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Abstract: In this article, we deal with the following fractional p-Kirchhoff type equation
— p
M f W) = HOW ) (- = W2 L
RN JRN |X - y|N+p3 [x] [l
u>0, in Q,
u= O’ in RN\Q,

where Q c R" is a smooth bounded domain containing 0, (=A);, denotes the fractional p-Laplacian,
M@ =a+bt*' fort>0andk > 1,a,b > 0,1 > 0is a parameter, 0 < s < 1,0 < a < ps < N,
l (”p 21”’ C < p< M *l)m 1 <p<pk<p,=50= = “) is the fractional critical Hardy-Sobolev exponent.
With aid of the Varlatlonal method and the concentratlon compactness principle, we prove the existence

of two distinct positive solutions.
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1. Introduction and main result

Consider the following fractional p-Kirchhoff type equation with critical growth

M(f luCx) = ul” | )M)s =M L i Q,
RN JRN

|x_y|N+ps
u>0, in Q, (1.1)
u= O, in RN\Q,
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where Q c R" is a smooth bounded domain containing 0, (=A);, denotes the fractional p-Laplacian,
M) =a+bt*' fort>0and k > 1,a,b > 0,1 > 0is a parameter, 0 < s < 1,0 < a < ps < N,
l (” 2)”’ < g < M *1)“’ 1 < p<pk<p},=0=" (= “) is the fractional critical Hardy-Sobolev exponent.

Problem (1.1) reduces to the following statlonary analogue of the Kirchhoff equation

- (a + bf IVulzdx) Au = f(x,u), (1.2)
Q

which was proposed by Kirchhoff in [12] as an extension of the classical D’ Alembert’s wave equation
for free vibrations of elastic strings

u (P
Poa ~ ( ho f |— ) = f(x,u). (1.3)

Kirchhoft’s model takes into account the changes in length of the string produced by transverse
vibrations. Here, L is the length of the string, f(x, u) is the area of the cross section, E is the Young
modulus of the material, p is the mass density and Py is the initial tension. The appearance of nonlocal
term fg |Vu|>dx in the equations make its importance in many physical applications. It was pointed out
that such nonlocal problems appear in other fields like biological systems, such as population density,
where u describes a process which depends on the average of itself (see [1]).

Recently a great attention has been focused on studying the problems involving fractional Sobolev
spaces and corresponding nonlocal equations. Indeed, nonlocal fractional problems arise in a quite
natural way in many different contexts, such as, optimization, finance, phase transitions, stratified
materials, anomalous diffusion, semipermeable membranes and flame propagation, conservation laws,
ultra-relativistic limits of quantum mechanics, water waves and so on, we refer to [15] for more details.

In particular, Chen et al. in [6] considered the following fractional p-Laplacian equation with
subcritical and critical growths

{(—A);u = Al 2u+ M2 in Q,

T
u=0, in RM\Q, (9
where0<s<1,p>1,4,u>0,0<a<ps<N,p<r< p,. They obtained the existence of positive
solutions, ground state solutions and sign-changing solutions of the fractional p-Laplacian Eq (1.4) by
using the variational method.
In [22], Xiang et al. studied the following fractional p-Laplacian Kirchhoff type equation with
critical growth

M( f dedy) (=AY u = [ul”>2u + Af(x), in RY, (1.5)
=V Jrv x = yNrps P
where M(t) = a+bt*" fort > 0andk > 1,a>0,b>0,0<s<land 1 < p < N/s, p: = Np/(N—-ps)
is the critical Sobolev exponent, A > 0 is a parameter, f € LPs/"s~D(RM\{0}) is a nonnegative function.
By the variational method, the authors proved that Eq (1.5) admits at least two nonnegative solutions.
Recently, the following fractional p-Laplacian Kirchhoff type equation with critical growth has been

well studied by various authors

M (f e )< Ny =24 A f(xw), in Q,

&y Jrv lx — y|N+ps [ax]
u=0, in RM\Q,

(1.6)
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where M(t) = a+bt*' witht > 0andk > 1,0<s<1,a>0,b>0,0<a<ps<N,A1>0
is a parameter. When f(x,u) = w(x)|u|?"?u, Fiscella and Pucci in [10] deal with the existence and
the asymptotic behavior of nontrivial solutions for Eq (1.6) with pk < g < pi. In [5], Chen and Gui
obtained the existence of multiple solutions to Eq (1.6) with w(x) = 1 and 1 < ¢ < p < pk. When
fG,u) = U, = F(x,u))f(u), I, = |x|™ is the Riesz potential of order u € (0, min{N, 2ps}), Chen [4]
established the existence of positive solutions to Eq (1.6). Chen, Rddulescu and Zhang in [7] obtained
the existence of a positive weak solution of Eq (1.6) with f(x,u) = [u|"2uand 1 < g < NN_—” Many
papers studied the existence of infinitely many weak solutions and nontrivial solutions of Eq (1 6), we
refer the readers to [3,9, 11,16-21,23,24] and the reference therein.

In this paper, we are interested in the existence and multiplicity of positive solutions of
Problem (1.1) with critical growth. Our technique based on the Ekland variational principle and the
Mountain pass lemma. Since the Problem (1.1) is critical growth, which leads to the cause of the
lack of compactness of the embedding W*P(Q) < LF=(Q), we overcome this difficulty by using the
concentration compactness principle.

Now we state our main result.

Theorem 1.1. Let 0 < @ < ps < N and N(p[:f?ﬂ” <B< W, there exists A, > 0 such that for all
A€ (0,A,), problem (1.1) has at least two positive solutions.

2. Preliminary results

Define W*?(€)), the usual fractional Sobolev space endowed with the norm
. ) = ulP |\
lutllwsr@) = llullro) + (L . dedy -
Let O = RY xRV \ (CQ x CQ) with CQ = RN \ Q, define

|u(x) — u()I”

X = {u : RY — R measurable, ulo € LP(Q) and ~
0 |x — y[V+ps

dxdy < oo} .

The space X is endowed with the norm

1
lu(x) — u(y)|” g
lleellx = luellzr) + (f #g‘dxdy) ,

where the norm in L”(€2) is denoted by || - [|,. The space X is defined as Xy = {u € X : u = 0 on CQ}
or equivalently the closure of C;” in X, for all p > 1, it is a uniformly convex Banach space endowed

with the norm 1
ux) = u@)lP |\

= dxdy| . 2.1

lull == Iell, = (ﬁ«gvm S dxdy 2.1)

The dual space of X, will be denoted by X;j. Since u = 0 in RM\ Q, the integral in (2.1) can be extended
to RN x RV,
The energy functional 7, : X, — R associated with Eq (1.1) is

1 Pa
— i dx—A —dx
P Ja |x® o X

a

a b
Liw) = = |lull” + —|[ul|”* -
P pk
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We say that u is a weak solution of Eq (1.1), if u satisfies

Pa=2
@+ Bl @),y = [ s f £ dx,
o X o lxP

for all ¢ € X, where

_ -2 _ _
(U, Oy = L ) fR i ju(x) = uWI""(x) = u)le) = eI dy.

lx =y

Let S, be the best fractional critical Hardy-Sobolev constant

lu(x) — u(y)|”
———dxd
\[RN gy |x = y|Vtes Y

1 * k
ueWsP(Q)\{0} ( |u|Pe )p/pa

o x|

Sq =

Denote by S, (respectively, B,) the sphere (respectively, the closed ball) of center zero and radius p,
ie,S,={u€Xp:|lul=p}, B, ={ue€X:|ul <p} C,Ci,C,,... denote various positive constants,
which may vary from line to line.

Then, we can obtain the following useful Lemma.

Lemma 2.1. There exist constants r,p, Ny > 0, such that the functional I, satisfies the following
conditions for all A € (0, Ay) :

(1) Iy(u) = r with ||ul| = p and inf I,(u) < O for ||ul| < p;

(i1) There exists e € Xy such that |le|| > p and I,(e) < 0.

Proof. (i) Let R be a constant such that Q ¢ B(0,R) = {x € RY : |x| < R}, by the Holder inequality and
the Sobolev inequality, for all 8 < Mpa—D*e ' \ve have

Pu
u x“) 1
f —ﬁdx < f(lul : %) —adx
o lxi Q |xt? ] |x]
Pyl

. N Pa_ P
e N[ (e
< ( o d.X _(x _ﬂ d)C
o |« o ||\ |xl

P!

1 R Py Bra Pa 22
-3 (N-D+a=% —a—52% @ ( . )
S Sap”u” ((L)f 1 Pl pa_ldt)
0
Pa-l
-1 w of -t )ov- 225 |
= 8l | —— g R
a’(*—” - 1) +N — 5=
pa_l p(r_l
_1 Pa-1
— P %
=So" [lully v,
Py Bry
(0% %—1)+N— s . . .
where ¢ = ﬁR (I"f' re~! and w denotes the N-dimensional measure of the unit
Lta__1)eN- Ll
Pl ) Pa-l
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sphere. Combining with (2.2) and the Sobolev inequality, one has

b 1 P
L = S + Dt - L [ 2 f LIS
p pk Py Ja X o |[xB

Po—1

* _
y
¥
Pa

b

>
pk

1 _r X _1
ua]|P* — ESQ " llullPr = AS o llullyy (2.3)

b pk—1 1 _% pio-1 -5 Po_l
= [lul| ﬁﬂull —p—*Sa lJullPe™" = AS " 7 ).

a

&
Pa

Let h(t) = l%ct”k‘l - I%S . " 77 for t > 0, then there exists

b * * 1 L; ﬁ
) :[ Po(Po— 1) a,,] -0
pk(pk — 1)

1
84 hip)

such that max,. h(tf) = h(p) > 0. Setting Ay = et there exists a constant » > 0, for all 1 € (0, Ay),
ra
we obtain that 7,(u) > r > 0 with ||u|| = p.
For all u € X,\{0}, we get
I(t
fim 20 _ f 2 dx <0. 2.4)
=01 a P

Hence, we obtain that 1,(tu) < 0 with # > 0 small enough, when ||u|| < p, one has

m := inf I;(u) < 0.
ueXy

(i1) For every u € X,\{0}, we have

tP bﬂ’k tPZ P t
L) = g + 2t - = f ™ A f o e
P pk Dl Ja Q

o Jo x|
M X

as t — +oo. Consequently, we can find e € X, such that /,(e) < 0 provided with |le|]| > p. The proof is
complete. O

Next, we assume that a, b and k satisfy one of the following cases:

Case 2.1. k = If,v_‘[‘)’s,a >0,0<b<Sk,
_ 2N-ps—a
Case 2.2. k = TR 0,b > 0.
Denote
I1\( atst \F
- a , Case?2.1.1),
(p pk)(l—bSﬁ) (Case21.D
1
(1 1 )[bsff—l + Sk \p2S 2 ¢ 4as(,)’“
A={a|l--—
p pk 2
2%k-1
1 1\(bSE+ b2S%* +4aS, )"
+|— - — , (Case?2.2.1),
pk  p 2
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and

- (aS . _as ) (1 . L)I’ =)
p pk

Then, we have the following compactness result.

Lemma 2.2. Suppose that a,b > 0 and 1 < p < pk < p;, then the functional I, satisfies the (PS).,
condition forc; < c* = N — DA,

Proof. Let {u,}C X, be a (PS)., sequence for
L(u,) = c,, and I}(u,) = 0asn — oo. (2.5)

It follows form (2.2) and (2.5) that

l 4
ca+ 1+ o(lull) > Ii(u,) — 1;(5(%), Up)

1 1 1 1 1 _1 L;l
> (— - —) allu|” + (— - —*)bnunnpk - (1 - —*)ﬂS el e
P p pk  pg P

This implies that {u,} is bounded in X,. Up to a subsequence, still denote by {u,}, there exists u € X
such that

u, — u, weakly in Xj,
u, — u, strongly in L9(Q) (1 < g < p3), (2.6)

u,(x) = u(x), a.e.in Q.

By using the concentration compactness principle ( [6], Lemma 4.5), there exist u € X,, two Borel
regular measures o~ and v, J denumerable, at most countable set {x;};c; C €, and non-negative numbers
{O-j}jej, {Vj}jej C [O, 00), for all ] € J, such that

s

P
lall? = o, T =,

do > |lull” + Z 76y ;= o)),

2.7
|u|17(v
TRl va o Vi v
jeJ
o2 Sav

asn — oo. Fix € > 0, let ¢, j(x) € C7(B(x;,2¢)) be a smooth cut-off function centered at x; such that
0<¢e; <1 IV¢elloo < €, and

6o () = I, inB(xj, &),
70, in Q) B(x;, 2e).
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Clear {¢, ju,} is bounded in Xy, it follows from (I’ (u,), ¢ ju,) — 0 as n — oo that

_ 2 _
(a+ b”un”l’(k—l)) f let(x) =t DIP™= (0t (%) — 4, (¥)) [P j(x)uﬂ(x) be, J()’) n(Y)]
RN JRN

|X y|N+ps

|42 b () Un@e, j(X) -
S dx + /lf BRI dx + o(1).
Q | x| o |xP
From the first term in (2.8), we have
f f |I/tn()C) - un(y)lp_z(un(-x) - un(y))[¢€,j(x)un(x) - ¢€,j(y)un(y)]d
xd
RN |x — y|N+ps
_ -2 — — .
_ f f |42 (%) = DI (W (X) = 11, W) [ (X) — ()] P, j(X) dxd (2.9)
|X y|N+ps

1 f f |un(x) - un(y)lp z(un(x) - un(y))un(y)[¢s ](X) ¢8 j(y)]
RN

|X y|N+pv

Note that {u,} is bounded in X, the third term in (2.9), by using the Holder inequality and Lemma 2.3
in [22], we get

lim lim

e—0 n—oo

f f |Mn(X) - un(y)|p_2(un(-x) - un(y))un(y)[¢s,j(x) - ¢€,j(y)] dxdy‘

|x — y[V+ps

o ) — un )P\ (60,0 = 60 DI |V
Sﬁlﬁ%m(fw oy dxdy) (fR fR oy )

< Clim lim ( f f (¢e,;(x) = P, ;()utn(y)I” dx a,y)
RN JRN

e—0 n— |x — y|N+[’S

<=

=0,
where C > 0 is a positive constant. Letting € — 0, by (2.2) and (2.7), we get

. u (X)
lim lim ne)
-0 n—00 Jo |x|ﬁ

lim lim f f |Mn(-x) - un(y)|p¢s ](x)d dy
RN

=0,

e—0 n—oo |x y|N+I75 2 10
. (%) = u()Ppe () 2.10)
> |lim dxdy + o;| =0},
£=0 Jrv Jgr¥ |x =yl
lim lim de = (hm ||(p—’j()dx + vj) =v;.
e NPT =0 Jo e

Combining the above facts with (2.8), we have

— P ,
lim lim (Cl + b”un”p(k—l))f f |, (x) un(y)| (b&J(x)dXdy
RN JRN

£—0 n—oo |x — y|N+P5
— p .
> lim lim { f f u(x) = u0) ¢8’J(x)dxdy +ao;
g0 n—oo Ix y|N+ps (21 1)
lu(x) — u(y)I ¢, ;(x) g
fRN f TR Gj) }
=aoc;+ bOJ;-.
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Hence, taking the limit for n — oo and € — 0 in (2.8), it follows from (2.10) and (2.11) that
v;>ao;+ bon‘-.

This together with (2.7) implies that either v; = 0 or

aS =
( ° , (Case 2.1.2),
)
v > @ 2t (2.12)
"7 (bSk + BT ¥ 4as, )
“ 5 < , (Case22.2).
From (2.7) and (2.12), we obtain that o; = 0 or
ask \FT
(1 boiS‘k) , (Case 2.1.3),
o> @ n (2.13)
bS%-1 4 S1\JB2SF + dgs, |
( = = > = ] , (Case?2.2.3).

To proceed further we show that (2.12) and (2.13) are impossible. Indeed, by contradiction, we assume
that there exists j, € J such that (2.12) and (2.13) hold. Applying (2.2), (2.7) and the Sobolev
inequality, we get

1
¢ = lim {Mun) - i) un>}
lun(x) — u,(Y)I?
S sl V7 dxd
{ (p pk)f gy |x = y[Ntps Y
1 |un|” ( 1) u, }
— - — dx—|1-—]|4 dx
(p pa/) Q |x|a/ pk Q |_x|B
1 11 |ua| P 1 f
>al= - = Py n de+v, |-[1-—=|a | =4
a(p pk)(”u” i) (k pa)( o Ixr V’”) ( Pk) e

1 1 1 1 1 it
= T 7 Sa/ p*+ i)+ |l— - — p"‘+ N_l1==1a 5 .
% = (Sl + ) (= ) ha +v3) = (1= )20 5

a

:._.

By using the Young inequality, when a > 0, we have

1 P
1) ozl a a aS, aS,\ "’ 1\ pwa-
1-— )y ||u||;s(———)sa||u||’2+( - ) (1——) D AT
( pk = \p pk o\ p  pk pk

Consequently, we deduce that ¢, > ¢* = A — DA77, This is a contradiction. Hence o ;=v;=0forall
J € J, which implies that

g s
_)
o X o |
as n — oo. Now, we prove that u, — u in X, let ¢ € X, be fixed and B, be the linear functional on X,

defined by
— p-2 -
B,(v) = fRN fRN o) — eWMIP=((x) — (1)) (v(x) — v(y))dady.

|x — y[Veps

dx, (2.14)

AIMS Mathematics Volume 7, Issue 7, 12897-12912.
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for every v € Xj. By using the Holder inequality, one has

1B, < llgll” ™ [IvI.

According to I’ (u,) — 0in Xj and u, — u in X,, we have

o(1) =Ly (uy) = I (u), uy — u)

= (a + blluIP*"")B,, (u, — u) — (a + bllull"*")B,(u, — u)

u|Pou, — |ulP=2u
_f|n| o =l (un—u)dx—/lf
Q |x|* Q

= (Cl + b”un”p(k_l)) [Bun(un - u) - Bu(”n - l/t)]

U, — U

|’

+ @+ bllua "D = (@ + blullP*D)| Bty = u)

Since {u,} is bounded in X, by (2.6), one has

lim(a + bllu,|[”*"")B,, (u, — u) = 0

lim (a + b||u,||P* B, (1, — u) = 0

lim ix = 0,

n—oo Jo |x|ﬁ

then
lim(a + bllu,|["*") [B,, (u, — u) — By (u, — u)] = 0.
By a,b > 0, we get
lim [Bu,,(un - I/t) - Bu(un - Ll)] =

Moreover, it follows from the Brezis-Lieb Lemma that

— pa Pa Pe

f = ™ - f al™ e de+0(1) 0, as n — oo,
| x| o |x o [x®

This together with (2.14) and the Holder inequality, one has

|x|a

u p;_zu — up;_zu
flnl n — lul (u, —u)dx — 0, asn — oo.
Q

Let us now recall the well-known Simon inequalities. That is, for every &, 7 € RY

€~ nl" < {Cp(lflmf =P ).

C (1726 = InlPm)(E = MIE QP + InlP)

where ¢, C, > 0 depending only on p. According to (2.18), we distinguish two cases:

AIMS Mathematics

U, — U

UlPe2u, — [ulPo2u
_f|"| W iy - A .
o |x] o lxl

forp > 2,
for1 < p <2,

(2.15)

(2.16)

2.17)

(2.18)

Volume 7, Issue 7, 12897-12912.



12906

Case 2.3. if p > 2, it follows from (2.17) and (2.18) as n — oo that
b lut (x) — u(x) — up(y) + u(y)l”
ety — ull” =
RN JRV

|x — y[¥+rs

f f |14(X) = s P (W (X) = () = () = u)P > (W(x) = u())
P
RN RN

|x — y¥eps

dxdy

<c

X (U (x) = u(x) — un(y) + u(y))dxdy
= Cp[Bu,,(un —u) — B,(u, —u)] = o(1).

Case24. if 1 < p <2, letting & = u,(x) — u,(y) and n = u(x) — u(y) in (2.18) as n — oo, we get

4 2-p
e, — ull” < Cp[ By, (uy — u) — By — )] (|ln]|” + Juel|”) 2
p2-p) p2-p)

< Cp[Bun(un - I/t) - Bu(un - l/l)]g(”l/tn” 2 + ”M” 2 )
< Cy[B,, (uy — 1) = By(, — w)]* = o(1).

Indeed, since ||u,||” and ||u||” are bounded in X, by the subadditivity inequality, for all £, > 0
and 1 < p < 2, one has

E+mT <7 407
Thus, we obtain that u, — u in X;,. The proof is complete. O

From [13],let 0 < @ < ps < N, for all minimizer U, for S, there exist x, € R" and a non-
increasing u : R* — R such that U, = u(|Jx—xo|). Next, we fix a positive radially symmetric decreasing
minimizer U, = U,(r) for S ,, multiplying U, by a positive constant, we assume that

Then, we have the following Lemma.
Lemma 2.3. ( [13]) There exist c¢;,co > 0 and 6 > 1 such that

C1 ¢ Uy6r) 1
— S Uy(r) £ -, < —, forevery r > 1.
r% ( ) r?pl Uar(r) 2 f &

For any € > 0, the function

Ua,s(x) =& N;IH Ua ()_C)
E

is also a minimizer for S ,. For all 6 > € > 0, let

Uy,.£(0)
Mgs = s
' Ua,s((s) - Ua,a(gé)
and
0, if0 < 1< Uy o(66),
8eo(1) = {ml ((t — U, -(69)), if Uge(06) < t < Uy (6),

t+ Upo(O)m?y = 1), ift 2 U6,

AIMS Mathematics Volume 7, Issue 7, 12897-12912.
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as well as
, 0, if0 <t < U,.60),
Ga,é(t) = f g;,(s(T)%dT = ma,&(l - Ua,e(g(s))a ifUa,s(Q(S) <t< Ua,s((s)’
‘ ‘) ift > Uy (6).

The functions g.s and G.s are nondecreasing and absolutely continuous. Consider now the radially
symmetric non-increasing function u. s(r) = G.s(U, (7)), which satisfies

( ) U(Y,S(r)’ l:fr S 53
Ug5(r) =
° 0, if r > 66.

Moreover, from [6, 13], there exists C > 0 such that for all 0 < 2¢ < 6 < 67!, we have

N-ps

f f |u£,(§(x) - Mg,d()’)|p dxdy <S ;V:(YY L C (f) p-1
RN JRV |x — y|Ntps - ) ’
lug 517 Noa e\rt
: dxzsg,’“—c(—) .
Ry X[ 0

Then we have the following Lemma.

(2.19)

Lemma 2.4. Suppose that 0 < o < ps < N and M <B< w. Then there exists A, > 0, for

all A € (0, A,) such that sup, I(tu,) < c* = A - D/lﬂ ( where c* is the constant given in Lemma 2.2).

Proof. By Lemma 2.1, we obtain that /,(fu) — —oco as t — oo and [(tu) < 0 as t — 0, then there exists
t. > O such that I,(t,u) = sup,., [,(tu) > r > 0. Assume that there exist positive constants #;,#, > 0 such
that 0 < #; <1, < f, < +oco. Without loss of generality, we take 6 = 1 in the definition of u. s € W*7(Q)
given in Lemma 2.3, for any sufficiently small 0 < & < 1, set u, = u,; and I;(tu,) = J(t) — 4 fQ l”‘ dx,

where .
btP* tPe |ug|Pa
J(@) = —Ilugll” + —II || — —f —dx.
p pk Py Ja Il
It is easy to see that lim,,o J(f) = O and lim,,, J(#) = —oco. Hence, there exists z, > 0 such that

J(t;) = max,sq J(1), that is

. Pa
T O, = at? Muall? + b ug||P* — 22~ f lT;:a dx = 0. (2.20)
Q
By (2.20), we have
p .
" |,,;;a”u8” ] ) (Case 2.1.4),
[} |;|01 d-x - bHu&‘”pk
t. =4, _ &5 (2.21)
bllugllP* + \/bznugnw + dallugll? [, Sedx
| IP , (Case 2.2.4).
ZLI‘ |_;|(Y
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In addition, by the definition of u., we have

fug dxzf te dx
o 1xP B, 1XIP

£ U
L~ | x|
_ N f U(x) dx (2.22)
B |?C|'6

_p_N-ps 1
> CSN B P f de
B \Bi |x| 7T | x]B

N-ps

> C18N_'B_ P,

™IS,

N(p,—D+a

@

where 8 <
cases:
For Case 2.1, if k = ]flv_‘;v,a > 0,0 < b < S*and p;, = pk. It follows from (2.19), (2.20) and (2.22)
that

=N- % and C; > 0 is a positive constant. Now, we consider the following two

b 1 .« P
sup J(1) = J(1.) = rﬁ(ﬁnuaup + =t | = — 1l f fuel™ dx)
>0 p pk

k-1
a a allug|”
;‘ﬁ)”%””[ P ]
Jo, B dox = blluclP

[ x|

N-a N-ps
a_ i)(sg” L CeF )
p Pk

N;—Ty N-ps k—
alSy™ + CerT

Consequently, from the above information, we obtain

sup L(tuy) < J(t,) — A f e iy
Q

>0 |x|’6
N-ps N-ps
<A+ Coert —CAsN P77
< A= DA,

where Cy, C, > 0 (independent of €, 1). Here we have used the fact that W <B< w, and
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p p—1)
lete = A77,0 <A< A; =min{l, (Cﬂ’)ip @-0-1-v-571 }, then

Meps PIN-B)p-D~(N=-ps)]

) NPT e, - o M e
< -DAFT,

Co 7T = CA (A7 .

For Case 2.2, if k = ZZIZN‘" =.a>0,b> 0. According to (2.19), (2.20) and (2.22), we have

sup J(t) = J(t.)

>0
a b PR |t |7
:tf;(—llusll”+—t§( Nugl? = — 25277 | —S—dx
P pk 28 o |«

L1\, [l
- (9 - i)rgnugnp . (— - —)r” l® o
p Pk pk p; o |l

I Dl + B2l P + dallu i [, b e

=a E - ﬁ " |1a ||u8||p
21;2 le"
p(ﬁyl)
( 1 __) blluglIP* + \/b2||ug||2pk+4a||u8|| Jo ek f'”""pf’dx
pk p;, 2 [, el o b
L
(1o bS21 4 SK1 D282k + 4aS |
sda D pk >
2k-1

( 11 )[bsf;+ \/b25§k+4aSa)"‘l Nops

— - +Cserr,

pk  pg 2

where C; > 0 (independent of &, 1). Consequently, it is similar to Case 2.1, by (2.23), there exists
Ay > 0suchthat 0 < A < A,, we get

sup Iy(tu,) < J(t.) — /lf —dx
20 o [xP

<A+C33ﬂ1 —C NP
<A—D/1F.

The proof is complete. O
3. Proof of Theorem 1.1

Theorem 3.1. Suppose that 0 < A1 < A, (A, = min{Ag, Ay, Az, 1}). Then the Eq (1.1) has two positive
solutions.

Proof. 1t follows from Lemma 2.1 that

m:= uégjf(o) Li(u) <O0.
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By the Ekland variational principle [8], there exists a minimizing sequence {u,,} C Bp(0) such that

Li(u,) < inf L) + 1, L) = Li(u,) - lllv — ]I, v € Bp(0).
ueBp(0) n n
Hence, we obtain that I;(#,) — m and I'(u,) — 0 as n — oco. By Lemma 2.2, we have u,, — u,; in X
with I;(u,) — m < 0, which implies that u; # 0. Note that I,(u,) = [,(Ju,|), we have u, > 0. Thus,
by using the strong maximum principle ( [14], Lemma 2.3), we obtain that u, is a positive solution of
Eq (1.1) such that I;(u,) < 0.
Applying the Mountain pass Lemma [2], Lemmas 2.1 and 2.2, there exists a sequence {u,} C Xy
such that
L(u,) — c,, and I} (u,) > 0asn — oo,

where

= inf I
Ca lfér max 1(y(1)),

and
I'={y e C([0, 1], Xo) : y(0) = 0,¥(1) = e} .

According to Lemma 2.2, we know that {,} C X, has a convergent subsequence, still denoted by {u,},
we may assume that u, — u, in Xy as n — oo.

L(u,) = lim I;(u,) > r >0,

which implies that u,. # 0. Similarly, we can obtain that u, is a positive solution of Eq (1.1) with
I,(u,) > 0. That is, the proof of Theorem 1.1 is complete. O

4. Conclusions

In this paper, we consider a class of fractional p-Kirchhoff type equations with critical growth.
Under some suitable assumptions, by using the variational method and the concentration compactness
principle, we obtain the existence and multiplicity of positive solutions.
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