
http://www.aimspress.com/journal/Math

AIMS Mathematics, 7(7): 13344–13360.
DOI: 10.3934/math.2022737
Received: 22 February 2022
Revised: 24 April 2022
Accepted: 04 May 2022
Published: 17 May 2022

Research article

Hopf bifurcation analysis in a delayed diffusive predator-prey system with
nonlocal competition and generalist predator

Chenxuan Nie, Dan Jin* and Ruizhi Yang

Department of Mathematics, Northeast Forestry University, Harbin 150040, China

* Correspondence: Email: jindan720@163.com; Tel: +8615663526603.

Abstract: A delayed diffusive predator-prey system with nonlocal competition and generalist
predators is considered. The local stability of the positive equilibrium and Hopf bifurcation at positive
equilibrium is studied by using time delay as a parameter. In addition, the property of Hopf bifurcation
is analyzed using the center manifold theorem and normal form method. It is determined that time
delays can affect the stability of the positive equilibrium and induce spatial inhomogeneous periodic
oscillation of prey and predator population densities.

Keywords: predator-prey; delay; Hopf bifurcation; nonlocal competition
Mathematics Subject Classification: 34K18, 35B32

1. Introduction

Dynamic systems are widely used in nature, such as in infectious disease models [1, 2],
vegetation-water models [3], and population models [4, 5]. For example, Khan et al. [6] studied the
dynamics of pine wilt disease with variable population sizes and showed control strategies for the
possible elimination of the infection in the pine tree population. Khan et al. [7] obtained an efficient
iterated homotopy perturbation transform method (IHPTM) to solve a mathematical model of HIV
infection of CD4+ T cells. Khan et al. [8] proposed a new method to solve partial differential
equations arising in the fields of science and engineering. Among the applications of dynamical
systems, the predator-prey model is an important research topic [9–12]. Generally, predator-prey
models assume that the prey is the only food source of the predator [13–15].

In ecosystems, predators are usually generalist predators. They feed on many types of species and
can change their diet to another species when a focal prey population begins to run short [16–19].
In [17], the authors studied a predator-prey model with a generalist predator. They aimed to achieve
biological control by generalists [17]. In [18], the authors studied the spatial pattern formation of a
predator-prey model with generalist predator and the harvesting, refuge effect. To better understand the
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relationship between prey and generalist predators, Upadhyay and Agrawal [19] modified the Leslie-
Gower model as

dv
dt

= cv2 −
ω1v2

u + D1
,

to describe the growth law of generalist predators. The term dv2 represents the growth of predators,
where d is the mating rate of the predator. e is another source of food for predators. They considered
the following model: 

du
dt

= ru
(
1 −

u
K

)
−

ωuv
A + Bu + v

,

dv
dt

= v
(
dv −

ω1v(t − τ)
u(t − τ) + D1

)
.

(1.1)

u(t) and v(t) represent the prey and predator densities, respectively. The term ωu
A+Bu+v represents is the

Beddington-DeAngelis functional response. τ is the gestation delay of the predator. Upadhyay and
Agrawal studied the invariance, boundedness, and local and global stability and Hopf bifurcation.

In the real world, the spatial distribution of populations is often inhomogeneous, so it is more
practical to use a reaction-diffusion model to describe the relationship between predators and prey. In
addition, the reaction-diffusion predator-prey model shows more abundant dynamic properties such as
spatial patterns and spatial nonhomogeneous periodic solutions. Considering this factor, Liu
et al. [20] proposed the following model with the Crowley-Martin type functional response based on
the model (1.1). 

∂u(x, t)
∂t

= d1∆u + ru
(
1 −

u
K

)
−

auv
(1 + bu)(1 + cv)

,

∂v(x, t)
∂t

= d2∆v + v
(
dv −

sv(t − τ)
u(t − τ) + e

)
, x ∈ Ω, t > 0

∂u(x, t)
∂ν̄

=
∂v(x, t)
∂ν̄

= 0, x ∈ ∂Ω, t > 0

u(x, θ) = u0(x, θ) ≥ 0, v(x, θ) = v0(x, θ) ≥ 0, x ∈ Ω̄, θ ∈ [−τ, 0].

(1.2)

In the model (1.2), Liu et al. [20] used the Crowley-Martin-type functional response to reflect the
impact of predators on prey. This considered the effect of interference among predators. a, b, and c
represent the capture rate, handling time, and magnitude of interference among predators, respectively.
They mainly analyzed the instability and Hopf bifurcation induced by time delay [20]. Although
they pointed out that time delay may cause spatially inhomogeneous periodic solutions, the numerical
simulations did not show stably spatially inhomogeneous periodic solutions. This is because in the
delayed reaction-diffusion predator-prey model, the spatial nonhomogeneous Hopf bifurcation curve is
usually above the spatial homogeneous Hopf bifurcation curve. In addition, Turing instability cannot
occur for the model (1.2). For model (1.2), it is unfortunate that the inhomogeneous distribution of
prey and predator in space is not shown. This may be due to the lack of stable spatially inhomogeneous
periodic solutions in the delayed reaction-diffusion predator-prey model.

In nature, competition within populations exists widely, and this competition is often nonlocal since
resources are limited. In [21, 22], the authors suggested that the internal competition of the population
caused by the natural environment is related not only to the population density at the current location
but also to the population density nearby. They measured this effect by weighting and integrating,
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and modified the u
K as 1

K

∫
Ω

G(x, y)u(y, t)dy. G(x, y) is a kernel function. Wu and Song studied Hopf
and state-Hopf bifurcations in a diffusive predator-prey model with a nonlocal effect and delay [23].
Geng et al. studied a diffusive predator-prey model with nonlocal competition, including Hopf, Turing,
double-Hopf, and Turing-Hopf bifurcations [24]. The works in [25, 26] show that stable spatially
inhomogeneous periodic solutions often exist in predator-prey models with nonlocal competition.

Inspired by the above work, we assume there is nonlocal competition in prey and modify the
model (1.3) as follows.

∂u(x, t)
∂t

= d1∆u + ru
(
1 −

1
K

∫
Ω

G(x, y)u(y, t)dy
)
−

auv
(1 + bu)(1 + cv)

,

∂v(x, t)
∂t

= d2∆v + v
(
dv −

sv(t − τ)
u(t − τ) + e

)
, x ∈ Ω, t > 0

∂u(x, t)
∂ν̄

=
∂v(x, t)
∂ν̄

= 0, x ∈ ∂Ω, t > 0

u(x, θ) = u0(x, θ) ≥ 0, v(x, θ) = v0(x, θ) ≥ 0, x ∈ Ω̄, θ ∈ [−τ, 0].

(1.3)

where d1 and d2 represent the diffusion coefficients of prey and predator, respectively. The term
au

(1+bu)(1+cv) is the Crowley-Martin-type functional response. Ω is the prey and predator’s living region.
Just for the convenience of calculation, we choose Ω = (0, lπ), where l > 0. The boundary condition is
the Newman boundary condition, which means that the living region is closed and no prey and
predator enter or leave the region.

∫
Ω

G(x, y)u(y, t)dy represents the nonlocal competition effect, and
G(x, y) is the kernel function. We assume that the competition strength among prey individuals in the
habitat is the same; we choose G(x, y) = 1

lπ as in previous works [23–26].
To our knowledge, there is no work about the predator-prey model (1.3) with nonlocal competition

in prey and generalist predators from the point of Hopf bifurcation. The aim of this paper is to study
the combined effect of time delay and nonlocal competition on model (1.3). Compared with the
model (1.2), do new dynamics appear, such as stably spatially inhomogeneous periodic solutions and
Turing instability?

This paper is organized as follows: the stability and existence of Hopf bifurcation are studied in
Section 2, the property of Hopf bifurcation is analyzed in Section 3, and numerical simulations are
given in Section 4. Finally, a short conclusion is presented.

2. Stability analysis

(0, 0) and (K, 0) are boundary equilibria of system (1.3). The existence of positive equilibria of
system (1.3) was studied in [20], that is,

Lemma 2.1. [20] If the following condition

(H0) de < s < d(K + e), a >
cr(bs + d − bde)(de + dK − s)

d2K
, (2.1)

holds, then the model (1.3) has a coexisting equilibrium point (u∗, v∗), where

u∗ =
s − de

d
and v∗ =

r(bu∗ + 1)(K − u∗)
aK − cr(bu∗ + 1)(K − u∗)

.
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Next, we just denote E∗(u∗, v∗) as a coexisting equilibrium. Linearize system (1.3) at E∗(u∗, v∗)

∂u
∂t

(
u(x, t)
u(x, t)

)
= D

(
∆u(t)
∆v(t)

)
+ L1

(
u(x, t)
v(x, t)

)
+ L2

(
u(x, t − τ)
v(x, t − τ)

)
+ L3

(
û(x, t)
v̂(x, t)

)
, (2.2)

where

D =

(
d1 0
0 d2

)
, L1 =

(
a1 −a2

0 b1

)
, L2 =

(
0 0
b2 −b1

)
, L3 =

(
−a3 0

0 0

)
,

and
a1 =

abu∗v∗
(1 + bu∗)2(1 + cv∗)

> 0, a2 =
au∗

(1 + bu∗)(1 + cv∗)2 > 0, a3 =
ru∗
K

> 0,

b1 = dv∗ > 0, b2 =
sv2
∗

(e + u∗)2 > 0, û =
1
lπ

∫ lπ

0
u(y, t)dy.

The characteristic equation is

λ2 + Anλ + Bn + (Cn + b1λ)e−λτ = 0, n ∈ N0, (2.3)

where

A0 = a3 − a1 − b1, B0 = (a1 − a3)b1, C0 = −a1b1 + a3b1 + a2b2,

An = (d1 + d2)
n2

l2 − a1 − b1, Bn = d1d2
n4

l4 − (a1d2 + b1d1)
n2

l2 + a1b1,

Cn = b1d1
n2

l2 − a1b1 + a2b2, n ∈ N.

(2.4)

2.1. Nondelay model

When τ = 0, the characteristic equation (2.3) is

λ2 + (An + b1)λ + Bn + Cn = 0, n ∈ N0, (2.5)

where {
A0 + b1 = a3 − a1, B0 + C0 = a2b2,

An + b1 = (d1 + d2) n2

l2 − a1, Bn + Cn = d1d2
n4

l4 − a1d2
n2

l2 + a2b2, n ∈ N.
(2.6)

Make the following hypothesis:

(H1) An + b1 > 0, Bn + Cn > 0, for n ∈ N0,

(H2) a3 − a1 > 0 Ak + b1 < 0, (or Bk + Ck < 0), for some k ∈ N.

Theorem 2.2. For system (1.3), assume τ = 0 and (H0) holds. Then, E∗(u∗, v∗) is locally asymptotically
stable under (H1) and is Turing unstable under (H2).

Proof. If (H1) holds, then we can determine that the characteristic roots of (2.5) all have negative real
parts. Then, E∗(u∗, v∗) is locally asymptotically stable. If (H1) holds, then the characteristic roots of
(2.5) with k ∈ N have at least one positive real part, but with n = 0 all having a negative real part. This
implies that E∗(u∗, v∗) is Turing unstable. �
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Lemma 2.3. When τ = 0, the Turing instability of E∗(u∗, v∗) cannot occur for the system (1.2), which
lacks the nonlocal competition term.

Proof. When τ = 0, for the system (1.3) without nonlocal competition, the characteristic equation
(2.3) is

λ2 + Tnλ + Dn = 0, n ∈ N0, (2.7)

where

Tn = (d1 + d2)
n2

l2 − (a1 + â),

Dn = d1d2
n4

l4 − d2(a1 + â)
n2

l2 + a2b2.

Assume E∗(u∗, v∗) is locally asymptotically stable in the absence of spatial diffusion, which means that
a1 + â < 0. However, Tn > 0 and Dn > 0 when a1 + â < 0 holds. Then, the Turing instability of
E∗(u∗, v∗) cannot occur. �

2.2. Delay model

Let iω (ω > 0) be a solution of Eq (2.3); then,

−ω2 + iωAn + Bn + (Cn + b1iω)(cosωτ − isinωτ) = 0.

We can obtain

cosωτ =
ω2(Cn − b1An) − BnCn

C2
n + d2ω2 , sinωτ =

ω
(
AnCn − Bnb1 + b1ω

2
)

C2
n + b2

1ω
2

.

It leads to
ω4 + ω2

(
A2

n − 2Bn − b2
1

)
+ B2

n −C2
n = 0. (2.8)

Let z = ω2; then, (2.8) becomes

z2 + z
(
A2

n − 2Bn − b2
1

)
+ B2

n −C2
n = 0, (2.9)

and the roots of (2.9) are

z± =
1
2

[−Pn ±

√
P2

n − 4QnRn],

where Pn = A2
n − 2Bn − b2

1, Qn = Bn + Cn, and Rn = Bn − Cn. If (H0) and (H1) hold, Qn > 0 (n ∈ N0).
By direct calculation, we have

P0 = (a1 − a3)2 > 0, R0 = −2(a3 − a1)b1 − a2b2 < 0

Pk =

(
a1 − d1

n2

l2

)2

+ d2
n2

l2

(
d2

n2

l2 − 2b1

)
,

Rk = d1d2
k4

l4 − (2b1d1 + a1d2)
k2

l2 + 2a1b1 − a2b2, for k ∈ N.
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Define

W1 = {n|Rn < 0, n ∈ N0},

W2 = {n|Rn > 0, Pn < 0, P2
n − 4QnRn > 0, n ∈ N},

W3 = {n|Rn > 0, P2
n − 4QnRn < 0, n ∈ N},

and

ω±n =
√

z±n , τ j,±
n =

 1
ω±n

arccos(V (n,±)
cos ) + 2 jπ, V (n,±)

sin ≥ 0,
1
ω±n

[
2π − arccos(V (n,±)

cos )
]

+ 2 jπ, V (n,±)
sin < 0.

V (n,±)
cos =

(ω±n )2(Cn − b1An) − BnCn

C2
n + b2

1(ω±n )2
,

V (n,±)
sin =

ω±n
(
AnCn − Bnb1 + b1(ω±n )2

)
C2

n + b2
1(ω±n )2

.

(2.10)

We have the following lemma.

Lemma 2.4. Assuming that (H0) and (H1) hold, the following results hold:
(1) Eq (2.3) has a pair of purely imaginary roots ±iω+

n at τ j,+
n for j ∈ N0 and n ∈W1.

(2) Eq (2.3) has two pairs of purely imaginary roots ±iω±n at τ j,±
n for j ∈ N0 and n ∈W2.

(3) Eq (2.3) has no purely imaginary root for n ∈W3.

Lemma 2.5. Assume (H0) and (H1) hold. Then, Re( dλ
dτ )|τ=τ j,+

n
> 0, Re(dλ

dτ )|τ=τ j,−
n
< 0 for n ∈ W1 ∪W2

and j ∈ N0.

Proof. By (2.3), we have

(
dλ
dτ

)−1 =
2λ + An + b1e−λτ

(Cn + b1λ)λe−λτ
−
τ

λ
.

Then

[Re(
dλ
dτ

)−1]τ=τ j,±
n

= Re[
2λ + An + b1e−λτ

(Cn + b1λ)λe−λτ
−
τ

λ
]τ=τ j,±

n

= [
1

C2
n + b2

1ω
2
(2ω2 + A2

n − 2Bn − b2
1)]τ=τ j,±

n

= ±[
1

C2
n + b2

1ω
2

√
(A2

n − 2Bn − b2
1)2 − 4(B2

n −C2
n)]τ=τ j,±

n
.

Therefore, Re( dλ
dτ )|τ=τ j,+

n
> 0, Re(dλ

dτ )|τ=τ j,−
n
< 0. �

Denote τ∗ = min{τ0
n| n ∈W1 ∪W2}. We have the following theorem:

Theorem 2.6. Assume that (H0) and (H1) hold. Then, the following statements are true for
system (1.3):

(1) E∗(u∗, v∗) is locally asymptotically stable for τ > 0 whenW1 ∪W2 = ∅.
(2) E∗(u∗, v∗) is locally asymptotically stable for τ ∈ [0, τ∗) whenW1 ∪W2 , ∅.
(3) E∗(u∗, v∗) is unstable for τ ∈ (τ∗, τ∗ + ε) for some ε > 0 whenW1 ∪W2 , ∅.
(4) Hopf bifurcation occurs at (u∗, v∗) when τ = τ

j,+
n (τ = τ

j,−
n ), j ∈ N0, n ∈W1 ∪W2.
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3. Property of Hopf bifurcation

In [27, 28], we studied the property of Hopf bifurcation. For fixed j ∈ N0 and n ∈ W1 ∪W2, we
denote τ̃ = τ

j,±
n . Let ū(x, t) = u(x, τt) − u∗ and v̄(x, t) = v(x, τt) − v∗. Drop the bar, and (1.3) can be

written as
∂u
∂t

= τ[d1∆u + r(u + u∗)
(
1 −

1
lπK

∫ lπ

0
(u(y, t) + u∗)dy

)
−

a(u + u∗)(v + v∗)
(1 + b(u + u∗))(1 + c(v + v∗))

],

∂v
∂t

= τ[d2∆v + (v + v∗)
(
d(v + v∗) −

s(v(t − 1) + v∗)
(u(t − 1) + u∗) + e

)
].

(3.1)

We rewrite system (4) as follows:

∂u
∂t

=τ[d1∆u + a1u − a2v − a3û + α1u2 −
r
K

uû + α2uv + α3v2 + α4u3 + α5u2v + α6uv2

+ α7v3] + h.o.t.,
∂v
∂t

=τ[d2∆v + b1v + b2u(t − 1) − b1v(t − 1) + dv2 + β1u2(t − 1) + β2u(t − 1)v(t − 1)

+ β3u2(t − 1) + β4u(t − 1)v + β5v(t − 1)v + β6u3(t − 1) + β7u2(t − 1)v(t − 1)
+ β8u(t − 1)v2(t − 1) + β9v3(t − 1) + β10u2(t − 1)v + β11v2(t − 1)v] + h.o.t.,

(3.2)

where

α1 =
abv∗

(1 + bu∗)3(1 + cv∗)
, α2 = −

a
(1 + bu∗)2(1 + cv∗)2 , α3 =

acu∗
(1 + bu∗)(1 + cv∗)3

α4 = −
ab2v∗

(1 + bu∗)4(1 + cv∗)
, α5 =

ab
(1 + bu∗)3(1 + cv∗)2 ,

α6 =
ac

(1 + bu∗)2(1 + cv∗)3 , α7 = −
ac2u∗

(1 + bu∗)(1 + cv∗)4 ,

β1 = −
sv2
∗

(e + u∗)3 , β2 =
sv∗

(e + u∗)2 , β3 = 0, β4 =
sv∗

(e + u∗)2 , β5 = −
s

e + u∗
,

β6 =
sv2
∗

(e + u∗)4 , β7 = −
sv∗

(e + u∗)3 , β8 = 0, β9 = 0, β10 = −
sv∗

(e + u∗)3 , β11 = 0.

Define the real-valued Sobolev space as

X :=
{
(u, v)T : u, v ∈ H2(0, lπ), (ux, vx)|x=0,lπ = 0

}
,

the complexification of X XC := X ⊕ iX = {x1 + ix2| x1, x2 ∈ X} . and the inner product

< ũ, ṽ >:=
∫ lπ

0
u1v1dx +

∫ lπ

0
u2v2dx

for ũ = (u1, u2)T , ṽ = (v1, v2)T , ũ,ṽ ∈ XC. The phase space C := C([−1, 0], X) has the sup norm. Then,
we can write φt ∈ C , φt(θ) = φ(t + θ) or −1 ≤ θ ≤ 0. Denote β(1)

n (x) = (γn(x), 0)T , β(2)
n (x) = (0, γn(x))T ,
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and βn = {β(1)
n (x), β(2)

n (x)}, where {β(i)
n (x)} is an an orthonormal basis of X. We define the subspace of C

as
Bn := span{< φ(·), β( j)

n > β( j)
n |φ ∈ C , j = 1, 2}, n ∈ N0.

There exists a 2 × 2 matrix function ηn(σ, τ̃) −1 ≤ σ ≤ 0 such that

−τ̃D
n2

l2 φ(0) + τ̃L(φ) =

∫ 0

−1
dηn(σ, τ)φ(σ)

for φ ∈ C . The bilinear form on C ∗ × C is defined by

(ψ, φ) = ψ(0)φ(0) −
∫ 0

−1

∫ σ

ξ=0
ψ(ξ − σ)dηn(σ, τ̃)φ(ξ)dξ, (3.3)

for φ ∈ C , ψ ∈ C ∗. Defining τ = τ̃ + µ, the system undergoes a Hopf bifurcation at (0, 0) when µ = 0,
with a pair of purely imaginary roots ±iωn0 . Let A denote the infinitesimal generators of the semigroup,
and A∗ be the formal adjoint of A under the bilinear from (3.3). Define the following function:

δ(n0) =

{
1 n0 = 0,
0 n0 ∈ N.

(3.4)

Choose ηn0(0, τ̃) = τ̃[(−n2
0/l

2)D + L1 + L3δ(nn0)], ηn0(−1, τ̃) = −τ̃L2, ηn0(σ, τ̃) = 0 for −1 < σ < 0. Let

p(θ) = p(0)eiωn0 τ̃θ (θ ∈ [−1, 0]),

q(ϑ) = q(0)e−iωn0 τ̃ϑ (ϑ ∈ [0, 1])

be the eigenfunctions of A(τ̃) and A∗ corresponding to iωn0 τ̃, respectively. We can choose p(0) =

(1, p1)T , q(0) = M(1, q2), where

p1 =
1
a2

(
a1 − d1

n2

l2 − a3δn0 − iωn0

)
,

q2 = a2/(b1 − b1eiωn0 τ̃ − d2n2/l2 − iωn0),

and
M = (1 + p1q2 + (b2q2 − b1 p1q2)τe−iωn0 τ̃)−1.

Then, (4) can be rewritten in abstract form as

dU(t)
dt

= (τ̃ + µ)D∆U(t) + (τ̃ + µ)[L1(Ut) + L2U(t − 1) + L3Û(t)] + F(Ut, Ût, µ), (3.5)

where

F(φ, µ) = (τ̃ + µ)


α1φ1(0)2 − r

Kφ1(0)φ̂1(0) + α2φ1(0)φ2(0) + α3φ2(0)2 + α4φ
3
1(0)

+α5φ
2
1(0)φ2(0) + α6φ1(0)φ2

2(0) + α7φ
3
2(0)dφ2

2(0) + β1φ
2
1(−1)

+β2φ1(−1)φ2(−1) + β3φ
2
2(−1) + β4φ1(−1)φ2(0) + β5φ2(−1)φ2(0)

+β6φ
3
1(−1) + β7φ

2
1(−1)φ2(−1) + β8φ1(−1)φ2

2(−1) + β9φ
3
2(−1)

+β10φ
2
1(−1)φ2(0) + β11φ

2
2(−1)φ2(0)


(3.6)
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respectively, for φ = (φ1, φ2)T ∈ C and φ̂1 = 1
lπ

∫ lπ

0
φdx. Then, the space C can be decomposed as

C = P ⊕ Q, where
P = {zpγn0(x) + z̄ p̄γn0(x)|z ∈ C},

Q = {φ ∈ C |(qγn0(x), φ) = 0 and (q̄γn0(x), φ) = 0}.

Then, system (3.6) can be rewritten as

Ut = z(t)p(·)γn0(x) + z̄(t)p̄(·)γn0(x) + ω(t, ·)

and Ût = 1
lπ

∫ lπ

0
Utdx, where

z(t) = (qγn0(x),Ut), ω(t, θ) = Ut(θ) − 2Re{z(t)p(θ)γn0(x)}. (3.7)

Then, we have
ż(t) = iω)n0τ̃z(t) + q̄(0) < F(0,Ut), βn0 > .

There exists a center manifold C0, and ω can be written as follows near (0, 0):

ω(t, θ) = ω(z(t), z̄(t), θ) = ω20(θ)
z2

2
+ ω11(θ)zz̄ + ω02(θ)

z̄2

2
+ · · · . (3.8)

Then, restrict the system to the center manifold as ż(t) = iωn0 τ̃z(t) + g(z, z̄). Denoting

g(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄
2

+ · · · .

By direct computation, we have

g20 = 2τ̃M(ς1 + q2ς2)I3, g11 = τ̃M(%1 + q2%2)I3, g02 = ḡ20,

g21 = 2τ̃M[(κ11 + q2κ21)I2 + (κ12 + q2κ22)I4],

where I2 =
∫ lπ

0
γ2

n0
(x)dx, I3 =

∫ lπ

0
γ3

n0
(x)dx, I4 =

∫ lπ

0
γ4

n0
(x)dx, and

ς1 =α1 −
rδn0

K
+ ξ(α2 + α3ξ),

ς2 =e−2iωn0 τ̃
(
β1 + ξ

(
β2 + de2iωn0 τ̃ξ + β3ξ + eiωn0 τ̃(β4 + β5ξ)

))
,

%1 = −
r

2K
δn0 +

1
4

(2α1 + 2α3ξ̄ξ + α2(ξ̄ + ξ)),

%2 =
1
4

e−iωn0 τ̃
(
e2iωn0 τ̃(β4 + β5ξ̄)ξ + ξ̄(β4 + β5ξ) + eiωn0 τ̃(2β1 + 2(d + β3)ξ̄ξ + β2(ξ̄ + ξ))

)
,

κ11 = − 2ω(1)
11 (0)

( r
K

(1 + δn0) − 2α1 − α2ξ
)

+ 2ω(2)
11 (0)(α2 + 2α3ξ)

+ ω(1)
20 (0)

(
−

r
K

(1 + δn0) + (2α1 + α2ξ̄)
)

+ ω(2)
20 (0)(α2 + 2α3ξ̄),

κ12 =
1
2

(3α4 + α5(ξ̄ + 2ξ) + ξ(2α6ξ̄ + α6ξ + 3α7ξ̄ξ)),
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κ21 =2e−iωn0 τ̃ω(2)
11 (0)

(
β4 + (2deiωn0 τ̃ + β5)ξ

)
+ ω(2)

20 (0)
(
2dξ̄ + eiωn0 τ̃(β4 + β5ξ̄)

)
+ 2e−iωn0 τ̃ω(1)

11 (−1)
(
2β1 + (β2 + eiωn0 τ̃β4)ξ

)
+ 2e−iωn0 τ̃ω(2)

11 (−1)
(
β2 + 2β3ξ + eiωn0 τ̃β5ξ

)
+ ω(1)

20 (−1)
(
β4ξ̄ + eiωn0 τ̃(2β1 + β2ξ̄)

)
+ ω(2)

20 (−1)
(
β5ξ̄ + eiωn0 τ̃(β2 + 2β3ξ̄)

)
,

κ22 =
1
2

e−2iωn0 τ̃
(
2e2iωn0 τ̃ξ(β10 + β11ξ̄ξ) + ξ̄(β10 + β11ξ

2)
)

+
1
2

e−iωn0 τ̃
(
3β6 + β7(ξ̄ + 2ξ) + ξ(2β8ξ̄ + β8ξ + 3β9ξ̄ξ)

)
.

Now, we compute W20(θ) and W11(θ) for θ ∈ [−1, 0] to give g21. By (3.7), we have

ω̇ = U̇t − żpγn0(x) − ˙̄zp̄γn0(x) = Aω + H(z, z̄, θ), (3.9)

where

H(z, z, θ) = H20(θ)
z2

2
+ H11(θ)zz + H02(θ)

z2

2
+ · · · . (3.10)

Comparing the coefficients of (3.8) with (3.9), we have

(A − 2iωn0 τ̃I)ω20 = −H20(θ), Aω11(θ) = −H11(θ). (3.11)

Then, we have

ω20(θ) =
−g20

iωn0 τ̃
p(0)eiωn0 τ̃θ −

ḡ02

3iωn0 τ̃
p̄(0)e−iωn0 τ̃θ + E1e2iωn0 τ̃θ,

ω11(θ) =
g11

iωn0 τ̃
p(0)eiωn0 τ̃θ −

ḡ11

iωn0 τ̃
p̄(0)e−iωn0 τ̃θ + E2,

(3.12)

where E1 =
∑∞

n=0 E(n)
1 , E2 =

∑∞
n=0 E(n)

2 ,

E(n)
1 = (2iωn0 τ̃I −

∫ 0

−1
e2iωn0 τ̃θdηn0(θ, τ̄))−1 < F̃20, βn >,

E(n)
2 = −(

∫ 0

−1
dηn0(θ, τ̄))−1 < F̃11, βn >, n ∈ N0,

< F̃20, βn >=


1
lπ F̂20, n0 , 0, n = 0,
1

2lπ F̂20, n0 , 0, n = 2n0,
1
lπ F̂20, n0 = 0, n = 0,
0, other,

< F̃11, βn >=


1
lπ F̂11, n0 , 0, n = 0,
1

2lπ F̂11, n0 , 0, n = 2n0,
1
lπ F̂11, n0 = 0, n = 0,
0, other,

and F̂20 = 2(ς1, ς2)T , F̂11 = 2(%1, %2)T .

AIMS Mathematics Volume 7, Issue 7, 13344–13360.



13354

Thus, we can obtain

c1(0) =
i

2ωnτ̃
(g20g11 − 2|g11|

2 −
|g02|

2

3
) +

1
2

g21, µ2 = −
Re(c1(0))
Re(λ′(τ̃))

,

T 2 = −
1

ωn0 τ̃
[Im(c1(0)) + µ2Im(λ′(τ j

n))], β2 = 2Re(c1(0)).
(3.13)

Theorem 3.1. For any critical value τ j
n (n ∈ S, j ∈ N0), we have the following results:

(1) When µ2 > 0 (resp. < 0), the Hopf bifurcation is forward (resp. backward).
(2) When β2 < 0 (resp. > 0), the bifurcating periodic solutions on the center manifold are orbitally

asymptotically stable (resp. unstable).
(3) When T2 > 0 (resp. < 0), the period increases (resp. decreases).

4. Numerical simulations

To verify our theoretical results, we give the following numerical simulations. Fix parameters

r = 2, K = 15, b = 1, d = 2, e = 1, a = 5, s = 20, l = 1.5, d1 = 2, d2 = 0.2.

The bifurcation diagram of system (1.3) with the parameter of interference magnitude among predators
c is given in Figure 1, where (H0) and (H1) hold. We can see that with an increase in parameter c, the
Hopf bifurcation curves decrease, which implies that the stable region of positive equilibrium (u∗, v∗)
will decrease. This means that increasing the interference magnitude among predators is not conducive
to the homogeneous distribution of prey and predators in space. This causes spatial oscillations in
prey and predator densities. Since the inhomogeneous Hopf bifurcation curve τ0

1 is always under
the homogeneous Hopf bifurcation curve τ0

0. This spatial oscillation of prey and predator density is
inhomogeneous.

Τ
0

1

Τ
0

2

Τ
0

0

Τ
0

3

Τ
0

4

Τ
0

7

Τ
0

8

Τ
0

5

Τ
0

9

Τ
0

6

Stable region

0.1 0.2 0.3 0.4 0.5 0.6
c

0.1

0.2

0.3

0.4

0.5

0.6

Τ

Figure 1. Bifurcation diagram of system (1.3) with parameter c.

Fixing c = 0.1, we can determine that (u∗, v∗) ≈ (9.0000, 1.9048) is the unique positive equilibrium,
and (H1) holds. By direct calculation, we have τ∗ = τ0

1 ≈ 0.0758 < τ0
0 ≈ 0.1002, µ2 ≈ 0.0105,

β2 ≈ −0.0584 and T2 ≈ 0.8602. If we choose τ = 0.05 < τ∗, then (u∗, v∗) is locally asymptotically
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stable for model (1.3) (shown in Figure 2) and model (1.2) (shown in Figure 3). This means that the
nonlocal competition term has no effect on the stability of the model (1.3). Prey and predator will
coexist in a spatially homogeneous form, and their densities will converge to the positive equilibrium
(u∗, v∗).

Figure 2. Numerical simulations of system (1.3) with τ = 0.05. (u∗, v∗) is locally
asymptotically stable.

Figure 3. Numerical simulations of system (1.2) with τ = 0.05. (u∗, v∗) is locally
asymptotically stable.

If we choose τ∗ < τ = 0.09 < τ0
0, then (u∗, v∗) is unstable, and inhomogeneous periodic solutions

exist for the model (1.3) (shown in Figure 4). This means that prey and predator will coexist in the form
of spatially inhomogeneous oscillations, and their densities will distribute inhomogeneously in space.
To compare our result with the work in [20], we give the numerical simulations of model (1.2) under
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the same parameter τ = 0.09 in Figure 5. We can see that (u∗, v∗) is locally asymptotically stable (1.2).
This means that prey and predators will still coexist in a spatially homogeneous form and that their
densities will converge to positive equilibrium (u∗, v∗).

Figure 4. Numerical simulations of system (1.3) with τ = 0.09. (u∗, v∗) is unstable, and
inhomogeneous periodic solutions exist.

Figure 5. Numerical simulations of system (1.2) with τ = 0.09. (u∗, v∗) is locally
asymptotically stable.
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5. Conclusions and discussion

Assuming there is nonlocal competition caused by limited resources in prey, we modified the
model (1.2) to the model (1.3) with the nonlocal competition in prey, gestation delay in predator, and
generalist predator. We study the local stability of the positive equilibrium and Hopf bifurcation at the
positive equilibrium by using the time delay as a parameter. Through the center manifold and normal
form method, we give some parameters that can determine the direction of Hopf bifurcation, the
stability of bifurcating periodic solutions, and the period of periodic solutions.

For the time delay when τ = 0, we determine that nonlocal competition can induce Turing instability
of the coexisting equilibrium point (u∗, v∗) , but Turing instability cannot occur in the model (1.2)
without nonlocal competition. Similar to the results in [20], time delays can affect the stability of
the positive equilibrium. The positive equilibrium is stable when the delay is shorter than the critical
value but unstable when the delay is longer than the critical value, and prey and predator densities will
produce periodic oscillations.

Through the bifurcation diagram, we find that increasing the interference magnitude among
predators is not conducive to the homogeneous distribution of prey and predators in space. This
causes spatial oscillations in prey and predator densities. Compared with the work in [20], the
numerical simulations show that the inhomogeneous Hopf bifurcation curve τ0

1 is always under the
homogeneous Hopf bifurcation curve τ0

0 for the model (1.3) with nonlocal competition. When the
time delay is longer than the critical value τ0

1 and shorter than τ0
0, the prey and predator will coexist in

space, but their densities will oscillate periodically in the form of spatially inhomogeneous
oscillations for the model (1.3). However, the prey and predator will still coexist in a spatially
homogeneous form, and their densities will converge to the positive equilibrium for the model (1.2).
The model (1.3) is more realistic than the model (1.2) in the real world since it is difficult for the
population density to exist in a completely uniform way. Through our theoretical analysis and
numerical simulation, we show that stable inhomogeneous periodic solutions exist when the delay
crosses the critical value, which is different from the work in [20].

In the inhomogeneous periodic oscillations of prey and predator densities (Figure 4), we find that
the amplitude near the boundary of the region is larger than that at the center of the region. This is
because the prey needs to avoid the hunting of predators. They will escape from the interior of the
area and move out to the boundary. However, because the living area is closed, they cannot cross the
boundary. Thus, they can only move inward again. After reaching the interior of the area, they have to
escape the hunting of predators again. This forms the periodic oscillation of this mode.

In applying the predator-prey model, we suggest that scholars consider the nonlocal competition of
prey since the dynamics of the models are different in the absence and presence of nonlocal
competition. We hope that our model can be applied to ecological environment protection and
population control. In future work, we will study the predator-prey model with a nonlocal competition
term, nonconstant kernel function, and the Allee effect.
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