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Abstract: Recently different definitions of fractional derivatives are proposed for the development
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analyze the effective numerical method for fractional order HIV/ AIDS model which is advanced
approach for such biological models. With the help of an effective techniques and Sumudu transform,
some new results are developed. Fractional order HIV/AIDS model is analyzed. Analysis for
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1. Introduction

Biomathematics is basically the theoretical analysis of mathematical models and abstraction of
living organism to investigate the principle that governs the structure development and behavior of
system [1]. HIV contaminates the enthusiastic cells and tissues of the human immune system. This
infection in the absence of antiretroviral treatment (ART), medication treatment that evades or
moderates the infection, develop rapidly. Generally, HIV is diffused from perinatal or blood diffusion
and sexual transmission. The symptoms of HIV at initial stage may incorporate joint agony, fever,
muscle throbs, chills, sore throat, broadened organs, sweats (especially during the evening), a red
rash, shortcoming, tiredness and inadvertent weight reduction thrush [2-4]. The HIV plague is
perceived as the plainest debacle in current era. Regardless of advances in the biomedical front to the
mind-boggling standard of the individuals who require it the treatment remains inaccessible and the
plague keeps on spreading [5]. NSFD techniques by Mickens [6] are practical for numerical mix of
differential conditions logically [7]. Effect by changing fractional order on the disease spread is also
studied in some models. HIV fractional order models have continuously been under discussion of
researchers due to the dynamics of HIV epidemics [8-14]. The fractional order model that involves
integration and transects differentiation with the help of fractional calculus can also help to
understand better the explanation of real-world problems than ordinary derivatives [15,16]. Based on the
power law, fractional derivative idea was introduced by Riemann Liouville. The new fractional
derivative by utilizing the exponential kernel is proposed by Atangana [17,18]. Non-singular kernel
fractional derivative that includes the trigonometric and exponential function related problems [19—
22] shows some related approaches for the models of epidemic. Recently a numerical scheme to
solve the nonlinear fractional differential equation has been presented [28,29]. The proposed
outbreak of this virus which effectively catches the time line for the COVID-19 disease conceptual
model [23-25] is under discussion too nowadays.

The feasible and accurate technique for obtaining numerical solutions for a class of partial
integro-differential equations of fractional order in Hilbert space within appropriate kernel functions
is studied in [30]. The solution methodology lies in generating an infinite conformable series solution
with reliable wave pattern by minimizing the residual error functions and its related PDE’s are
analyzed in [31-33]. The multistep generalized differential transform method is applied to solve the
fractional-order multiple chaotic FitzHugh-Nagumo (FHN) neurons model [34]. Investigation of a
novel fractional-order mathematical model that explains the behavior of COVID-19 in Ethiopia has
been studied in [35]. The transmission of influenza has been explained by analyzing a diffusive
epidemic model in [36]. The analysis of general fractional order system is investigated under ABC
fractional order derivative [37].

In this paper, Section 2 consists of some basic fractional order derivative which is helpful to
solve the epidemiological model. Sections 3 and 4 consist of generalized form of the model with
Atangana-Baleanu in Caputo sense using Sumudu transforms, uniqueness and stability analysis of
the model. A new technique with exponential decay kernel and Mittag-Leffler kernel respectively
has been given in Section 5. Results and conclusion are discussed in Section 6 and Section 7
respectively.

2. Basic definitions

Definition 2.1. Atangana-Baleanu in Caputo sense (ABC) is given by [18]:
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(a) dar (t-w)«
ABCDE (p (1)) = %f;—f(w)Ea {—a Liniad }dw, n—-1<a<n, (1)

dwn n-a

where E, is Mittag-Leffler function, AB(a) is normalization function and AB(0) = AB(1) = 1.
The Laplace transform is obtained by:

AB(a) s®L[p(1)](s)—s*1¢(0)
[4BSDE ¢ (1)](s) = LD LI sT 9(0) @)

a
1-a s*+—
1-a

By using Sumudu transform (ST) for (1), we obtain

ST*ESDEB(D](s) = 22 {al (o + DE, (- = w)} x [ST(¢(6)) - $(0)]. 3)
Definition 2.2. Atangana-Baleanu fractional integral of a function ¢(t) of order a is given by:
L) = 5= (D + 5 Ja D)@ — ) s @)

3. Fractional order HIV/AIDS model

In this section, we consider the HIV/AIDS epidemic model proposed by Huo et al. [26] with a
treatment compartment. By transforming the model given in [26] into Mittag-Leffler kernel with
Atangana-Baleanu Caputo derivative is given in the following equations:

ABCDAS = A — BIS — iy S — dS,
ABCDET = BIS + ayT — dI — kql — k1,
ABCDEA = kil — (61 + d)A + a,T,
ABCDET =kl — T — (d + 6, + ay)T,
ABGDER = 1, S — dR, (5)
with initial conditions
1(0) = 15, 5(0) = S, A(0) = A, R(0) = Ry, T(0) =Ty (6)

Here susceptible patients is S(t), I(t) is infectious HIV-positive individuals, A(t) is the number of
people with full-blown AIDS, T(t) is the total number of people being treated with ARV and R(t) is
recovered populations. A is the rate of recruitment of susceptible individuals into the population, S
represents the interaction rate between susceptible individuals and infectious individuals, u; is the
rate at which susceptible individuals change their sexual behaviors per unit time, d is the natural
death rate, a; is the rate at which treated individuals leave T(t) compartment, k; is the rate at
which people leave the infectious class and become people with full-blown AIDS, k, is the rate at
which people with HIV are treated, §; and &, are the disease-induced death rates for people in A(t)
and T(t) compartments, respectively. a, represents the rate at which treated individuals leave the
treated class and enter the AIDS compartment A(t). By putting left hand side equal to zero, we get
disease free and endemic equilibrium point. Disease-free equilibrium point is given as:

E*—(S*I*A*T*R*)—( A 0,00, )
) ) ) ) #1+d””d(d+ﬂl)
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and EEP is given as:

§0 — A 10 = (Ro — (g +4d) 20 = kI° + a,T°
BI® + u, +d’ B ' d+6,
TO _ kZIO RO _ lllA
a, +d+ 6, +a,’ d(BI° + u; + d)

Reproductive number of the system [27] is given as:

B BA + 6, + ay + ay)
(A dFkFk)A+ S, Fag+ay) —aky

Ro

4. Mittag-Leffler kernel with Atangana-Baleanu Caputo derivative

Applying Mittag-Leffler kernel with Atangana-Baleanu Caputo derivative on system (5), we get
B(a)al'(a + 1) (
a

- %awa) ST{S(6) — S(0)} = ST[A — BIS — y.S — dS],

1—«a 1

B(a)al'(a + 1) ( 1 “)ST{It 1(0)} = STIBIS + oy T — dI — kyl — kI
el o (-—w (t) — I1(0)} = ST[BIS + ayT — dl — kyI — k1],
B(a)gaﬂ) E, (—Ewa) ST{A(t) — A(0)} = ST[kyI — (6, + d)A + a,T], )

B(a)al'(a + 1)
l1—«a

B I 1 1
(a);x_(z Ly (_ . awa) ST{R(£) = R(0)} = ST[w;S — dR].

1
E, (—mwa) ST{T(t) — T(0)} = ST[kyI — a,T — (d + &, + a,)T],

Rearranging the above equations yields:

ST(S(t)) = S(0) + 1-a - X ST[A — BIS — .S — dS],
B(a)al'(a + 1)E, (—mwa)
1—«a
ST(1(t)) = 1(0) + T X ST[BIS + a;T — dI — k41 — k,I],
B(a)al(a + 1)E, (— mWoc)
ST(A®®)) = A(0) + 1-a T X ST[kyI — (61 + d)A + a,T], (07)
B(a)al(a + 1)E, (— mer)
l1—«a
ST(T()) = T(0) + 7 X STk, — a;T — (d + &, + a,)T],
B(a)al(a + 1E, (—mwa)
ST(R(t)) = R(0) + 1-a x ST[u.S — dR].

B(@)al(a + DE, (— =z we)

Using inverse transform on (7) gives
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S(t) = S(0) + ST 1-a

- x ST{A — BIS — u,S — dS}|,
B(a)al'(a + 1)E, (— T—a W“)

1—«a

1(t) =1(0) + ST 1
B(a)al(a + 1E, (—

1 X ST{BIS + a,T — dI — k,I — k,1}|,
1—awa)

A(Y) = A(0) + ST! 1-a - x ST{k,I — (8, + A + a, T},
B(a)al(a + 1)E, (— — aw“)

1—«a

B(a)al(a + 1)E, (—

1

_Wa
1—-«a

1—«a

R(t) = R(0) + ST! - x ST{u.S — dR}|.

B(a)al'(a + 1)E, (— 1= aw“)

We next obtain the following recursive formula:

11—«
Sp+1(t) = $,(0) + ST

1 X ST{A — B1nSy — u1Sn — dSp}|,
B(a)al(a + 1)E, (— — wa)

1—
La (£) = 1,(0) + ST S X ST{B1ySp + ay T, — dl, — ky Ly — ey L},
B(a)al'(a + 1)E, (—mw“)
11—«
App1(t) = A, (0) + ST T X ST{kyl, — (81 + A, + T},
B(a)al'(a + 1)E, (—mwa)
l1—a
Tpi1(t) = T, (0) + ST 1 X ST{k,L,, — a; T, — (d + &, + a,) T},
B(a)al"(a + 1)Ea (—mw"‘)
_ -1 1-a _
Rns1(£) = Ry(0) + ST IB(WF(MEQ(_%W) X ST{i1S, an}]. (®)

And the solution of (8) is provided by
SO = lim S,(®),  1®) = lim L,(5),  A(®) = lim 4,(0),
T =limT,(6),  R@) = lim Ry(1).
Theorem 4.1. Let (X,]|.|) be a Banach space and H a self-map of Xsatisfying
|H, — Hpll < 011X — Hyll + 6llx — 7],
forall x,r € X, where 0 < 6 < 1. Suppose that H is Picard H-Stable. Let us consider Eq (8), and
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we get
1 11—«
Sn+1(t) = Sn(o) + ST 1 X ST{A — BLnSp — U1Sn — dSn} ’
B(a)al'(a + 1)E, (—mw‘?‘)
l1—a
In+1(t) = In(o) + ST X ST{ﬁInSn +ay Ty — dIn - klln - kzln} ’
B(a)al'(a + 1)E, (— - wé
1—a
Aps1(t) = Ap(0) + ST T X ST{k, I, — (6, + DA, + a; Ty},
B(a)al(a + 1)E, (—mwa)
1—«a
Tps1() = T, (0) + ST~ T X ST{kyly — a; Ty — (d + 8, + a) Ty},
B(a)al'(a + 1)E, (—mw"‘)
l1—a
Rn+1(t) = Rn(o) +ST71 1 X ST{.“l'Sn - an} ’
B(a)al'(a + 1)E, (—mwa)

1_
where 2

B(a)aF(a+1)Ea(—ﬁw“) is the fractional Lagrange multiplier.

Theorem 4.2.

K[Sp+1(®)] = Sn41)(®)

1—a
=S,(t)+ST1!

X ST{A — BI,S,, — 1S, — dS,}|,
B(a)al(a + 1E, (— — w“)

K[l1(0)] = Iineny ()

1 —
= I,(t) + ST ? X ST{BL,S, + a;yTy — d, — kL, — koL, }],
B(a)al'(a + 1)E, (— T—a wé
K[An+1(t)] = A(n+1) ®)
— -1 1-a _
=A,(t)+ ST [B(a)ar(amEa =) X ST{k,I, — (6, + A)A, + azTn}], 9)

K[Tpi1(®)] = Teneny ()

1—a

B(&)al(a + 1E, (— ——we)

K[Rn+1(t)] = R(n+1) ()

=T, (t)+ST?

X ST{kzIn - alTn - (d + 82 + az)Tn}“,

1—«a
=R,(t) + ST x ST{u;S, — dR,,}

B(@)al(a + DE, (- 12— we)
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where K be a self-map.

Proof. Using triangular inequality property with norm yields:
IK[Sn ()] — K[Sm (O]l
< [[Sn(®) = SOl

1—«a

+ST7? i
B(a)al(a + 1)E, (— = aw"‘)

X ST{A + B”(Insn - Imsm)” + :ul”(sn - Sm)” + d”(sn - Sm)”} ’

KL, (£)] = K[ (O]
< L) = Ll

l1—«a
B(a)al'(a + 1)E, (— T E aw“)
X ST{,B”(InSn - Imsm)” + al”(Tn - Tm)” + d”(In - Im)” + kl”(ln - Im)”

+ST1

+ k2”(1n - Im)”} )

”K[An(t)] - K[Am (t)] ”
< 14, (0) — A (D]

1—«a

B(a)al(a + 1DE, (—

+ ST 1

)

X ST{k||Un = L)l + (61 + DI (An = Al + 2 [|(T,, = Tm)II}],

IK[T.(©)] = K[Tr (O]l
< T (®) — T Ol
1—«a

+ST1
B(a)al(a + 1)E, (—mwa)

X STk | (I = L)l + @ [| (T, = Tl + (d + 6, + ap) [I(T, — Tm)”}}’

”K[Rn(t)] - K[Rm(t)]” < ”Rn(t) - Rm(t)”

1-a
B(a)aF(a+1)Ea(

+ST™! ) X ST{u111Sn = Spll + dll (R, — Rm)ll}l- (10)

T1-a

AIMS Mathematics Volume 7, Issue 7, 13383-13401.
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It’s satisfied the condition given in Theorem 4.1, when
6 = (OIOFOFOFO)F

(152(®) = SOl X [|=(8n(®) = S () || + A = Bl S = LnSm)
=t [l(Sn = Sl = dll(Sn = Sl
X ”(In(t) - Im(t))” X ”_(In(t) - m(t))” + ﬁ”(InSn - ImSm)”
+a1”(Tn - Tm)” - d”(ln - Im)”
—ky | (I = L) |l = k2l (L = L)
g={ X14n® = An®l x| =(4x(0) = An(O)[[+hall U = L)1
— (61 + DII(An — Al + a2 |(Ty — Tl
X ITa(8) = TNl X [|=(Ta(8) = T ()|
+k2”(1n - Im)” - al”(Tn - Tm)”
—(d + 8, + a) (T, = Tl
X [[Rn () = Rin (O X IR (¢) = R (Ol
\ +.u1”5n - Sm” - d”(Rn - Rm)”

Hence, it’s stable.

Theorem 4.3. The special solution of Eq (5) using the iteration method is unique singular solution.
Proof. Take into consideration the following Hilbert space H = L?((p,q) % (0,T)) which can be
defined as

h:(p,q) X (0,T) » R, f ghdgdh < .

Considering the following operator, we have

A— BIS — u,S — dS,
BIS + ayT — dI — kyI — k1,

6(0,0,0,0,0),6 = kil — (6, +d)A+ a,T,
kz[ - alT - (d + 52 + az)T,
By using
P((Sll - 512’ 121 - 122’A31 - A32’ T41 - T4-2’ R51 - RSZ)’ (Vll VZ: V3; V4: VS))
Where
(Sll - SlZ: 121 - 122,A31 - A32' T4—1 - T42' R51 - R52),
we have

{A =Bz — 12)(S11 — S12) — u1(S11 — S12) — d(S11 — S12)}
< AlVill + BllIz1 = 2 ll11S11 = Sa2 VAl
+ullS11 = Si2llIVA |l + dllS11 — Stz llIVAl,

AIMS Mathematics Volume 7, Issue 7, 13383-13401.
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{ Blz1 — 1) (S11 — S12) + a1 (Tag — Ty2) }
—d(ly1 — L) — ki(p1 — Iz) — ka(Iz1 — I33)

< Blll21 — IalllIS11 = S12lllVall + a1 [1Tay — T2 llIV2l

+dlllzr — Iz V2l + ky iy — D[NV + k2 llToy — D[l 1IVA],
{k1(Is1 — I52) — (61 + d)(A3y — Azz) + ap(Tay — Taz)}

< kqlllzs = Iz V3l + (81 + d)[Az1 — Az lllIVsl] + a2 lITsy — Tz IV,
{ko(Iz1 — I22) — a1 (Tyy — Taz) — (d + 82 + a3) (Tyy — Ty2)}

< kalllzy = L2 llIVAll + a4 [ITay — TuzlllIVall + (d + 62 + a)l|Taz — TazllIVAl,

{1 (811 = S12) — d(Rs1 — Rs2)} < pallS11 = Sp2llIVsll + dlIRs1 — Rs2 |l Vsl

For convergence solution, we have

Xel
S—=S1ILIS =S, £—,
| 1Ll 12l =
X
11— Ll 1] = Izl < =z
¢
X
14 = Azl 1A = Azl <=2,
X
IT = Taa Il IT = Tzl < =2,
and
X
IR — Rsyl, IR — Rs, |l < ==,
[
Where

@ = 5(A+ BllIz1 — I [1S11 — Siz2ll + pgl1S11 = Si2ll + dllS11 — Si2IDI VAl

¢ = 5(Blllz1 — I2l11S11 — S12ll + a1 ITay — Tazll + dlllzy — Iz |l + ky |11 — Il
+ ka0 = L2 DIV,

U = 5(kqlllzy — Izl + (61 + d) A3y — Aszll + @ ||Tsy — Tuz IDIIV5],

i =5k |llz1 — L2l + a4 [ITay — Tzl + (d + 87 + @) [[Tay — Tuz IDIIVA]],

0 = 5(u1(IS11 — S12ll + dllRs1 — Rs2[DIIVs]I.
But it is obvious that

(A + Blllzy — Iz l[1S11 — Sizll + 4 llS11 = Sizll + dllS11 — Si2l) # 0,
(Blllzy = 12211811 = Sizll + a1 lITay — Tazll + dlllz1 — Lozl + Ky lllz1 — Iz |l + kzllIzy — I2211) # 0,
(kqlllz1 = L2l + (81 + DAsy — Aszll + @2l Tay — Tyll) # O,
(k2lll21 — Izl + @4 l|Tay — Tuzll + (d + 63 + @)l Tay — Tuzll) # 0,

AIMS Mathematics Volume 7, Issue 7, 13383-13401.



13392

(1111811 = S12ll + dllRs1 — Rs2|1) # 0.

Where [[Vil, V21, V3l 1IV4ll, Vsl # 0.
Therefore, we have

1S11 = S12ll = 0, lllz1 — L2l = 0, ||A3y — A3zl = 0,
ITa1 — Tuzll = O, IRs1 — Rs2ll = 0.
Which yields that
S11 = S12) [21 = Ipz, A3y = Azp, Tyy = T2, Rsy = Rs;.

We get required results. Hence, it’s proved.
5. Numerical scheme

We consider the following non-linear fractional ordinary equation [28,29].

(1-0a)

SO =50 = per )

{A— [)’I(t)S(t) 11 S(t) — ds(t)}

+ I'(a

(1-0a)

TBCCa ){ﬁl(t)S(t)+a1T(t) dI(®) = ky (©) = kol ()}

1(t) —1(0) =

O ABC( )f (BI(D)S(7) + a, T (1) — dI(7) — k11 (7)
— kI(D)}(t — )% dr,

(1-a)
ABC(a)

A(t) — A(0) = {k11(t) — (61 + DA(E) + a,T(8)}

s Jo Ul (@ = (81 + DA®) + & T (@} - )* e,

(1-a)

T ~TO) = pees

{ko1(t) — oy T(t) — (d + 8, + ax)T(8)}

+ T'(a) X ABC(a)fO tkz

(1-a)
ABC(a)

R(®) —R(0) = {1 S(8) —dR(D} +

T(a) x ABC( )
At a given point t,,;, n =0,1,2,3,..., the above equation is reformulated as
S(tn+1) —S(0)

_(-a9 d
= 450 {A — BI(t,)S(tn) — 11 S(tn) — dS(t)}

tnt1

a
T x ABC(a)fO

(11)

() — ayT(t) — (d + 6, + a,)T(D)}(t — 1)* d7,

f (1S — dRD}(t — )% dr.

{A=BI@S() — w1y S(1) — dS(O}H(tnsy — D) Hdr,

AIMS Mathematics Volume 7, Issue 7, 13383-13401.
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I(tn+1) - 1(0)

- fé&?) (BIE)S (t) + @y T () = Al (tn) = kal (80) — kol (83

tn+1

a
" T(@) x 4BC(@) fo BIDS@) + &y T(7) - dI () = ky I (7)

— koI (1)} (tn41 — T)* 1,

A(tn+1) — A(0)

_ (-9
= BCCa ){kllan) (8 + DA(t) + aT(t)}

tn+1

{k1(1) = (81 + DA + a,T (D} (tnsr — N7,

F(a) X ABC(a) fo

T(tn+1) —T(0)
(1-a)
{kal(tn) — a1 T(ty) — (d + 62 + ax)T(t,)}

~ ABC(a)

a
T @) x ABC (@) fo

Also, we have

th+

{kl (1) — T (1) — (d + 6 + ax)T (D)} tp41 — 1) 1dt,

R(tn+1) — R(0)

1-a
= m{hs(tn) — dR(t,)}
tnt1

{1 S(@) = dR(D}(tn41 — D Hdr.

a
T (@) x ABC(a) fo

S(tn+1) —S(0)

_(-9 {A— BI(t,)S(t,) — uyS(t,) — dS(t,)}

~ ABC(a )

ABC(a)

a “ tj1 )
¥ T(a) x ABC(@) ]Zo J (A= BIDS@) = 1S(@) = dS @}ty = D™ e,

I(tn+1) 1(0)

) {,Bl(tn)s(tn) + alT(tn) dl(tn) - kll(tn) - kzl(tn)}

* @ 4@ JZO J, wi@so +aro) - e - o

— kI (D)} (tyyq — 1) M,

AIMS Mathematics

A(tn+1) — A(0)

(1-a)
= 5ece tal () = (B + DA + aaT (1))

+ rmazas Do J I (0) = (61 + DA + 6T (O} (tner = D%, (12)
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T(tn+1) - T(O)

) {ko1(ty) — oy T(ty) — (d + &, + a)T(t,)}

a - tjt1
+ T(a) X ABC(“);L {k2l(7) — ;T ()
—(d + 6, + ) T(D) ¥ty — )% M1,
R(tn+1) R(O)

1
leC( ){/‘15@ ) — dR(t )}

+ I'(a) x ABC(a) FZO J;j {#15(1') - dR(T)}(tn+1 — )« 4,

By using above equation, we have generalized form as:

1-a)
M{A — BI(t,)S(t,) — p1S(ty) — dS(ty)}

a o (A= BLS; — uyS; — dS;)
" T(a) x ABC(a) ]Zo < h

tj+1
X f (T - tj—l)(tn+1 —1)% tdt
t

J

Sne1=So +

_ {A - ﬂlj—lsj—l _h.u15j—1 - de—l} % tj+1(T B tj)(tn+1 _ T)a—ld.[> )
tj
PP A ) RIS T dl k1 kI
n+1 — 10 +m{ﬁ (tn) (tn) + aq (tn) - (tn) - (tn) A (tn)}
= ({BLS; + arT; — dI; — kyl; — ky 1}
) xABC(a)jZ)( n

tir1
X J (T - tj—l)(tn+1 - T)a_ldT
tj

B {BL_iSja + anTjy — dli_y — kylj_y — k14 }

h

Li+a
X f (T —t;)(tner — D d |,

tj
_ 1-a)

Apy1 =40 + ABC(a ){kll(tn) (61 + DA(t,) + a,T(t,)}
a {kalj—(81+d)Aj+a,T;} t; B

(@ xABC(@) 7=°( — X ftj]H(T — tj_1)(tner — D* T —

{k11j_1—(61+d)A]'_1+0.’2T]’_1}
h

féjﬂ(f = t;)(tnss — T)“‘ldr), (13)
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T8 A5C )){kzl(tn) T (t) = (d + 63 + )T (1))

n
a {kzI] - al’[}' - (d + 62 + az)’l}} tj+1 o
— t. _ - d
* I'(a) X ABC(a) Z < h X fti (t—tj-1)(tns1 — O T

kl_, —« —d+5 +a tjr1
_ { 24j-1 1 h( 2 2) 1} x (T _ tj)(tn+1 _ T)a_ld'l'> ’
tj

Thy1=To +

1-a)
m{ﬂls(tn) —dR(t,)}

{mS; — dR; } tjsa .
F(a) X ABC(a)Z ( f (T - —1)(tn+1 — 1) tdt

S - "1}><ftj (7= ) (tnsa —T)“_ldf>-

Rpy1=Ro +

Thus, we get

1-a)
ABC(a)

L z”: h*{A — BI;S; — 11, — dS;}
ABC(a) £ 4 I(a+2)
]:

x{(n+1—j)“(n—j+2+a)—(n N —j+2+2a)}

_h“{A—ﬁIj_ — 15; dSj- 1}x{(n+1_j)a+1_(n—j)a(n—j+1+a’)}>,

Sn+1 = SO + {A - ﬂl(tn)s(tn) - #1S(tn) - ds(tn)}

F(a + 2)

1 —
In+1 = IO + XT(Z)){ﬁI(tn)S(tn) + alT(tn) - dl(tn) - kll(tn) - kZI(tn)}

,_ @ i h{BLS; + ay Ty — dl; — kyl; — ke, ;)
ABC(a) & I'(a+2)
]:

x{n+1-)%n- j+2+a)—(n—j)“(n—j+2+2a)}
_ ha{ﬁlj_ -1 + a1 d] kllj—l - kZIj—l}
I‘(a + 2)

X{n+1-H'—n-N*n-j+1 +a)}>,

(1-0a)

A =A

1B (e Fal(tn) = (61 + d)A(tn) + ;T ()}

h{ky1j—(81+d)Aj+a,T )} y {(n +1-)Dn—j+2+ a)}
T(a+2) —n—-H*n—j+2+2a)
_ h{kaljo =81+ d)Aj 1 +arT)j-q) , (14)
r'a+2)
x{n+1=-N*"-m-N*n—j+1+a)}

a n
ABC(a) &J=0
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Tn+1 = TO xElB;( )){kzl(tn) alT(tn) - (d + 62 + aZ)T(tn)}
h“ {kz - Ti—(d+6; + az)T}
ABC(a) Z ( ['(a+2)
x{n+1- ])“(n j+2+a)—-(n—)Nn—j+2+2a)}
ha{kzlj—1 —ayTj 1 — (d+6, + 052)7}'—1}
- [(a + 2)
X{n+1-N**=(m-N*n—j+1+ a)}>,
1-a)
Rypy1=Ro + ABC(a ){,uls(tn) dR(tn)}

a = h“{,ulSJ — dR]}
+ ABC(a); < Ma+2)

x{n+1-)D*(n—j+2+a)—(n—))*(n—j+ 2+ 2a)}

_ ha{ﬂ15j—1 - de—1}
I'(a+2)

x{(n+1—j)“+1—(n—j)“(n—j+1+a)}>.

6. Results and discussion

The mathematical analysis of epidemic HIV/AIDS model with non-linear occurrence is studied
to notice the sound effects of the fractional parameters. Following initial conditions and parameter
values [26] are used for simulations:

A=055 =003 d=00196, Kk, =015k, =035  a, =0.08,
a, =003, & =00909, &,=00667, u, =003,  S(0)=S35
1(0) =24, A(0) =15 T0)=8  R(0)=0.

Numerical solutions are obtained for different values by using ABC derivative according to steady
state. The graphs of the approximate solutions against different fractional order ¢ are provided in
Figures 1-5. In Figures 1-5, we observe that behavior of S(t), A(t) and R(t) start increasing by
decreasing the fractional values while behavior of infected I(t) and T(t) start decreasing by
decreasing fractional values which approaches to our steady state. It is easily observed that
susceptible individual rise after certain time while both HIV infected and AIDS infected individual
start decreasing after some rise due to treatment. Also in Figure 5, the recovered individual starts
increasing rapidly due to treatment for different fractional values. Observation has been made at
different fractional values according to given parameters to check the effect of fractional order model.
Solutions for all compartments come to our desired accuracy and more reliable by decreasing
fractional values. The simulations clearly show that we can obtain better approximation to control
the disease by using fractional derivative as compared to classical derivative.
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Proposed Method
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Figure 1. Numerical solution of S(t) population with fractional order.

Proposed Method

30

$=1.0
$=0.95
$=0.90 | |
$=0.85

I(t) Population

0 5 10 15 20 25 30 35 40 45 50
t (time)

Figure 2. Numerical solution of I(t) population with fractional order.
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Figure 3. Numerical solution of A(t) population with fractional order.
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Proposed Method
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Figure 4. Numerical solution of T(t) population with fractional order.
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Figure 5. Numerical solution of R(t) population with fractional order.
7. Conclusions

In this article, a new scheme with Mittag-Leffler law has been studied for HIV/AIDS with an
antiretroviral treatment compartment. The existence and uniqueness of the solutions of the model has
been proved by using iterative method and fixed-point theory. Advanced numerical approximation is
used with non-singular and non-local kernel to solve for this kind of fractional order system. The
advanced developed numerical technique converges to exact solution, also provides reliable and
efficient results with large step size h which is mixture of the two-step Lagrange polynomial and the
fundamental theorem of fractional calculus. We obtained very effective results for the proposed
model. Simulation has been made to check the actual behavior of the HIV/AIDS and effect of
treatment as we see rapid increase in recovered individual due to treatment. These results will be
very helpful for the future study of HIVV/AIDS and for control strategies with fractional operators.
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