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1. Introduction

Let Nn+1
1 (c) be an (n + 1)-dimensional Lorentzian space form of constant sectional curvature c.

According to c > 0, c = 0 or c < 0, it is denoted by Sn+1
1 (c), Rn+1

1 or Hn+1
1 (c), respectively. A

hypersurface M of Nn+1
1 (c) is said to be spacelike if the induced metric on M from that of Nn+1

1 (c) is
positive definite. Moreover, M is called maximal if its mean curvature vanishes identically.

Calabi [1] first studied the Bernstein problem for complete maximal spacelike entire graphs in Rn+1
1

and proved that it must be a hyperplane, when n ≤ 4. Later, Cheng and Yau [8] showed that this
conclusion remains true for arbitrary n. For c ≥ 0, Cheng and Yau [8] and Ishihara [10] proved that
complete maximal spacelike submanifolds are totally geodesic. Furthermore, Ishihara [10] also proved
the following:

Theorem 1.1. [10] Let M be a complete maximal spacelike hypersurface in Hn+1
1 (−1), and let S be

the squared norm of the second fundamental form of M. Then,

S ≤ n,

and S = n if and only if M = Hm(− n
m ) × Hn−m(− n

n−m )(1 ≤ m ≤ n − 1).

There are some interesting results related to the study of maximal spacelike hypersurfaces with
constant scalar curvature or constant Gauss-Kronecker curvature in anti-de Sitter space Hn+1

1 (−1) (see
[2–7]).
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Recently, Deng-Gu-Wei [9] proved that closed Willmore minimal hypersurfaces with constant
scalar curvature in S5(1) are isoparametric. Motivated by Deng-Gu-Wei’s paper, in this paper we
investigate complete Willmore maximal spacelike hypersurfaces with constant scalar curvature in
anti-de Sitter space H5

1(−1), and give a new characterization of hyperbolic cylinder H2(−2) × H2(−2)
in H5

1(−1).

Theorem 1.2. Let M be a complete Willmore maximal spacelike hypersurface in anti-de Sitter space
H5

1(−1) with constant scalar curvature. If there exists a point with two distinct principal curvatures,
then M is the hyperbolic cylinder H2(−2) × H2(−2).

2. Preliminaries

In this section, we give some formulas and notations of maximal spacelike hypersurfaces in an
(n + 1)-dimensional Lorentzian space form Nn+1

1 (c) with constant sectional curvature c.
Let M be a connected spacelike hypersurface in Nn+1

1 (c). We choose a local frame of orthonormal
vector fields e1, · · · , en+1 adapted to the indefinite Riemannian metric of Nn+1

1 (c) and the dual coframe
{ω1, · · · , ωn+1} in such a way that, restricted to M, e1, · · · , en are tangent to M and en+1 is normal to M.

We will agree on the following index convention:

1 ≤ i, j, k, · · · ≤ n; 1 ≤ A, B,C, · · · ≤ n + 1.

Then the connection forms {ωAB} of Nn+1
1 (c) are characterized by the following structure equations:

dωA = −
∑

B

εBωAB ∧ ωB, ωAB + ωBA = 0,

dωAB = −
∑

C

εCωAC ∧ ωCB −
1
2

∑
C,D

εCεDKABCDωC ∧ ωD,

where εi = 1 for 1 ≤ i ≤ n, εn+1 = −1 and

KABCD = cεAεB(δADδBC − δACδBD)

denote the components of the curvature tensor of Nn+1
1 (c).

Restricting to M, we have
ωn+1 = 0. (2.1)

It follows from Cartan’s Lemma that

ωn+1i =
∑

j

hi jω j, hi j = h ji. (2.2)

The second fundamental form h and the mean curvature H of M are defined by

h = −
∑

i, j

hi jωiω j, H =
1
n

∑
i

hii. (2.3)

The squared norm of the second fundamental form of M is given by

S =
∑

i, j

h2
i j.
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The structure equations of M are given by

dωi = −
∑

j

ωi j ∧ ω j, ωi j + ω ji = 0,

dωi j = −
∑

k

ωik ∧ ωk j −
1
2

∑
k,l

Ri jklωk ∧ ωl,

where Ri jkl are the components of the curvature tensor of M. Moreover, using the previous structure
equations, we obtain the Gauss equation

Ri jkl = c(δilδ jk − δikδ jl) − (hilh jk − hikh jl). (2.4)

Let R jk and R represent the components of the Ricci curvature and the scalar curvature of M,
respectively. From (2.4), we get

R jk = (n − 1)cδ jk − nHh jk +
∑

i

hikh ji,

R = n(n − 1)c − n2H2 + S .

The components of the covariant differential ∇h of h are defined by∑
k

hi jkωk = dhi j −
∑

k

hikωk j −
∑

k

h jkωki. (2.5)

We have the Codazzi equation
hi jk = hik j. (2.6)

The squared norm of the covariant differential ∇h is given by

|∇h|2 =
∑
i, j,k

h2
i jk.

We take the second covariant differential of h and define hi jkl by∑
l

hi jklωl = dhi jk −
∑

m

hm jkωmi −
∑

m

himkωm j −
∑

m

hi jmωmk. (2.7)

The Ricci identity is given by

hi jkl − hi jlk = −
∑

m

himRm jkl −
∑

m

h jmRmikl

= (c − λkλl)(δikδ jl − δilδ jk)(λi − λ j). (2.8)

The Laplacian of hi j is defined by
∆hi j =

∑
k

hi jkk.

According to the equation (2.6) and the Ricci identity (2.8), we have

∆hi j =
∑

k

hkki j −
∑
k,m

hkmRmi jk −
∑
k,m

himRmk jk. (2.9)
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When M is a maximal spacelike hypersurface, we have

H =
1
n

∑
i

hii = 0. (2.10)

It follows from (2.4) and (2.9) that

∆hi j = (S + nc)hi j. (2.11)

According to the above discussion, we immediately obtain the following lemmas:

Lemma 2.1. Let M be a maximal spacelike hypersurface in Nn+1
1 (c), then we have

R = n(n − 1)c + S . (2.12)

Lemma 2.2. Let M be a maximal spacelike hypersurface of Nn+1
1 (c) with constant scalar curvature,

then we have
|∇h|2 = −S (S + nc). (2.13)

Next, we consider the Willmore functional

W(ϕ) =

∫
M

(S − nH2)
n
2 dυ

which vanishes if and only if ϕ : M → Nn+1
1 (c) is umbilical. The critical submanifolds of the Willmore

functional are called Willmore submanifolds. Recently, Sun and Chen [12] studied Willmore spacelike
submanifolds in a Lorentzian space form, and got the Euler-Lagrange equation of Willmore spacelike
submanifolds. For maximal Willmore spacelike hypersurfaces, they proved

Theorem 2.3. Let M be a maximal spacelike hypersurface in Nn+1
1 (c). Then M is a maximal Willmore

spacelike hypersurface if and only if

S
n−2

2

∑
i, j,k

hikhk jhi j −
∑

i, j

(S
n−2

2 )i, jhi j = 0,

where (S
n−2

2 )i, j is the Hessian of S
n−2

2 with respect to the induced metric.

Combining Theorem 2.3 and Lemma 2.1 yields the following lemma:

Lemma 2.4. Let M be a maximal Willmore spacelike hypersurface with constant scalar curvature R
in Nn+1

1 (c). Then the function
f3 :=

∑
i, j,k

hi jh jkhki ≡ 0. (2.14)

3. Two distinct principal curvatures at one point

In this paper, we only consider the case of n = 4. Let M be a Willmore maximal spacelike
hypersurface of H5

1(c) with constant scalar curvature R. Fixing an arbitrary point p ∈ M, we take
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orthonormal frames such that hi j = λiδi j at p for all i, j. According to (2.10), (2.12) and (3.47), we
have ∑

i

λi = 0,
∑

i

λ2
i = R − n(n − 1)c,

∑
i

λ3
i = 0. (3.1)

Without loss of generality, supposing λ1 ≥ λ2 ≥ λ3 ≥ λ4 at the point p, then we have (see [11, 13])

λ1 + λ4 = 0, λ2 + λ3 = 0. (3.2)

In this section, we first prove the following theorem.

Theorem 3.1. Let M be a Willmore maximal spacelike hypersurface of H5
1(c) with constant scalar

curvature. If there exists a point with two distinct principal curvatures, then the second fundamental
form of the hypersurface M is parallel.

Assume that there are two distinct principal curvatures at p, then it follows from (3.2) that

λ1 = λ2 = λ > 0, λ3 = λ4 = −λ < 0. (3.3)

Next, all discussions and calculations will be considered at the point p.

Lemma 3.2. For any k, l = 1, 2, 3, 4, we have

h11k + h22k = 0, h33k + h44k = 0. (3.4)

h11kl + h22kl = −(h33kl + h44kl) = −
1

2λ

∑
i, j

hi jkhi jl. (3.5)

Proof. Since H = 0, taking the first and second covariant derivative, we have

h11k + h22k + h33k + h44k = 0,
h11kl + h22kl + h33kl + h44kl = 0.

Similarly, by the fact that S is constant, we can get∑
i, j

hi jhi jk = 0,
∑

i, j

(hi jkhi jl + hi jhi jkl) = 0. (3.6)

Using (3.3), we get

h11 = h22 = λ, h33 = h44 = −λ, hi j = 0, for i , j. (3.7)

Substituting (3.7) into (3.6), we have

λ(h11k + h22k − h33k − h44k) = 0,∑
i, j

hi jkhi jl + λ(h11kl + h22kl − h33kl − h44kl) = 0.

Therefore, these equalities in the lemma hold. �
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In order to get the relations between the components hi jk, we take the derivatives of the function f3

defined on M. We have the following lemma:

Lemma 3.3. The components of ∇h satisfy the following equations:

h2
111 + h2

222 = h2
332 + h2

234 = h2
331 + h2

134, (3.8)

h2
333 + h2

444 = h2
114 + h2

124 = h2
113 + h2

123, (3.9)

h111h123 + h222h113 = −h332h333 + h234h444, (3.10)

h111h113 − h222h123 = h331h333 − h134h444, (3.11)

h111h124 + h222h114 = h234h333 + h332h444, (3.12)

− h111h114 + h222h124 = h134h333 + h331h444, (3.13)

h134h234 + h331h332 = 0, (3.14)

h123h124 + h113h114 = 0. (3.15)

Proof. It follows from Lemma 2.4 that f3 = 0. Taking the second covariant derivative of f3 and using
(3.3) and (2.10), we get

0 = ( f3)mn = 3
(∑

i

hiimnλ
2 + 2

∑
i,k

hikmhiknλi

)
. (3.16)

According to the Eq (3.4) and substituting (m, n) = (1, 1), (2, 2), (3, 3), (4, 4) into the Eq (3.16), we get

h2
111 + h2

222 = h2
331 + h2

134, h2
111 + h2

222 = h2
332 + h2

234,

h2
333 + h2

444 = h2
113 + h2

123, h2
333 + h2

444 = h2
114 + h2

124.

Therefore, the two equalities (3.8) and (3.9) hold.
Similarly, setting (m, n) = (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4) into the Eq (3.16), the other equalities
in the lemma will be obtained. �

Lemma 3.4. For any k = 1, 2, 3, 4, we have∑
i, j

h2
i jk =

1
4
|∇h|2. (3.17)

Proof. Combining (3.4), (3.8) and (3.9), we immediately obtain∑
i, j

h2
i jk = 4(h2

111 + h2
222 + h2

333 + h2
444), ∀ k.

So, the equality (3.17) holds. �

For the components hi jkl of the second covariant differential ∇2h, we have

Lemma 3.5.
h1233 = h3312, h1244 = h4412, (3.18)

h3411 = h1134, h3422 = h2234, (3.19)

h1122 = h2211, h3344 = h4433, (3.20)

h1111 = h2222, h3333 = h4444. (3.21)
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Proof. Using (3.3) and the Ricci identity (2.8), we immediately get (3.18)–(3.20). From (3.5) and
Lemma 3.4, it follows that

h1122 + h2222 = h1111 + h2211, h3344 + h4444 = h3333 + h4433.

Thus, (3.21) holds. �

According to Lemma 3.4, we find that (h2
111 + h2

222 + h2
333 + h2

444) is independent of the choice of
frames. Moreover, for any fixed e3 and e4, (h2

111 + h2
222) is invariant when rotating e1 and e2. Similarly,

for any fixed e1 and e2, (h2
333 + h2

444) is also invariant when rotating e3 and e4. Set

p1 = h2
111 + h2

222, p2 = h2
333 + h2

444.

Next, we will prove Theorem 3.1 by contradiction. We assume that at least one of p1 and p2 is
nonzero. Therefore, we have three cases:

Case I : p1 , 0, p2 , 0;
Case II : p1 = 0, p2 , 0;
Case III : p1 , 0, p2 = 0.

Since Case II and Case III are similar, we only discuss Case I and Case II.

3.1. Case I does not occur

In Case I, for fixed e3 and e4, we rotate e1 and e2 such that h111 = 0. If h134 , 0, then we fix e1

and e2, and rotate e3 and e4 such that h134 = 0. By the above rotation transformation, we reselect the
frame {e1, e2, e3, e4} such that h111 = h134 = 0. Furthermore, this frame preserves hi j = λiδi j at p. We
discuss Case I under the frame if not specified. According to the assumption that p1 , 0, p2 , 0 and
Lemma 3.3, we get

h134 = h111 = h233 = 0, h2
222 = h2

133 = h2
234 , 0.

There are four subcases:

Subcase I − (i) : h222 = h133 = h234 , 0;
Subcase I − (ii) : −h222 = h133 = h234 , 0;
Subcase I − (iii) : h222 = −h133 = h234 , 0;
Subcase I − (iv) : h222 = h133 = −h234 , 0.

The four subcases are similar, so we only discuss Subcase I-(i). Using Lemma 3.3, we obtain

h233 = h134 = h111 = 0; h222 = h133 = h234 , 0;
h333 = −h123 = h114; h444 = h124 = h113.

(3.22)

Combining (3.5) and (3.22), it yields

Lemma 3.6. In Subcase I-(i), we have

h3312 + h4412 = 0; h1134 + h2234 = 0; h3334 + h4434 = 0. (3.23)
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Lemma 3.7. In Subcase I-(i), we have

h4433 − h3333 − 2h1233 = 0, (3.24)

h2222 − h1122 − 2h3422 = 0, (3.25)

h4412 − h3312 − 2h1122 = 0, (3.26)

h3333 + 2h1233 + 3h4433 − 4h2234 = 0. (3.27)

Proof. It follows from Lemma 2.4 and (2.10) that

0 =
(
f3
)

lmn =
∑
i, j,k

(
hi jh jkhki

)
lmn

= 6
∑
i, j,k

hi jlh jkmhkin + 6
∑

i, j

λi
(
hi jlmhi jn + hi jlnhi jm + hi jmnhi jl

)
. (3.28)

Setting (l,m, n) = (4, 4, 4) in the Eq (3.28), we have∑
i, j,k

hi j4h jk4hki4 + 3
∑

i, j

hi j44hi j4λi = 0.

Using (3.22), (3.3) and (3.4), we obtain∑
i, j,k

hi j4h jk4hki4 = 0,∑
i, j

hi j44hi j4λi = λ
(
h1144h114 + h2244h224 − h3344h334 − h4444h444

+ 2h1244h124 − 2h3444h344
)
,

which implies
(h1144 − h2244 + 2h3444)h333 + (h3344 − h4444 + 2h1244)h444 = 0. (3.29)

Putting (l,m, n) = (3, 3, 3) into (3.28), we can get the following equation by a similar proof of the
Eq (3.29):

(h1133 − h2233 + 2h3433)h444 + (h4433 − h3333 − 2h1233)h333 = 0. (3.30)

Combining (3.29) and (3.30), we have the following homogeneous system of linear equations involving
h333 and h444: (h1144 − h2244 + 2h3444)h333 + (h3344 − h4444 + 2h1244)h444 = 0,

(h4433 − h3333 − 2h1233)h333 + (h1133 − h2233 + 2h3433)h444 = 0.
(3.31)

Using the Ricci identity (2.8) and (2.6), we get

h1133 − h3311 = h2233 − h3322 = h1144 − h4411 = h2244 − h4422 = 2λ(c + λ2).

Thus, it follows from (3.5) and Lemma 3.4 that

h1144 − h2244 = −(h3311 − h3322) = −(h1133 − h2233). (3.32)
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Combining Lemmas 3.5 and 3.6, we obtain

h1144 − h2244 + 2h3444 = −(h1133 − h2233 + 2h3433),
h4433 − h3333 − 2h1233 = h3344 − h4444 + 2h1244.

Since (3.31) has a nonzero solution if and only if

h4433 − h3333 − 2h1233 = h3344 − h4444 + 2h1244 = 0, (3.33)

h1144 − h2244 + 2h3444 = −(h1133 − h2233 + 2h3433) = 0. (3.34)

Setting (l,m, n) = (2, 2, 2) into the Eq (3.28), we have∑
i, j,k

hi j2h jk2hki2 + 3
∑

i, j

hi j22hi j2λi = 0.

Using (3.22) and (3.4), we also can get the first term∑
i, j,k

hi j2h jk2hki2 = 0.

Then we have
−h1122 + h2222 − 2h3422 = 0.

Putting (l,m, n) = (1, 1, 2) into the Eq (3.28), we have∑
i, j,k

hi j1h jk1hki2 +
∑

i, j

λi
(
hi j11hi j2 + 2hi j12hi j1

)
= 0.

Using (3.22) and Lemma 3.2, we have∑
i, j,k

hi j1h jk1hki2 = 0,∑
i, j

hi j11hi j2λi = (−h1111 + h2211 − 2h3411)h222λ,∑
i, j

hi j12hi j1λi = (−h3312 + h4412 − 2h1212)h222λ.

Combining (3.25), (3.23) and Lemma 3.5, we can get the equality (3.26).
Similarly, taking (l,m, n) = (4, 4, 3), (3, 3, 4) into the Eq (3.28), respectively, we can obtain

(h4444 − 2h1244 + 3h3443 − 4h2243)h333 + (h1144 − h2244 + 2h3343 + 4h1243)h444 = 0.

(h1133 − h2233 − 2h3334 − 4h1234)h333 + (h3333 + 2h1233 + 3h4433 − 4h2234)h444 = 0.

Combining (3.32), Lemmas 3.5 and 3.6, we obtain

h4444 − 2h1244 + 3h3443 − 4h2243 = h3333 + 2h1233 + 3h4433 − 4h2234,

h1144 − h2244 + 2h3343 + 4h1243 = −(h1133 − h2233 − 2h3334 − 4h1234).

Then we can get the last equality in the lemma. �
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Proposition 3.8. Let M be a Willmore maximal spacelike hypersurface of H5
1(c) with constant scalar

curvature. If there exists a point with two distinct principal curvatures, then Subcase I-(i) does not
occur.

Proof. It follows from (3.24) and (3.5) that

h1233 = h4433 −
1

4λ

∑
i, j

h2
i j3, (3.35)

Substituting (3.35) into (3.27) and using Lemma 3.2, we have

h4433 = h2234. (3.36)

Using (3.25) and (3.5), we get

h3422 = h2222 +
1

4λ

∑
i, j

h2
i j2. (3.37)

On the other hand, it follows from (3.26) and (3.23) that

h1122 = h4412. (3.38)

Combining (3.35)–(3.38), Lemmas 3.4–3.6, we can obtain

h1233 = h2222, (3.39)
h1122 + h1233 = h4412 + h1233 = 0. (3.40)

Hence, it follows from Lemma 3.4 that

h1122 + h1233 = h1122 + h2222 = −
1

8λ

∑
i, j,k

h2
i jk = 0,

which implies
hi jk = 0, ∀ i, j, k.

This contradicts the hypothesis. Therefore, Subcase I-(i) does not occur. �

Remark 3.1. The above proposition holds in the other three subcases too. Hence, Case I does not occur.

3.2. Case II does not occur

In Case II, for fixed e3 and e4, we rotate e1 and e2 such that h123 = 0. If h444 , 0, then we fix e1

and e2, and rotate e3 and e4 such that h444 = 0. By the above rotation transformation, we reselect the
frame {e1, e2, e3, e4} such that h123 = h444 = 0. Furthermore, this frame preserves hi j = λiδi j at p. We
discuss Case II under the frame if not specified. According to the assumption that p1 = 0, p2 , 0 and
Lemma 3.3, we get

h111 = h114 = h123 = h133 = h134 = h222 = h233 = h234 = h444 = 0, (3.41)

h2
113 = h2

124 = h2
333 , 0. (3.42)
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Lemma 3.9. In Case II, we get
h3333 = 3h4433 = h4444. (3.43)

h1133h113 + h2233h223 + 2h1234h124 = 0. (3.44)

Proof. Using (2.12) and (2.13), we find that |∇h|2 is constant. Taking the covariant derivative of |∇h|2,
we get ∑

i, j,k

hi jklhi jk = 0. (3.45)

Setting l = 3, we get

(h3333 − 3h4433)h333 + 3(h1133 − h2233)h113 + 6h1234h124 = 0. (3.46)

Next, according to Lemma 2.4 and (2.10), we have

∆ f3 = 3(S + 4c) f3 + 6
∑
i, j,k

hi jkhi jlhkl = 0. (3.47)

Taking the covariant derivative of ∆ f3, we get∑
i, j,k

(
hi jkmhi jlhkl + hi jkhi jlmhkl + hi jkhi jlhklm

)
= 0. (3.48)

Putting m = 3 into (3.48), we have

− (h3333 − 3h4433)h333 + (h1133 − h2233)h113 + 2h1234h124 = 0. (3.49)

Combining (3.46) and (3.49) and using Lemma 3.5, we immediately get (3.43) and (3.44). �

Lemma 3.10. In Case II, we get
h1234h124 + h4433h333 = 0, (3.50)

h1234h443 − h1122h124 = 0, (3.51)

(h1144 − h2244)h113 − (h3344 − h4444)h333 = 0, (3.52)

(h1122 − h2222)h113 − h3322h333 − h4422h443 = 0. (3.53)

Proof. The proof of the lemma is similar to Lemma 3.7. Putting (l,m, n) = (3, 3, 3), (4, 1, 2), (4, 4, 3),
(2, 2, 3) into (3.28), respectively, and using (3.42), (3.41) and Lemma 3.2, we can get (3.50)–(3.53). �

Proposition 3.11. Let M be a Willmore maximal spacelike hypersurface of H5
1(c) with constant scalar

curvature. If there exists a point with two distinct principal curvatures, then Case II does not occur.

Proof. It follows from (3.42) that there are two subcases:

Subcase II − (i) : h333 = h113 , 0;
Subcase II − (ii) : h333 = −h113 , 0.

The two subcases are similar, we only prove Subcase II-(i).
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Using (3.5), (3.17), (3.43) and Lemma 2.2, we have

h3344 = h4433 =
1

32λ
|∇h|2 =

−S (S + 4c)
32λ

= −
1
2
λ(λ2 + c). (3.54)

From (3.52), it yields
h1144 − h2244 − h3344 + h4444 = 0. (3.55)

From (3.5), we can obtain
h1144 + h2244 + h3344 + h4444 = 0, (3.56)

h1122 + h2222 + h3322 + h4422 = 0. (3.57)

Combining (3.56), (3.55) and (3.43), we have

h2244 = −h3344 = −h4433. (3.58)

Using (3.53), we have
h1122 − h2222 − h3322 + h4422 = 0. (3.59)

Combining (3.59) and (3.57), we obtain

h1122 = −h4422. (3.60)

From (3.50), (3.51) and (3.42), we can deduce

h1122 = h4433, (3.61)

Which together with (3.60) and (3.58) give that

h4422 = h2244.

On the other hand, it follows from the Ricci identity (2.8) and (3.54) that

h4422 = h2244 − 2λ(λ2 + c) = h2244 +
1

8λ
|∇h|2,

which implies
hi jk = 0, ∀ i, j, k.

This contradicts the hypothesis. Therefore, Case II does not occur. �

Remark 3.2. From the above discussion, it follows that Case I, Case II and Case III do not occur.
Hence, at the point p, we have

p1 = h2
111 + h2

222 = 0, p2 = h2
333 + h2

444 = 0.

By Lemmas 3.4 and 2.2, we deduce that the second fundamental form of the hypersurface M is parallel.
Therefore, we prove Theorem 3.1.

Proof of Theorem 1.2. Combining Theorem 3.1, Lemmas 2.1 and 2.2, we get S ≡ 4 on M. Therefore,
by Theorem 1.1, M must be the hyperbolic cylinder

H2(−2) × H2(−2) =

{
(x, y) ∈ R3

1 × R
3
1

∣∣∣∣∣〈x, x〉 = −
1
2
, 〈y, y〉 = −

1
2

}
,

where H2(−2) denotes the hyperbolic surface with constant sectional curvature −2. Thus we complete
the proof of Theorem 1.2. �
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