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function. The presented bundle method possesses three features. Firstly, the objective and constraint
functions are approximated by a new cutting-plane model, which is a local convexification of the
corresponding functions, instead of the entire approximation for the functions, as most bundle methods
do. Secondly, the subgradients and values of the objective and constraint functions are computed
approximately. In other words, approximate calculation is applied to the method, and the proposed
algorithm is doubly approximate to some extent. Thirdly, the introduction of the improvement function
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with multiobjective optimization. Under reasonable conditions satisfactory convergence results are
obtained.
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List of symbols

Rn n-dimensional Euclidean space
fi the objective function
c the constraint function
xT transposed vector x ∈ Rn

〈x, y〉 inner product of x ∈ Rn and y ∈ Rn

| · | the Euclidean norm in Rn

f 0(x; d) Clarke generalized directional derivative of f
at x ∈ Rn in direction d ∈ Rn

∂ f subdifferential of f
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KS (x) contingent cone of S at x ∈ Rn

S ≤ polar cone of S
C1 continuous derivatives up to order 1
Bρ(x) open ball centered at x with radius ρ
argmin f (x) a point where f has its minimum value

1. Introduction

There exist lots of nonsmooth optimization problems in fields of applications, for example, in
economics [1] and mechanical engineering [2]. Sometimes, nonsmooth optimization problems often
have several objectives. During the last three decades, rapid development has been characteristic to
the areas of nonsmooth and multiobjective optimization [3–6]. Multiobjective optimization (also
known as multicriteria optimization) is an area of multiple criteria decision making, which is
concerned with mathematical optimization problems involving more than one objective function to be
optimized simultaneously. Multiobjective optimization has been applied in many fields of science,
including engineering, economics and logistics, where optimal decisions need to be taken in the
presence of trade-offs between two or more conflicting objectives. However, the methods and
considerations for nonsmooth multiobjective optimization are much fewer, and there exists an
increasing demand to solve efficiently optimization problems with several nonsmooth objective
functions.

Quantum computing and quantum computers play an important role in optimization problems [7,8].
Han, K. H., and J. H. Kim [7] once proposed a novel computing method called a genetic quantum
algorithm (GQA), which is based on the concept and principles of quantum computing, such as qubits
and superposition of states. The effectiveness and the applicability of the GQA are demonstrated
by experimental results on the knapsack problem, which is a well-known combinatorial optimization
problem.

However, bundle methods are among the successful methods for nonsmooth convex optimization
problems [9–11]. Little systematic work has been done on extending convex bundle methods to a
nonconvex case. Most nonconvex bundle methods [12–19] belong to the proximal type, and they follow
the idea of previous dual methods by employing “subgradient locality measures” in order to make the
linearization errors nonnegative. The introduction of quadratic subgradient locality measures possesses
the drawback that penalty parameters have to be fixed a priori. The redistributed proximal bundle
algorithms [20,21] are designed to deal with nonconvex functions. The presented cutting-plane model
forms certain local convexification centered at the stability center instead of the entire approximation
for the corresponding functions, and the linearization errors are assured to be nonnegative by updating
the local convexification parameter.

In some cases, exact information of the objective and constraint functions are expensive and
unnecessary. Therefore, the emergence of inexact bundle methods is of necessity. In general, bundle
methods which are based on inexact evaluations of the objective and constraint functions are often
called inexact or approximate bundle methods. An early work can be found in Kiwiel [22].
Hintermuller [23] deals with inexact subgradients, but the evaluation of the objective function should
be exact. Furthermore, uncontrollable inexactness is considered in [24], where they use noise
attenuation techniques to cope with inexact oracle derived from a stochastic objective. For the latest
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unified theory of convex inexact bundle methods, see [25–27].
In this paper, I generalize the redistributed proximal bundle method for single objective nonsmooth

optimization [28] to nonsmooth nonconvex multiobjective optimization with the help of an
improvement function. I employ the approximate objective and constraint function values and the
approximate subgradient values to construct a new cutting-plane model for approximating the
nonconvex functions. The model is a local convexification model which overcomes the difficulty
caused by the nonconvexity, and it is worth pointing out that the errors need not vanish in the limit,
which makes the proposed algorithm widely used. I prove that the proposed method is implementable
and can obtain a satisfactory convergence result.

The rest of this paper is organized as follows: Section 2 presents some basic concepts and results
of nonsmooth and multiobjective optimization theory. Section 3 gives the cutting-plane model of a
local convexification of the improvement function and describes the concrete redistributed proximal
bundle method for nonsmooth multiobjective optimization. Some satisfactory convergence results are
obtained in Section 4. Finally, in Section 5 some conclusions are given.

2. Preliminaries

Consider a nonsmooth nonconvex multiobjective optimization of the form:{
min { f1(x), f2(x), · · · , fh(x)}
s.t. x ∈ S ,

(2.1)

where S = {x ∈ Rn| c(x) ≤ 0}, fi : Rn → R, i = 1, 2, · · · , h, and c : Rn → R are locally Lipschitz
continuous functions. As in most related literature [29], we only consider the constraint function c as
a scalar function since, if multiple inequality constraints appear, constraint function c can be defined
as the point-wise maximum of finitely many constraint functions, thus covering the case of multiple
inequality constraints. Therefore, there is no loss of generality in formulating problem (2.1) with only
one constraint.

For a locally Lipschitz continuous function f : Rn → R, the Clarke generalized directional
derivative [13] at x ∈ Rn in the direction d ∈ Rn is defined by

f o(x; d) = lim sup
y→ x
t ↓ 0

f (y + td) − f (y)
t

,

and the Clarke subdifferential [13] of f at x ∈ Rn is defined by

∂ f (x) = {ξ ∈ Rn| f o(x; d) ≥ ξT d, for all d ∈ Rn},

which is a nonempty convex and compact subset of Rn.
A function f : Rn → R is f o-pseudoconvex [30] if it is locally Lipschitz continuous, and for all

x, y ∈ Rn,
f (y) < f (x) implies f o(x; y − x) < 0,

and it is f o-quasiconvex [30] if

f (y) ≤ f (x) implies f o(x; y − x) ≤ 0.
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A vector x∗ ∈ Rn is said to be a global Pareto optimum [3] of (2.1) if there does not exist x ∈ S such
that

fi(x) ≤ fi(x∗) for all i = 1, 2, · · · , h and f j(x) < f j(x∗) for some j.

A vector x∗ ∈ Rn is said to be a global weak Pareto optimum [3] of (2.1) if there does not exist x ∈ S
such that

fi(x) < fi(x∗) for all i = 1, 2, · · · , h.

A vector x∗ ∈ Rn is said to be a local (weak) Pareto optimum [3] of (2.1) if there exists δ > 0 such
that x∗ ∈ Rn is a global (weak) Pareto optimum on Bδ(x∗) ∩ S . Trivially, every Pareto optimal point is
weakly Pareto optimal.

The contingent cone and polar cone [13] of set S ⊂ Rn at x ∈ Rn are defined respectively as

KS (x) = {d ∈ Rn| there exist ti ↓ 0 and di → d with x + tidi ∈ S },

S ≤ = {d ∈ Rn|〈s, d〉 ≤ 0 for all s ∈ S }.

Furthermore, let

F(x) = ∪h
i=1∂ fi(x), G(x) = {∂c(x)|c(x) = 0}.

For the optimality condition we pose the following constraint qualification:

G≤(x) ⊆ KS (x). (2.2)

The following statements are equivalent [31, 32]:
(i) f is lower-C1 on S .
(ii) ∀x̄ ∈ S ,∀ε > 0,∃ρ > 0 : ∀x ∈ Bρ(x̄) and g ∈ ∂ f (x), we have

f (x + u) ≥ f (x) + 〈g, u〉 − ε|u|,

whenever |u| ≤ ρ and x + u ∈ Bρ(x̄).
(iii) ∀x̄ ∈ S ,∀ε > 0,∃ρ > 0 : ∀ y1, y2 ∈ Bρ(x̄) and g1 ∈ ∂ f (y1), g2 ∈ ∂ f (y2), we have

〈g1 − g2, y1 − y2〉 ≥ −ε|y1 − y2|.

(iv) f is semismooth and regular on S .

3. Model construction and redistributed bundle-type algorithm

In this part I generalize the redistributed proximal bundle method for single objective optimization
to nonsmooth nonconvex multiobjective optimization. The improvement function is employed to
handle nonsmooth multiobjective problems. The introduction of inexactness in the available
information makes the proposed algorithm possess extensive applications.
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3.1. Improvement function and available information

The improvement function [11] H : Rn × Rn → R is defined by

H(x, y) = max{ fi(x) − fi(y), c(x)|i = 1, 2, · · · , h}.

The next theorem reveals the relationship between the improvement function and problem (2.1),
and it provides the theoretical foundation for constructing the concrete algorithm.

Theorem 3.1. [31] A necessary condition for x∗ ∈ Rn to be a global weak Pareto optimum of (2.1) is
that

x∗ = arg min
x∈Rn

H(x, x∗). (3.1)

Moreover, if fi is f o-pseudoconvex for all i = 1, 2, · · · , h, the constraint function c is f o-quasiconvex,
and the constraint qualification (2.2) is valid, then the condition (3.1) is sufficient for x∗ ∈ Rn to be a
global weak Pareto optimum of (2.1).

Let x̂k ∈ Rn be the current stability center, Jk
i be the index set for the information used for function

fi, i = 1, 2, · · · , h, and Jk be the constraint function c at the kth iteration. We seek the search direction
dk ∈ Rn as a solution to

min H(x̂k + d, x̂k)
s.t. d ∈ Rn.

(3.2)

Suppose that at the kth iteration, besides the current stability center x̂k ∈ Rn, we have some auxiliary
points x j ∈ Rn from previous iterations. We have inexact function and subgradient values as follows:

f j
i = fi(x j) − σ j, c j = c(x j) − σ j,

f̂ k
i = fi(x̂k) − σ̂k, ĉk = c(x̂k) − σ̂k,

g j
i ∈ ∂ fi(x j) + Bθ j(0), g j ∈ ∂c(x j) + Bθ j(0), i = 1, 2, · · · , h,

(3.3)

where σ j, σ̂k and θ j are unknown errors, and error terms σ j, σ̂k and θ j are assumed to be bounded:

|σ j| ≤ σ̄, |σ̂k| ≤ σ̄, 0 ≤ θ j ≤ |θ̄|, for all j and k, (3.4)

but the error terms themselves and their bounds σ̄ and θ̄ are generally unknown.

3.2. Model construction and direction finding

In order to deal with possible nonconvexity of fi, i = 1, 2, · · · , h, and c, we follow the redistributed
proximal approach [20] and construct a new cutting-plane model for the improvement function. Firstly,
the convex piecewise linear model function for fi, i = 1, 2, · · · , h, and c are given respectively by

max j∈Jk
i
{ f j

i + 〈g j
i , x̂

k + d − x j〉 +
ηk

i
2 |x

j − x̂k|2 + ηk
i 〈x

j − x̂k, x̂k + d − x j〉}

= f̂ k
i + max j∈Jk

i
{−ak

i j + 〈sk
i j, d〉},

(3.5)

max j∈Jk{c j + 〈g j, x̂k + d − x j〉 +
ηk

2 |x
j − x̂k|2 + ηk〈x j − x̂k, x̂k + d − x j〉}

= ĉk + max j∈Jk{−ak
j + 〈sk

j, d〉},
(3.6)
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where
0 ≤ ak

i j = ek
i j + bk

i j,

ek
i j = f̂ k

i − f j
i − 〈g

j
i , x̂

k − x j〉,

bk
i j =

ηk
i

2 |x
j − x̂k|2, sk

i j = g j
i + ηk

i (x j − x̂k), i = 1, 2, · · · , h, j ∈ Jk
i ,

(3.7)

0 ≤ ak
j = ek

j + bk
j,

ek
j = ĉk − c j − 〈g j, x̂k − x j〉,

bk
j =

ηk

2 |x
j − x̂k|2, sk

j = g j + ηk(x j − x̂k), j ∈ Jk.

(3.8)

By adjusting dynamically along iterations, parameters ηk
i , i = 1, 2, · · · , h, and ηk are taken

sufficiently large to make ak
i j, i = 1, 2, · · · , h, j ∈ Jk

i , and ak
j, j ∈ Jk, nonnegative. In our redistributed

proximal bundle method, we take

ηk
i ≥ max{ max

j∈Jk
i ,x

j,x̂k
{
−2ek

i j

|x j − x̂k|2
}, 0} + γ := η1 + γ, i = 1, 2, · · · , h, (3.9)

ηk ≥ max{ max
j∈Jk ,x j,x̂k

{
−2ek

j

|x j − x̂k|2
}, 0} + γ := η2 + γ, (3.10)

where γ ∈ R is a small positive constant. Working with inexact information of the objective function
and the constraint function, the cutting-plane model for H(x̂k + d, x̂k) is presented by

Ĥk(x̂k + d) = max{ f̂ k
i + max j∈Jk

i
{−ak

i j + 〈sk
i j, d〉} − f̂ k

i , i = 1, 2, · · · , h;
ĉk + max j∈Jk{−ak

j + 〈sk
j, d〉}}

= max{max j∈Jk
i
{−ak

i j + 〈sk
i j, d〉}, i = 1, 2, · · · , h;

ĉk + max j∈Jk{−ak
j + 〈sk

j, d〉}}.

(3.11)

We also define the inexact function value of H(x̂k + d, x̂k) by

H̃(x̂k + d, x̂k) := H̃k(x̂k + d) = max{ f̂i(x̂k + d) − f̂ k
i , i = 1, 2, · · · , h; ĉ(x̂k + d)}, (3.12)

where f̂i(x̂k + d), i = 1, 2, · · · , h, and ĉ(x̂k + d) are approximately evaluated according to (3.3), which
will be used to discuss the convergence of the proposed algorithm in Section 3.3. Note that for some
J ∈ (∩h

i=1Jk
i ) ∩ Jk we have x̂k = xJ. Therefore, bk

iJ = bk
J = 0, ek

iJ = ek
J = 0, so ak

iJ = ak
J = 0. Hence,

Ĥk(x̂k) = max{0, ĉk}. (3.13)

Obviously, we have
Ĥk(x̂k) = H̃k(x̂k). (3.14)

The new search direction dk ∈ Rn is given by solving the proximal point subproblem

min
d∈Rn

Ĥk(x̂k + d) +
|d|2

2tk , (3.15)

where 0 < tk ∈ R is an inverse proximal parameter. From the optimality condition of the subproblem
above, we obtain

0 ∈ ∂Ĥk(xk+1) +
dk

tk , (3.16)
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where xk+1 = x̂k + dk. Since the model (3.11) is piecewise linear, there exist simplicial multipliers

αk
i ∈ R|J

k
i |, αk

i j ≥ 0, i = 1, 2, · · · , h, j ∈ Jk
i ;

αk ∈ R|J
k |, αk

j ≥ 0, j ∈ Jk;∑h
i=1
∑

j∈Jk
i
αk

i j +
∑

j∈Jk αk
j = 1

(3.17)

such that

dk = −tkGk, Gk =

h∑
i=1

∑
j∈Jk

i

αk
i js

k
i j +
∑
j∈Jk

αk
j s

k
j. (3.18)

Once the new iterate is known, we define the aggregate linearization

Ak(x̂k + d) = Ĥk(xk+1) + 〈Gk, d − dk〉, (3.19)

that is,
Ak(x) = Ĥk(xk+1) + 〈Gk, x − xk+1〉. (3.20)

Thus, we have

Ak(xk+1) = Ĥk(xk+1), Gk ∈ ∂Ĥk(xk+1), Gk = ∇Ak(x̂k + d) for all d ∈ Rn. (3.21)

By the subgradient inequality, it holds that

Ak(x̂k + d) ≤ Ĥk(x̂k + d), for all d ∈ Rn. (3.22)

The aggregate error is defined by

Ek = Ĥk(x̂k) − Ĥk(xk+1) + 〈Gk, dk〉(≥ 0), (3.23)

and it has the following equivalent expression:

Ek =
∑h

i=1
∑

j∈Jk
i
αk

i ja
k
i j +
∑

j∈Jk αk
ja

k
j + |ĉk|

= Ĥk(x̂k) − Ak(xk+1) + 〈Gk, dk〉.
(3.24)

Similarly, for the aggregate linearization, it holds that

Ak(x̂k + d) =

{
−Ek + 〈Gk, d〉, ĉk ≤ 0,
2ĉk − Ek + 〈Gk, d〉, ĉk ≥ 0.

3.3. A redistributed bundle-type algorithm

In order to check whether the new iterate provides sufficient decrease or not, the predicted decrease
is defined by

δk = H̃k(x̂k) − Ĥk(x̂k) + Ek + tk|Gk|2 = Ek + tk|Gk|2. (3.25)

It follows from (3.23) that
δk ≥ 0. (3.26)
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The reason we use δk to stop the algorithm will be clarified by the relations in Theorem 4.1; it has
the following equivalent expression:

δk = H̃k(x̂k) − Ĥk(x̂k) + Ek + tk|Gk|2

= H̃k(x̂k) − Ĥk(xk+1) + 〈Gk, dk〉 + tk|Gk|2

= H̃k(x̂k) − Ĥk(xk+1).

Our assumptions on defining the next model function Ĥk+1 are standard:

Ĥk+1(x̂k + d) ≥ max{0, ĉk+1} − ak+1
k+1 + 〈sk+1

k+1, d〉,
Ĥk+1(x̂k + d) ≥ Ak(x̂k + d), for all d ∈ Rn.

(3.27)

A Redistributed Bundle-Type Algorithm (RBTA):

Step 0 (Initialization) Choose an initial point x1 ∈ S , compute ( f 1
i , g

1
i ) and (c1, g1), and select m ∈

(0, 1), γ > 0, and a stopping tolerance tol ≥ 0. Choose parameter t1 > 0. Set the iteration counter
k = 1, the index set J1

i = J1 = {1}, f̂ 1
i := f 1

i , ĉ
1 := c1, x̂1 := x1, i = 1, 2, · · · , h.

Step 1 (Model Construction and Trial Point Finding) Given the model Ĥk defined by (3.11),
compute dk by solving (3.15), and define the associated Gk, Ek and δk by (3.18), (3.23) and
(3.25), respectively. Set xk+1 = x̂k + dk. If δk ≤ tol, stop.

Step 2 (Descent Test) Compute ( f k+1
i , gk+1

i ), i = 1, 2, · · · , h, and (ck+1, gk+1). If

ck+1 > ĉk − mδk,

then declare a null step and go to Step 3. Otherwise, declare a serious step and set
x̂k+1 = xk+1, f̂ k+1 = f k+1, ĉk+1 = ck+1. Select tk+1 > 0 and go to Step 4.

Step 3 (Null Step) Set x̂k+1 = x̂k, f̂ k+1 = f̂ k, ĉk+1 = ĉk, and select tk > tk+1 > 0.

Step 4 (Bundle Update and Loop) Select the bundle index set Jk+1
i , Jk+1, i = 1, 2, · · · , h, keeping the

active elements. Select ηk+1
i , ηk+1 as in (3.9) and (3.10), and update the model Ĥk+1 as needed.

Increase k by 1 and go to Step 1.

4. Convergence analysis

In this section I adapt the usual rationale of convergence proofs of bundle methods by considering
two cases of infinitely many serious steps and finitely many serious steps followed by infinitely many
null steps. It is shown that in both cases, the approximate stationarity condition holds under reasonable
conditions.

Lemma 4.1. Suppose the set {∪h
i=1{ j ∈ Jk

i |α
k
i j > 0} ∪ { j ∈ Jk|αk

j > 0}} is uniformly bounded in k. If
Ek → 0 as k → ∞, and {ĉk} → 0 as k → ∞, then
(i)
∑h

i=1
∑

j∈Jk
i
αk

i j|x
j − x̂k| +

∑
j∈Jk αk

j |x
j − x̂k| → 0 as k → ∞.

If, in addition, for some subset K ⊂ {1, 2, · · · , }, x̂k → x̄,Gk → Ḡ as K 3 k → ∞ with the set
{∪h

i=1{η
k
i |k ∈ K}} ∪ {ηk|k ∈ K} bounded, then we have

(ii) Ḡ ∈ ∂H(x̄, x̄) + 2Bθ̄(0).
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If, in addition, Gk → 0 as K 3 k → ∞, then
(iii) x̄ ∈ Rn satisfies the following approximate stationarity condition:

0 ∈ ∂H(x̄, x̄) + 2Bθ̄(0).

Finally, if in addition, fi, i = 1, 2, · · · , h, and c are lower−C1, then for each ε > 0, there exists ρ > 0
such that
(iv)

H(y, x̄) ≥ H(x̄, x̄) − 2σ̄ − (θ̄ + ε)|y − x̄|, ∀y ∈ Bρ(x̄).

Proof. (i) According to the ways of choosing η1 and η2, we have

ak
i j = ek

i j +
ηk

i

2
|x j − x̂k|2 ≥ ek

i j +
η1 + γ

2
|x j − x̂k|2 ≥

γ

2
|x j − x̂k|2 ≥ 0.

Furthermore, it follows from Ek → 0 that

0← αk
i ja

k
i j ≥ (αk

i j)
2ak

i j ≥
γ

2
(αk

i j|x
j − x̂k|)2 ≥ 0, as k → ∞.

Thus, we obtain αk
i j|x

j − x̂k| → 0 as k → ∞ for all i = 1, 2, · · · , h, j ∈ Jk
i . Similarly, αk

j |x
j − x̂k| → 0

as k → ∞ for all j ∈ Jk. By the assumption, the sum in item (i) is over a finite set of indices, and each
element in the sum tends to zero, so the assertion (i) holds.

(ii) For each j and i = 1, 2, · · · , h, choose p j
i to be the orthogonal projection of g j

i onto ∂ fi(x j) such
that |g j

i −p j
i | ≤ θ

j ≤ θ̄ and p j to be the orthogonal projection of g j onto ∂c(x j) such that |g j−p j| ≤ θ j ≤ θ̄.
By (3.7), (3.8) and (3.18), we have

Gk =
∑h

i=1
∑

j∈Jk
i
αk

i j p
j
i +
∑h

i=1
∑

j∈Jk
i
αi j(g

j
i − p j

i ) +
∑h

i=1 η
k
i
∑

j∈Jk
i
αi j(x j − x̂k)

+
∑

j∈Jk αk
j p

j +
∑

j∈Jk αk
j(g

j − p j) + ηk∑
j∈Jk αk

j(x j − x̂k).
(4.1)

Passing onto a further subsequence in the set K if necessary, assumptions x̂k → x̄,Gk → Ḡ as
K 3 k → ∞ with the set {∪h

i=1{η
k
i |k ∈ K}} ∪ {ηk|k ∈ K} bounded and outer semicontinuity of the Clarke

subdifferential imply that

lim
k→∞

(
h∑

i=1

∑
j∈Jk

i

αk
i j p

j
i +
∑
j∈Jk

αk
j p

j) ∈ conv{F(x̄) ∪G(x̄)} = ∂H(x̄, x̄).

Since the second and the fifth terms in (4.1) are both in Bθ̄(0), the third and the sixth terms tend to
zero by item (i), and the assertion of item (ii) follows.

(iii) The conclusion of item (iii) can be obtained easily from item (ii) if we take Ḡ = 0.
(iv) Because fi, i = 1, 2, · · · , h, and c are lower−C1, by the equivalent statement of lower−C1

functions in Section 2 and (3.3), (3.7), (3.8) and the nonnegativity of bk
i j and bk

j, fixing any ε > 0, there
exists ρ > 0 such that for any y ∈ Bρ(x j), we have

fi(y) ≥ fi(x̂k) − ak
i j + 〈sk

i j, y − x̂k〉 − ηk
i 〈x

j − x̂k, y − x̂k〉 + σ j + σ̂k

−(θ j + ε)|y − x j|,
(4.2)
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c(y) ≥ c(x̂k) − ak
j + 〈sk

j, y − x̂k〉 − ηk〈x j − x̂k, y − x̂k〉 + σ j + σ̂k

−(θ j + ε)|y − x j|.
(4.3)

Taking convex combinations in (4.2) and (4.3) using the simplicial multipliers in (3.17), and
using (3.24), we have∑h

i=1
∑

j∈Jk
i
αk

i j[ fi(y) − fi(x̂k)] +
∑

j∈Jk αk
jc(y) ≥

∑
j∈Jk αk

jc(x̂k) − Ek + 〈Ḡk, y − x̂k〉

−2σ̄ −
∑h

i=1
∑

j∈Jk
i
αk

i j(θ
j + ε)|y − x j| −

∑
j∈Jk αk

j(θ
j + ε)|y − x j|.

(4.4)

Passing onto the limit if necessary, using item (i) and Ḡ = 0 again, we obtain that

H(y, x̄) ≥ H(x̄, x̄) − 2σ̄ − (θ̄ + ε)|y − x̄|, ∀y ∈ Bρ(x̄),

where we employ the relation max{A, B} ≥ λA + (1 − λ)B for any λ ∈ [0, 1] and the definition of the
improvement function H(x, y). �

Theorem 4.1. Suppose the RBTA generates an infinite number of bounded serious steps. Then, δk → 0
as k → ∞. Suppose the sequences {ηk

i }, i = 1, 2, · · · , h, and {ηk} are bounded in k.
(i) If

∑∞
k=1 tk = +∞, then Ek → 0 as k → ∞, and there exist K ⊂ {1, 2, · · · } and x̄ such that x̂k →

x̄,Gk → 0 as K 3 k → ∞. In particular, if the set {∪h
i=1{ j ∈ Jk

i |α
k
i j > 0}} ∪ { j ∈ Jk|αk

j > 0} is uniformly
bounded in k, then the conclusions of Lemma 4.1 hold.
(ii) If lim infk→∞ tk > 0, then these assertions hold for all accumulation points x̄ of {x̂k}.

Proof. If we take a serious step at the kth iteration, we have

ĉk+1 ≤ ĉk − mδk, (4.5)

and since δk ≥ 0, the sequence {ĉk} is nonincreasing. By the boundedness of x̂k and σ̂k and the
Lipschitz continuity of c, {c(x̂k) − σ̂k} is bounded below, i.e., {ĉk} is bounded below, and we conclude
that it converges. It follows from (4.5) that

0 ≤ m
∞∑

k=1

δk ≤ ĉ1 − lim
k→∞

ĉk+1. (4.6)

As a result, δk → 0 as k → ∞. Since δk = Ek + tk|Gk|2, it also holds that

Ek → 0 and tk|Gk|2 → 0 as k → ∞. (4.7)

If
∑∞

k=1 tk = +∞, but for some β > 0, Gk ≥ β for all k, then (4.6) results in a contradiction. Hence,
there exists an index set K ⊂ {1, 2, · · · } such that

Gk → 0 as K 3 k → ∞. (4.8)

Furthermore, we can take a subsequence if necessary and assume x̂k → x̄. Item (i) is proved. If the
set {∪h

i=1{ j ∈ Jk
i |α

k
i j > 0}} ∪ { j ∈ Jk|αk

j > 0} is uniformly bounded in k, then, from Ek → 0 as k → ∞,
the conclusions of Lemma 4.1 hold.

If lim infk→∞ tk > 0, then the second relation in (4.7) implies that (4.8) holds for K = {1, 2, · · · }, and
thus the same assertions hold for all accumulation points of {x̂k}. �
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The next simple relation we present is crucial for proving the convergence of the proposed algorithm
under the case that a finite number of serious steps occurs. Suppose the stability center is x̂k = x̂ for all
k > k̄, where k̄ is some positive integer number. It follows from (3.8) that

−ak+1
k+1 + 〈sk+1

k+1, x
k+1 − x̂k〉

= −ek+1
k+1 − bk+1

k+1 + 〈gk+1 + ηk+1(xk+1 − x̂k), xk+1 − x̂k〉

= −(ĉk − ck+1 − 〈gk+1, x̂k − xk+1〉) − ηk+1

2 |x
k+1 − x̂k|2 + 〈gk+1, xk+1 − x̂k〉

+ηk+1〈xk+1 − x̂k, xk+1 − x̂k〉

= ck+1 − ĉk +
ηk+1

2 |x
k+1 − x̂k|2 ≥ ck+1 − ĉk.

(4.9)

Theorem 4.2. Suppose that a finite number of serious steps is followed by infinite null steps. Let k be
large enough that x̂k = x̂ for k ≥ k̄. Let the sequences {ηk

i }, i = 1, 2, · · · , h, and {ηk} be bounded in k
and lim infk→∞ tk > 0. Then, x̂k → x̂, δk → 0, Ek → 0 as k → ∞, and there exists K ⊂ {1, 2, · · · } such
that Gk → 0 as K 3 k → ∞. In particular, if the set {∪h

i=1{ j ∈ Jk
i |α

k
i j > 0}} ∪ { j ∈ Jk|αk

j > 0} is uniformly
bounded in k, the conclusions of Lemma 4.1 hold for x̄ = x̂.

Proof. Since x̂k = x̂ for k > k̄, we have f̂ k = f̂ , ĉk = ĉ. Define the optimal value of subproblem (3.15)

ψk := Ĥk(xk+1) +
|dk|2

2tk . (4.10)

By (3.19) we obtain that

ψk ≤ ψk +
|dk|2

2tk = Ak(x̂) + 〈Gk, dk〉 +
|dk|2

tk = Ak(x̂) ≤ Ĥ(x̂), (4.11)

so the sequence {ψk} is bounded. Since

ψk+1 = Ĥk+1(xk+2) + |dk+1 |2

2tk+1

≥ Ak(xk+2) + |dk+1 |2

2tk

= Ĥk(xk+1) + 〈Gk, xk+2 − xk+1〉 + |dk+1 |2

2tk

= ψk −
|dk |2

2tk −
1
tk 〈d

k, dk+1 − dk〉 + |dk+1 |2

2tk

= ψk + |dk−dk+1 |2

2tk ≥ ψk,

(4.12)

the sequence {ψk} is increasing; therefore, it converges. Taking into account that tk ≤ tk̄, it follows that

|dk+1 − dk| → 0, k → ∞. (4.13)

By the definition of δk and the equivalent expression of Ek, we have that

H̃(x̂) = δk + Ĥ(x̂) − Ek − tk|Gk|2 = δk + Ĥk(x̂k + dk); (4.14)

therefore,
δk+1 = H̃(x̂) − Ĥk+1(x̂ + dk+1). (4.15)

According to the assumption (3.27),

− Ĥk+1(x̂ + dk+1) ≤ −max{0, ĉk+1} + ak+1
k+1 − 〈s

k+1
k+1, d

k+1〉. (4.16)

AIMS Mathematics Volume 7, Issue 7, 12827–12841.



12838

Since ĉ = ĉk+1, we add (4.9) to (4.16), and then we have

mδk + 〈sk+1
k+1, d

k − dk+1〉 ≥ max{0, ĉ} − Ĥk+1(x̂ + dk+1).

Note that H̃(x̂) = max{0, ĉ}, and combining this relation with (4.15) yields

0 ≤ δk+1 ≤ mδk + 〈sk+1
k+1, d

k − dk+1〉. (4.17)

The rest of the proof is very similar to Theorem 7 in [26], so we omit it. �
Remark: According to Theorem 3.1, under the conditions that the objective functions are
f 0-pseudoconvex, the constraint function is f 0-quasiconvex, and the constraint qualification (2.2) is
valid, if x∗ satisfies x∗ = arg minx∈Rn H(x, x∗), then x∗ is a global weak Pareto optimum of
problem (2.1). Lemma 4.1 assures that under mild conditions x∗, the cluster point of stability centers,
satisfies the following approximate stationary condition: 0 ∈ ∂H(x̄, x̄) + 2Bθ̄(0), i.e., x∗ is the
approximate global weak Pareto optimum of problem (2.1). Regardless of whether the proposed
RBTA generates an infinite number of bounded serious steps or a finite number of serious steps
followed by infinite null steps, the conclusions of Lemma 4.1 hold; in other words, the approximate
global weak Pareto optimum of problem (2.1) can be obtained.

5. Conclusions

I construct a new cutting-plane model for approximating the nonconvex functions in multiobjective
optimization and develop a new redistributed proximal bundle algorithm. First and foremost, the
algorithm based on the new model generates approximate proximal points, computed using a variation
of the algorithm presented in [20], in which proximal points of a special cutting-plane model are used
to compute increasingly accurate approximations to the exact proximal points, and I generalize the
unconstrained optimization to the constrained case with a Lipschitz constrained function. At the same
time, the local convexification model gives new insight on the first-order models from [33]. Secondly,
for multiobjective optimization with nonsmooth nonconvex functions, the multiple objective functions
are treated individually by employing the improvement function without employing any scalarization,
which is the conventional technique and can be found in [34]. Similar multiobjective optimization
problems were once studied in [35, 36], which introduces an optimization strategy for cutting-plane
methods to cope with multiobjective problems without any scalarization procedure, but the presented
methods there employ the exact information of the objective and constrained functions. When
compared with the results obtained in [34], even though under some generalized convexity
assumptions it can be proved to find a globally weak Pareto optimal solution, it requires evaluation of
the exact function values without any errors, which will limit the wide applications of the proposed
algorithm. Note that in some cases computing the exact function value is not easy, for instance, the
Lagrangian relaxation problem: If f is a max-type function of the form f (y) = sup{Fz(y)|z ∈ Z}, where
each Fz(y) is convex, and Z is an infinite set, then it may be impossible to calculate f (y) since f itself
is defined by a minimization problem involving another function F. The assumptions for using
approximate subgradients and approximate values of the function are realistic. Also note that the
result of convergence is indeed weaker than what can be obtained by other methods [11, 15, 24]. It is
quite natural, as the convex case takes advantage of the corresponding tools (like the subgradient
inequality), which are not available in our nonconvex setting.
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