑𝜏,
𝑡𝑗+1
𝑡𝑗

𝑛
𝑗=0  (12) 
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                                𝑇(𝑡𝑛+1) − 𝑇(0)

=
(1 − 𝛼)

𝐴𝐵𝐶(𝛼)
{𝑘2𝐼(𝑡𝑛) − 𝛼1𝑇(𝑡𝑛) − (𝑑 + 𝛿2 + 𝛼2)𝑇(𝑡𝑛)}

+
𝛼

Γ(𝛼) × 𝐴𝐵𝐶(𝛼)
∑∫ {𝑘2𝐼(𝜏) − 𝛼1𝑇(𝜏)

𝑡𝑗+1

𝑡𝑗

𝑛

𝑗=0

− (𝑑 + 𝛿2 + 𝛼2)𝑇(𝜏)}(𝑡𝑛+1 − 𝜏)
𝛼−1𝑑𝜏, 

                               𝑅(𝑡𝑛+1) − 𝑅(0)

=
(1 − 𝛼)

𝐴𝐵𝐶(𝛼)
{𝜇
1
𝑆(𝑡𝑛) − 𝑑𝑅(𝑡𝑛)}

+
𝛼

Γ(𝛼) × 𝐴𝐵𝐶(𝛼)
∑∫ {𝜇

1
𝑆(𝜏)− 𝑑𝑅(𝜏)}(𝑡𝑛+1 − 𝜏)

𝛼−1𝑑𝜏.
𝑡𝑗+1

𝑡𝑗

𝑛

𝑗=0

 

By using above equation, we have generalized form as: 

𝑆𝑛+1 = 𝑆0 +
(1 − 𝛼)

𝐴𝐵𝐶(𝛼)
{Λ − 𝛽𝐼(𝑡𝑛)𝑆(𝑡𝑛) − 𝜇1𝑆(𝑡𝑛) − 𝑑𝑆(𝑡𝑛)}

+
𝛼

Γ(𝛼) × 𝐴𝐵𝐶(𝛼)
∑(

{Λ − 𝛽𝐼𝑗𝑆𝑗 − 𝜇1𝑆𝑗 − 𝑑𝑆𝑗}

ℎ

𝑛

𝑗=0

×∫ (𝜏 − 𝑡𝑗−1)(𝑡𝑛+1 − 𝜏)
𝛼−1𝑑𝜏

𝑡𝑗+1

𝑡𝑗

−
{Λ − 𝛽𝐼𝑗−1𝑆𝑗−1 − 𝜇1𝑆𝑗−1 − 𝑑𝑆𝑗−1}

ℎ
× ∫ (𝜏 − 𝑡𝑗)(𝑡𝑛+1 − 𝜏)

𝛼−1𝑑𝜏
𝑡𝑗+1

𝑡𝑗

) , 

𝐼𝑛+1 = 𝐼0 +
(1 − 𝛼)

𝐴𝐵𝐶(𝛼)
{𝛽𝐼(𝑡𝑛)𝑆(𝑡𝑛) + 𝛼1𝑇(𝑡𝑛) − 𝑑𝐼(𝑡𝑛) − 𝑘1𝐼(𝑡𝑛) − 𝑘2𝐼(𝑡𝑛)}

+
𝛼

Γ(𝛼) × 𝐴𝐵𝐶(𝛼)
∑(

{𝛽𝐼𝑗𝑆𝑗 + 𝛼1𝑇𝑗 − 𝑑𝐼𝑗 − 𝑘1𝐼𝑗 − 𝑘2𝐼𝑗}

ℎ

𝑛

𝑗=0

×∫ (𝜏 − 𝑡𝑗−1)(𝑡𝑛+1 − 𝜏)
𝛼−1𝑑𝜏

𝑡𝑗+1

𝑡𝑗

−
{𝛽𝐼𝑗−1𝑆𝑗−1 + 𝛼1𝑇𝑗−1 − 𝑑𝐼𝑗−1 − 𝑘1𝐼𝑗−1 − 𝑘2𝐼𝑗−1}

ℎ

× ∫ (𝜏 − 𝑡𝑗)(𝑡𝑛+1 − 𝜏)
𝛼−1𝑑𝜏

𝑡𝑗+1

𝑡𝑗

) , 

𝐴𝑛+1 = 𝐴0 +
(1 − 𝛼)

𝐴𝐵𝐶(𝛼)
{𝑘1𝐼(𝑡𝑛) − (𝛿1 + 𝑑)𝐴(𝑡𝑛) + 𝛼2𝑇(𝑡𝑛)} 

+
𝛼

Γ(𝛼)×𝐴𝐵𝐶(𝛼)
∑ (

{𝑘1𝐼𝑗−(𝛿1+𝑑)𝐴𝑗+𝛼2𝑇𝑗}

ℎ
× ∫ (𝜏 − 𝑡𝑗−1)(𝑡𝑛+1 − 𝜏)

𝛼−1𝑑𝜏
𝑡𝑗+1
𝑡𝑗

−𝑛
𝑗=0

{𝑘1𝐼𝑗−1−(𝛿1+𝑑)𝐴𝑗−1+𝛼2𝑇𝑗−1}

ℎ
× ∫ (𝜏 − 𝑡𝑗)(𝑡𝑛+1 − 𝜏)

𝛼−1𝑑𝜏
𝑡𝑗+1
𝑡𝑗

) ,  (13) 
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𝑇𝑛+1 = 𝑇0 +
(1 − 𝛼)

𝐴𝐵𝐶(𝛼)
{𝑘2𝐼(𝑡𝑛) − 𝛼1𝑇(𝑡𝑛) − (𝑑 + 𝛿2 + 𝛼2)𝑇(𝑡𝑛)}

+
𝛼

Γ(𝛼) × 𝐴𝐵𝐶(𝛼)
∑(

{𝑘2𝐼𝑗 − 𝛼1𝑇𝑗 − (𝑑 + 𝛿2 + 𝛼2)𝑇𝑗}

ℎ
×∫ (𝜏 − 𝑡𝑗−1)(𝑡𝑛+1 − 𝜏)

𝛼−1𝑑𝜏
𝑡𝑗+1

𝑡𝑗

𝑛

𝑗=0

−
{𝑘2𝐼𝑗−1 − 𝛼1𝑇𝑗−1 − (𝑑 + 𝛿2 + 𝛼2)𝑇𝑗−1}

ℎ
× ∫ (𝜏 − 𝑡𝑗)(𝑡𝑛+1 − 𝜏)

𝛼−1𝑑𝜏
𝑡𝑗+1

𝑡𝑗

) , 

𝑅𝑛+1 = 𝑅0 +
(1 − 𝛼)

𝐴𝐵𝐶(𝛼)
{𝜇1𝑆(𝑡𝑛) − 𝑑𝑅(𝑡𝑛)}

+
𝛼

Γ(𝛼) × 𝐴𝐵𝐶(𝛼)
∑(

{𝜇1𝑆𝑗 − 𝑑𝑅𝑗}

ℎ
× ∫ (𝜏 − 𝑡𝑗−1)(𝑡𝑛+1 − 𝜏)

𝛼−1𝑑𝜏
𝑡𝑗+1

𝑡𝑗

𝑛

𝑗=0

−
{𝜇1𝑆𝑗−1 − 𝑑𝑅𝑗−1}

ℎ
× ∫ (𝜏 − 𝑡𝑗)(𝑡𝑛+1 − 𝜏)

𝛼−1𝑑𝜏
𝑡𝑗+1

𝑡𝑗

) . 

Thus, we get 

𝑆𝑛+1 = 𝑆0 +
(1 − 𝛼)

𝐴𝐵𝐶(𝛼)
{Λ − 𝛽𝐼(𝑡𝑛)𝑆(𝑡𝑛) − 𝜇1𝑆(𝑡𝑛) − 𝑑𝑆(𝑡𝑛)}

+
𝛼

𝐴𝐵𝐶(𝛼)
∑(

ℎ𝛼{Λ − 𝛽𝐼𝑗𝑆𝑗 − 𝜇1𝑆𝑗 − 𝑑𝑆𝑗}

Γ(𝛼 + 2)

𝑛

𝑗=0

× {(𝑛 + 1 − 𝑗)𝛼(𝑛 − 𝑗 + 2 + 𝛼) − (𝑛 − 𝑗)𝛼(𝑛 − 𝑗 + 2 + 2𝛼)}

−
ℎ𝛼{Λ − 𝛽𝐼𝑗−1𝑆𝑗−1 − 𝜇1𝑆𝑗−1 − 𝑑𝑆𝑗−1}

Γ(𝛼 + 2)
× {(𝑛 + 1 − 𝑗)𝛼+1 − (𝑛 − 𝑗)𝛼(𝑛 − 𝑗 + 1 + 𝛼)}) , 

𝐼𝑛+1 = 𝐼0 +
(1 − 𝛼)

𝐴𝐵𝐶(𝛼)
{𝛽𝐼(𝑡𝑛)𝑆(𝑡𝑛) + 𝛼1𝑇(𝑡𝑛) − 𝑑𝐼(𝑡𝑛) − 𝑘1𝐼(𝑡𝑛) − 𝑘2𝐼(𝑡𝑛)}

+
𝛼

𝐴𝐵𝐶(𝛼)
∑(

ℎ𝛼{𝛽𝐼𝑗𝑆𝑗 + 𝛼1𝑇𝑗 − 𝑑𝐼𝑗 − 𝑘1𝐼𝑗 − 𝑘2𝐼𝑗}

Γ(𝛼 + 2)

𝑛

𝑗=0

× {(𝑛 + 1 − 𝑗)𝛼(𝑛 − 𝑗 + 2 + 𝛼) − (𝑛 − 𝑗)𝛼(𝑛 − 𝑗 + 2 + 2𝛼)}

−
ℎ𝛼{𝛽𝐼𝑗−1𝑆𝑗−1 + 𝛼1𝑇𝑗−1 − 𝑑𝐼𝑗−1 − 𝑘1𝐼𝑗−1 − 𝑘2𝐼𝑗−1}

Γ(𝛼 + 2)

× {(𝑛 + 1 − 𝑗)𝛼+1 − (𝑛 − 𝑗)𝛼(𝑛 − 𝑗 + 1 + 𝛼)}) , 

𝐴𝑛+1 = 𝐴0 +
(1 − 𝛼)

𝐴𝐵𝐶(𝛼)
{𝑘1𝐼(𝑡𝑛) − (𝛿1 + 𝑑)𝐴(𝑡𝑛) + 𝛼2𝑇(𝑡𝑛)} 

+
𝛼

𝐴𝐵𝐶(𝛼)
∑

(

 
 

ℎ𝛼{𝑘1𝐼𝑗−(𝛿1+𝑑)𝐴𝑗+𝛼2𝑇𝑗}

Γ(𝛼+2)
× {
(𝑛 + 1 − 𝑗)𝛼(𝑛 − 𝑗 + 2 + 𝛼)

−(𝑛 − 𝑗)𝛼(𝑛 − 𝑗 + 2 + 2𝛼)
}

−
ℎ𝛼{𝑘1𝐼𝑗−1−(𝛿1+𝑑)𝐴𝑗−1+𝛼2𝑇𝑗−1}

Γ(𝛼+2)

× {(𝑛 + 1 − 𝑗)𝛼+1 − (𝑛 − 𝑗)𝛼(𝑛 − 𝑗 + 1 + 𝛼)} )

 
 
,𝑛

𝑗=0   (14) 
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𝑇𝑛+1 = 𝑇0 +
(1 − 𝛼)

𝐴𝐵𝐶(𝛼)
{𝑘2𝐼(𝑡𝑛) − 𝛼1𝑇(𝑡𝑛) − (𝑑 + 𝛿2 + 𝛼2)𝑇(𝑡𝑛)}

+
𝛼

𝐴𝐵𝐶(𝛼)
∑(

ℎ𝛼{𝑘2𝐼𝑗 − 𝛼1𝑇𝑗 − (𝑑 + 𝛿2 + 𝛼2)𝑇𝑗}

Γ(𝛼 + 2)

𝑛

𝑗=0

× {(𝑛 + 1 − 𝑗)𝛼(𝑛 − 𝑗 + 2 + 𝛼) − (𝑛 − 𝑗)𝛼(𝑛 − 𝑗 + 2 + 2𝛼)}

−
ℎ𝛼{𝑘2𝐼𝑗−1 − 𝛼1𝑇𝑗−1 − (𝑑 + 𝛿2 + 𝛼2)𝑇𝑗−1}

Γ(𝛼 + 2)

× {(𝑛 + 1 − 𝑗)𝛼+1 − (𝑛 − 𝑗)𝛼(𝑛 − 𝑗 + 1 + 𝛼)}) , 

𝑅𝑛+1 = 𝑅0 +
(1 − 𝛼)

𝐴𝐵𝐶(𝛼)
{𝜇1𝑆(𝑡𝑛) − 𝑑𝑅(𝑡𝑛)}

+
𝛼

𝐴𝐵𝐶(𝛼)
∑(

ℎ𝛼{𝜇1𝑆𝑗 − 𝑑𝑅𝑗}

Γ(𝛼 + 2)

𝑛

𝑗=0

× {(𝑛 + 1 − 𝑗)𝛼(𝑛 − 𝑗 + 2 + 𝛼) − (𝑛 − 𝑗)𝛼(𝑛 − 𝑗 + 2 + 2𝛼)}

−
ℎ𝛼{𝜇1𝑆𝑗−1 − 𝑑𝑅𝑗−1}

Γ(𝛼 + 2)
× {(𝑛 + 1 − 𝑗)𝛼+1 − (𝑛 − 𝑗)𝛼(𝑛 − 𝑗 + 1 + 𝛼)}) . 

6. Results and discussion 

The mathematical analysis of epidemic HIV/AIDS model with non-linear occurrence is studied 

to notice the sound effects of the fractional parameters. Following initial conditions and parameter 

values [26] are used for simulations: 

Λ = 0.55, 𝛽 = 0.03, 𝑑 = 0.0196, 𝑘1 = 0.15, 𝑘2 = 0.35, 𝛼1 = 0.08, 

𝛼2 = 0.03, 𝛿1 = 0.0909, 𝛿2 = 0.0667, 𝜇1 = 0.03, 𝑆(0) = 35, 

𝐼(0) = 24, 𝐴(0) = 15, 𝑇(0) = 8, 𝑅(0) = 0. 

Numerical solutions are obtained for different values by using ABC derivative according to steady 

state. The graphs of the approximate solutions against different fractional order 𝜑 are provided in 

Figures 1–5. In Figures 1–5, we observe that behavior of S(t), A(t) and R(t) start increasing by 

decreasing the fractional values while behavior of infected I(t) and T(t) start decreasing by 

decreasing fractional values which approaches to our steady state. It is easily observed that 

susceptible individual rise after certain time while both HIV infected and AIDS infected individual 

start decreasing after some rise due to treatment. Also in Figure 5, the recovered individual starts 

increasing rapidly due to treatment for different fractional values. Observation has been made at 

different fractional values according to given parameters to check the effect of fractional order model. 

Solutions for all compartments come to our desired accuracy and more reliable by decreasing 

fractional values. The simulations clearly show that we can obtain better approximation to control 

the disease by using fractional derivative as compared to classical derivative. 
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Figure 1. Numerical solution of S(t) population with fractional order. 

 

Figure 2. Numerical solution of I(t) population with fractional order. 

 

Figure 3. Numerical solution of A(t) population with fractional order. 
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Figure 4. Numerical solution of T(t) population with fractional order. 

 

Figure 5. Numerical solution of R(t) population with fractional order. 

7. Conclusions 

In this article, a new scheme with Mittag-Leffler law has been studied for HIV/AIDS with an 

antiretroviral treatment compartment. The existence and uniqueness of the solutions of the model has 

been proved by using iterative method and fixed-point theory. Advanced numerical approximation is 

used with non-singular and non-local kernel to solve for this kind of fractional order system. The 

advanced developed numerical technique converges to exact solution, also provides reliable and 

efficient results with large step size h which is mixture of the two-step Lagrange polynomial and the 

fundamental theorem of fractional calculus. We obtained very effective results for the proposed 

model. Simulation has been made to check the actual behavior of the HIV/AIDS and effect of 

treatment as we see rapid increase in recovered individual due to treatment. These results will be 

very helpful for the future study of HIV/AIDS and for control strategies with fractional operators. 
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