Research article

A new characterization of hyperbolic cylinder in anti-de Sitter space $\mathbb{H}_{1}^{5}(-1)$

Xuerong Qi* and Chunxia Shi

School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China

* Correspondence: Email: xrqi@zzu.edu.cn.

Abstract

By investigating complete Willmore maximal spacelike hypersurfaces with constant scalar curvature in anti-de Sitter space $\mathbb{H}_{1}^{5}(-1)$, we give a new characterization of hyperbolic cylinder $\mathbb{H}^{2}(-2) \times$ $\mathbb{H}^{2}(-2)$ in $\mathbb{H}_{1}^{5}(-1)$.

Keywords: anti-de Sitter space; Willmore maximal spacelike hypersurfaces; constant scalar curvature Mathematics Subject Classification: 53C42, 53C50

1. Introduction

Let $N_{1}^{n+1}(c)$ be an $(n+1)$-dimensional Lorentzian space form of constant sectional curvature c. According to $c>0, c=0$ or $c<0$, it is denoted by $\mathbb{S}_{1}^{n+1}(c), \mathbb{R}_{1}^{n+1}$ or $\mathbb{H}_{1}^{n+1}(c)$, respectively. A hypersurface M of $N_{1}^{n+1}(c)$ is said to be spacelike if the induced metric on M from that of $N_{1}^{n+1}(c)$ is positive definite. Moreover, M is called maximal if its mean curvature vanishes identically.

Calabi [1] first studied the Bernstein problem for complete maximal spacelike entire graphs in \mathbb{R}_{1}^{n+1} and proved that it must be a hyperplane, when $n \leq 4$. Later, Cheng and Yau [8] showed that this conclusion remains true for arbitrary n. For $c \geq 0$, Cheng and Yau [8] and Ishihara [10] proved that complete maximal spacelike submanifolds are totally geodesic. Furthermore, Ishihara [10] also proved the following:

Theorem 1.1. [10] Let M be a complete maximal spacelike hypersurface in $\mathbb{H}_{1}^{n+1}(-1)$, and let S be the squared norm of the second fundamental form of M. Then,

$$
S \leq n,
$$

and $S=n$ if and only if $M=\mathbb{H}^{m}\left(-\frac{n}{m}\right) \times \mathbb{H}^{n-m}\left(-\frac{n}{n-m}\right)(1 \leq m \leq n-1)$.
There are some interesting results related to the study of maximal spacelike hypersurfaces with constant scalar curvature or constant Gauss-Kronecker curvature in anti-de Sitter space $\mathbb{H}_{1}^{n+1}(-1)$ (see [2-7]).

Recently, Deng-Gu-Wei [9] proved that closed Willmore minimal hypersurfaces with constant scalar curvature in $\mathbb{S}^{5}(1)$ are isoparametric. Motivated by Deng-Gu-Wei's paper, in this paper we investigate complete Willmore maximal spacelike hypersurfaces with constant scalar curvature in anti-de Sitter space $\mathbb{H}_{1}^{5}(-1)$, and give a new characterization of hyperbolic cylinder $\mathbb{H}^{2}(-2) \times \mathbb{H}^{2}(-2)$ in $\mathbb{H}_{1}^{5}(-1)$.
Theorem 1.2. Let M be a complete Willmore maximal spacelike hypersurface in anti-de Sitter space $\mathbb{H}_{1}^{5}(-1)$ with constant scalar curvature. If there exists a point with two distinct principal curvatures, then M is the hyperbolic cylinder $\mathbb{H}^{2}(-2) \times \mathbb{H}^{2}(-2)$.

2. Preliminaries

In this section, we give some formulas and notations of maximal spacelike hypersurfaces in an $(n+1)$-dimensional Lorentzian space form $N_{1}^{n+1}(c)$ with constant sectional curvature c.

Let M be a connected spacelike hypersurface in $N_{1}^{n+1}(c)$. We choose a local frame of orthonormal vector fields e_{1}, \cdots, e_{n+1} adapted to the indefinite Riemannian metric of $N_{1}^{n+1}(c)$ and the dual coframe $\left\{\omega_{1}, \cdots, \omega_{n+1}\right\}$ in such a way that, restricted to M, e_{1}, \cdots, e_{n} are tangent to M and e_{n+1} is normal to M.

We will agree on the following index convention:

$$
1 \leq i, j, k, \cdots \leq n ; \quad 1 \leq A, B, C, \cdots \leq n+1
$$

Then the connection forms $\left\{\omega_{A B}\right\}$ of $N_{1}^{n+1}(c)$ are characterized by the following structure equations:

$$
\begin{aligned}
d \omega_{A} & =-\sum_{B} \varepsilon_{B} \omega_{A B} \wedge \omega_{B}, \omega_{A B}+\omega_{B A}=0 \\
d \omega_{A B} & =-\sum_{C} \varepsilon_{C} \omega_{A C} \wedge \omega_{C B}-\frac{1}{2} \sum_{C, D} \varepsilon_{C} \varepsilon_{D} K_{A B C D} \omega_{C} \wedge \omega_{D}
\end{aligned}
$$

where $\varepsilon_{i}=1$ for $1 \leq i \leq n, \varepsilon_{n+1}=-1$ and

$$
K_{A B C D}=c \varepsilon_{A} \varepsilon_{B}\left(\delta_{A D} \delta_{B C}-\delta_{A C} \delta_{B D}\right)
$$

denote the components of the curvature tensor of $N_{1}^{n+1}(c)$.
Restricting to M, we have

$$
\begin{equation*}
\omega_{n+1}=0 \tag{2.1}
\end{equation*}
$$

It follows from Cartan's Lemma that

$$
\begin{equation*}
\omega_{n+1 i}=\sum_{j} h_{i j} \omega_{j}, \quad h_{i j}=h_{j i} \tag{2.2}
\end{equation*}
$$

The second fundamental form h and the mean curvature H of M are defined by

$$
\begin{equation*}
h=-\sum_{i, j} h_{i j} \omega_{i} \omega_{j}, \quad H=\frac{1}{n} \sum_{i} h_{i i} . \tag{2.3}
\end{equation*}
$$

The squared norm of the second fundamental form of M is given by

$$
S=\sum_{i, j} h_{i j}^{2}
$$

The structure equations of M are given by

$$
\begin{aligned}
d \omega_{i} & =-\sum_{j} \omega_{i j} \wedge \omega_{j}, \quad \omega_{i j}+\omega_{j i}=0 \\
d \omega_{i j} & =-\sum_{k} \omega_{i k} \wedge \omega_{k j}-\frac{1}{2} \sum_{k, l} R_{i j k l} \omega_{k} \wedge \omega_{l},
\end{aligned}
$$

where $R_{i j k l}$ are the components of the curvature tensor of M. Moreover, using the previous structure equations, we obtain the Gauss equation

$$
\begin{equation*}
R_{i j k l}=c\left(\delta_{i l} \delta_{j k}-\delta_{i k} \delta_{j l}\right)-\left(h_{i l} h_{j k}-h_{i k} h_{j l}\right) . \tag{2.4}
\end{equation*}
$$

Let $R_{j k}$ and R represent the components of the Ricci curvature and the scalar curvature of M, respectively. From (2.4), we get

$$
\begin{aligned}
R_{j k} & =(n-1) c \delta_{j k}-n H h_{j k}+\sum_{i} h_{i k} h_{j i}, \\
R & =n(n-1) c-n^{2} H^{2}+S
\end{aligned}
$$

The components of the covariant differential ∇h of h are defined by

$$
\begin{equation*}
\sum_{k} h_{i j k} \omega_{k}=d h_{i j}-\sum_{k} h_{i k} \omega_{k j}-\sum_{k} h_{j k} \omega_{k i} . \tag{2.5}
\end{equation*}
$$

We have the Codazzi equation

$$
\begin{equation*}
h_{i j k}=h_{i k j} . \tag{2.6}
\end{equation*}
$$

The squared norm of the covariant differential ∇h is given by

$$
|\nabla h|^{2}=\sum_{i, j, k} h_{i j k}^{2}
$$

We take the second covariant differential of h and define $h_{i j k l}$ by

$$
\begin{equation*}
\sum_{l} h_{i j k l} \omega_{l}=d h_{i j k}-\sum_{m} h_{m j k} \omega_{m i}-\sum_{m} h_{i m k} \omega_{m j}-\sum_{m} h_{i j m} \omega_{m k} . \tag{2.7}
\end{equation*}
$$

The Ricci identity is given by

$$
\begin{align*}
h_{i j k l}-h_{i j l k} & =-\sum_{m} h_{i m} R_{m j k l}-\sum_{m} h_{j m} R_{m i k l} \\
& =\left(c-\lambda_{k} \lambda_{l}\right)\left(\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}\right)\left(\lambda_{i}-\lambda_{j}\right) . \tag{2.8}
\end{align*}
$$

The Laplacian of $h_{i j}$ is defined by

$$
\Delta h_{i j}=\sum_{k} h_{i j k k} .
$$

According to the equation (2.6) and the Ricci identity (2.8), we have

$$
\begin{equation*}
\Delta h_{i j}=\sum_{k} h_{k k i j}-\sum_{k, m} h_{k m} R_{m i j k}-\sum_{k, m} h_{i m} R_{m k j k} \tag{2.9}
\end{equation*}
$$

When M is a maximal spacelike hypersurface, we have

$$
\begin{equation*}
H=\frac{1}{n} \sum_{i} h_{i i}=0 . \tag{2.10}
\end{equation*}
$$

It follows from (2.4) and (2.9) that

$$
\begin{equation*}
\Delta h_{i j}=(S+n c) h_{i j} . \tag{2.11}
\end{equation*}
$$

According to the above discussion, we immediately obtain the following lemmas:
Lemma 2.1. Let M be a maximal spacelike hypersurface in $N_{1}^{n+1}(c)$, then we have

$$
\begin{equation*}
R=n(n-1) c+S . \tag{2.12}
\end{equation*}
$$

Lemma 2.2. Let M be a maximal spacelike hypersurface of $N_{1}^{n+1}(c)$ with constant scalar curvature, then we have

$$
\begin{equation*}
|\nabla h|^{2}=-S(S+n c) . \tag{2.13}
\end{equation*}
$$

Next, we consider the Willmore functional

$$
W(\varphi)=\int_{M}\left(S-n H^{2}\right)^{\frac{n}{2}} d v
$$

which vanishes if and only if $\varphi: M \rightarrow N_{1}^{n+1}(c)$ is umbilical. The critical submanifolds of the Willmore functional are called Willmore submanifolds. Recently, Sun and Chen [12] studied Willmore spacelike submanifolds in a Lorentzian space form, and got the Euler-Lagrange equation of Willmore spacelike submanifolds. For maximal Willmore spacelike hypersurfaces, they proved

Theorem 2.3. Let M be a maximal spacelike hypersurface in $N_{1}^{n+1}(c)$. Then M is a maximal Willmore spacelike hypersurface if and only if

$$
S^{\frac{n-2}{2}} \sum_{i, j, k} h_{i k} h_{k j} h_{i j}-\sum_{i, j}\left(S^{\frac{n-2}{2}}\right)_{i, j} h_{i j}=0,
$$

where $\left(S^{\frac{n-2}{2}}\right)_{i, j}$ is the Hessian of $S^{\frac{n-2}{2}}$ with respect to the induced metric.
Combining Theorem 2.3 and Lemma 2.1 yields the following lemma:
Lemma 2.4. Let M be a maximal Willmore spacelike hypersurface with constant scalar curvature R in $N_{1}^{n+1}(c)$. Then the function

$$
\begin{equation*}
f_{3}:=\sum_{i, j, k} h_{i j} h_{j k} h_{k i} \equiv 0 . \tag{2.14}
\end{equation*}
$$

3. Two distinct principal curvatures at one point

In this paper, we only consider the case of $n=4$. Let M be a Willmore maximal spacelike hypersurface of $\mathbb{H}_{1}^{5}(c)$ with constant scalar curvature R. Fixing an arbitrary point $p \in M$, we take
orthonormal frames such that $h_{i j}=\lambda_{i} \delta_{i j}$ at p for all i, j. According to (2.10), (2.12) and (3.47), we have

$$
\begin{equation*}
\sum_{i} \lambda_{i}=0, \quad \sum_{i} \lambda_{i}^{2}=R-n(n-1) c, \quad \sum_{i} \lambda_{i}^{3}=0 . \tag{3.1}
\end{equation*}
$$

Without loss of generality, supposing $\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq \lambda_{4}$ at the point p, then we have (see [11, 13])

$$
\begin{equation*}
\lambda_{1}+\lambda_{4}=0, \quad \lambda_{2}+\lambda_{3}=0 . \tag{3.2}
\end{equation*}
$$

In this section, we first prove the following theorem.
Theorem 3.1. Let M be a Willmore maximal spacelike hypersurface of $\mathbb{H}_{1}^{5}(c)$ with constant scalar curvature. If there exists a point with two distinct principal curvatures, then the second fundamental form of the hypersurface M is parallel.

Assume that there are two distinct principal curvatures at p, then it follows from (3.2) that

$$
\begin{equation*}
\lambda_{1}=\lambda_{2}=\lambda>0, \quad \lambda_{3}=\lambda_{4}=-\lambda<0 . \tag{3.3}
\end{equation*}
$$

Next, all discussions and calculations will be considered at the point p.
Lemma 3.2. For any $k, l=1,2,3,4$, we have

$$
\begin{gather*}
h_{11 k}+h_{22 k}=0, \quad h_{33 k}+h_{44 k}=0 . \tag{3.4}\\
h_{11 k l}+h_{22 k l}=-\left(h_{33 k l}+h_{44 k l}\right)=-\frac{1}{2 \lambda} \sum_{i, j} h_{i j k} h_{i j l} . \tag{3.5}
\end{gather*}
$$

Proof. Since $H=0$, taking the first and second covariant derivative, we have

$$
\begin{array}{r}
h_{11 k}+h_{22 k}+h_{33 k}+h_{44 k}=0, \\
h_{11 k l}+h_{22 k l}+h_{33 k l}+h_{44 k l}=0 .
\end{array}
$$

Similarly, by the fact that S is constant, we can get

$$
\begin{equation*}
\sum_{i, j} h_{i j} h_{i j k}=0, \quad \sum_{i, j}\left(h_{i j k} h_{i j l}+h_{i j} h_{i j k l}\right)=0 . \tag{3.6}
\end{equation*}
$$

Using (3.3), we get

$$
\begin{equation*}
h_{11}=h_{22}=\lambda, \quad h_{33}=h_{44}=-\lambda, \quad h_{i j}=0, \text { for } i \neq j . \tag{3.7}
\end{equation*}
$$

Substituting (3.7) into (3.6), we have

$$
\begin{aligned}
\lambda\left(h_{11 k}+h_{22 k}-h_{33 k}-h_{44 k}\right) & =0, \\
\sum_{i, j} h_{i j k} h_{i j l}+\lambda\left(h_{11 k l}+h_{22 k l}-h_{33 k l}-h_{44 k l}\right) & =0 .
\end{aligned}
$$

Therefore, these equalities in the lemma hold.

In order to get the relations between the components $h_{i j k}$, we take the derivatives of the function f_{3} defined on M. We have the following lemma:
Lemma 3.3. The components of ∇h satisfy the following equations:

$$
\begin{gather*}
h_{111}^{2}+h_{222}^{2}=h_{332}^{2}+h_{234}^{2}=h_{331}^{2}+h_{134}^{2}, \tag{3.8}\\
h_{333}^{2}+h_{444}^{2}=h_{114}^{2}+h_{124}^{2}=h_{113}^{2}+h_{123}^{2}, \tag{3.9}\\
h_{111} h_{123}+h_{222} h_{113}=-h_{332} h_{333}+h_{234} h_{444}, \tag{3.10}\\
h_{111} h_{113}-h_{222} h_{123}=h_{331} h_{333}-h_{134} h_{444}, \tag{3.11}\\
h_{111} h_{124}+h_{222} h_{114}=h_{234} h_{333}+h_{332} h_{444}, \tag{3.12}\\
-h_{111} h_{114}+h_{222} h_{124}=h_{134} h_{333}+h_{331} h_{444}, \tag{3.13}\\
h_{134} h_{234}+h_{331} h_{332}=0, \tag{3.14}\\
h_{123} h_{124}+h_{113} h_{114}=0 . \tag{3.15}
\end{gather*}
$$

Proof. It follows from Lemma 2.4 that $f_{3}=0$. Taking the second covariant derivative of f_{3} and using (3.3) and (2.10), we get

$$
\begin{equation*}
0=\left(f_{3}\right)_{m n}=3\left(\sum_{i} h_{i i m n} \lambda^{2}+2 \sum_{i, k} h_{i k m} h_{i k n} \lambda_{i}\right) \tag{3.16}
\end{equation*}
$$

According to the Eq (3.4) and substituting $(m, n)=(1,1),(2,2),(3,3),(4,4)$ into the $\operatorname{Eq}(3.16)$, we get

$$
\begin{array}{ll}
h_{111}^{2}+h_{222}^{2}=h_{331}^{2}+h_{134}^{2}, & h_{111}^{2}+h_{222}^{2}=h_{332}^{2}+h_{234}^{2}, \\
h_{333}^{2}+h_{444}^{2}=h_{113}^{2}+h_{123}^{2}, & h_{333}^{2}+h_{444}^{2}=h_{114}^{2}+h_{124}^{2} .
\end{array}
$$

Therefore, the two equalities (3.8) and (3.9) hold.
Similarly, setting $(m, n)=(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)$ into the $\mathrm{Eq}(3.16)$, the other equalities in the lemma will be obtained.

Lemma 3.4. For any $k=1,2,3,4$, we have

$$
\begin{equation*}
\sum_{i, j} h_{i j k}^{2}=\frac{1}{4}|\nabla h|^{2} . \tag{3.17}
\end{equation*}
$$

Proof. Combining (3.4), (3.8) and (3.9), we immediately obtain

$$
\sum_{i, j} h_{i j k}^{2}=4\left(h_{111}^{2}+h_{222}^{2}+h_{333}^{2}+h_{444}^{2}\right), \quad \forall k
$$

So, the equality (3.17) holds.
For the components $h_{i j k l}$ of the second covariant differential $\nabla^{2} h$, we have

Lemma 3.5.

$$
\begin{array}{ll}
h_{1233}=h_{3312}, & h_{1244}=h_{4412}, \\
h_{3411}=h_{1134}, & h_{3422}=h_{2234}, \\
h_{1122}=h_{2211}, & h_{3344}=h_{4433}, \\
h_{1111}=h_{2222}, & h_{3333}=h_{4444} . \tag{3.21}
\end{array}
$$

Proof. Using (3.3) and the Ricci identity (2.8), we immediately get (3.18)-(3.20). From (3.5) and Lemma 3.4, it follows that

$$
h_{1122}+h_{2222}=h_{1111}+h_{2211}, \quad h_{3344}+h_{4444}=h_{3333}+h_{4433} .
$$

Thus, (3.21) holds.
According to Lemma 3.4, we find that $\left(h_{111}^{2}+h_{222}^{2}+h_{333}^{2}+h_{444}^{2}\right)$ is independent of the choice of frames. Moreover, for any fixed e_{3} and $e_{4},\left(h_{111}^{2}+h_{222}^{2}\right)$ is invariant when rotating e_{1} and e_{2}. Similarly, for any fixed e_{1} and $e_{2},\left(h_{333}^{2}+h_{444}^{2}\right)$ is also invariant when rotating e_{3} and e_{4}. Set

$$
p_{1}=h_{111}^{2}+h_{222}^{2}, \quad p_{2}=h_{333}^{2}+h_{444}^{2} .
$$

Next, we will prove Theorem 3.1 by contradiction. We assume that at least one of p_{1} and p_{2} is nonzero. Therefore, we have three cases:

$$
\begin{array}{lll}
\text { Case I : } & p_{1} \neq 0, & p_{2} \neq 0 ; \\
\text { Case II : } & p_{1}=0, & p_{2} \neq 0 ; \\
\text { Case III : } & p_{1} \neq 0, & p_{2}=0 .
\end{array}
$$

Since Case II and Case III are similar, we only discuss Case I and Case II.

3.1. Case I does not occur

In Case I, for fixed e_{3} and e_{4}, we rotate e_{1} and e_{2} such that $h_{111}=0$. If $h_{134} \neq 0$, then we fix e_{1} and e_{2}, and rotate e_{3} and e_{4} such that $h_{134}=0$. By the above rotation transformation, we reselect the frame $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ such that $h_{111}=h_{134}=0$. Furthermore, this frame preserves $h_{i j}=\lambda_{i} \delta_{i j}$ at p. We discuss Case I under the frame if not specified. According to the assumption that $p_{1} \neq 0, p_{2} \neq 0$ and Lemma 3.3, we get

$$
h_{134}=h_{111}=h_{233}=0, \quad h_{222}^{2}=h_{133}^{2}=h_{234}^{2} \neq 0 .
$$

There are four subcases:

$$
\begin{array}{ll}
\text { Subcase I - (i) : } & h_{222}=h_{133}=h_{234} \neq 0 ; \\
\text { Subcase } \mathbf{I}-(\mathbf{i i}): & -h_{222}=h_{133}=h_{234} \neq 0 ; \\
\text { Subcase I }-(\mathbf{i i i}): & h_{222}=-h_{133}=h_{234} \neq 0 ; \\
\text { Subcase I }-(\mathbf{i v}): & h_{222}=h_{133}=-h_{234} \neq 0 .
\end{array}
$$

The four subcases are similar, so we only discuss Subcase I-(i). Using Lemma 3.3, we obtain

$$
\begin{array}{lll}
h_{233}=h_{134}=h_{111}=0 ; & h_{222}=h_{133}=h_{234} \neq 0 ; \\
h_{333}=-h_{123}=h_{114} ; & & h_{444}=h_{124}=h_{113} . \tag{3.22}
\end{array}
$$

Combining (3.5) and (3.22), it yields
Lemma 3.6. In Subcase I-(i), we have

$$
\begin{equation*}
h_{3312}+h_{4412}=0 ; \quad h_{1134}+h_{2234}=0 ; \quad h_{3334}+h_{4434}=0 . \tag{3.23}
\end{equation*}
$$

Lemma 3.7. In Subcase I-(i), we have

$$
\begin{gather*}
h_{4433}-h_{3333}-2 h_{1233}=0, \tag{3.24}\\
h_{2222}-h_{1122}-2 h_{3422}=0, \tag{3.25}\\
h_{4412}-h_{3312}-2 h_{1122}=0, \tag{3.26}\\
h_{3333}+2 h_{1233}+3 h_{4433}-4 h_{2234}=0 . \tag{3.27}
\end{gather*}
$$

Proof. It follows from Lemma 2.4 and (2.10) that

$$
\begin{align*}
0 & =\left(f_{3}\right)_{l m n}=\sum_{i, j, k}\left(h_{i j} h_{j k} h_{k i}\right)_{l m n} \\
& =6 \sum_{i, j, k} h_{i j l} h_{j k m} h_{k i n}+6 \sum_{i, j} \lambda_{i}\left(h_{i j l m} h_{i j n}+h_{i j l n} h_{i j m}+h_{i j m n} h_{i j l}\right) . \tag{3.28}
\end{align*}
$$

Setting $(l, m, n)=(4,4,4)$ in the Eq (3.28), we have

$$
\sum_{i, j, k} h_{i j 4} h_{j k 4} h_{k i 4}+3 \sum_{i, j} h_{i j 44} h_{i j 4} \lambda_{i}=0
$$

Using (3.22), (3.3) and (3.4), we obtain

$$
\begin{aligned}
& \sum_{i, j, k} h_{i j 4} h_{j k 4} h_{k i 4}=0, \\
& \sum_{i, j} h_{i j 44} h_{i j 4} \lambda_{i}=\lambda\left(h_{1144} h_{114}+h_{2244} h_{224}-h_{3344} h_{334}-h_{4444} h_{444}\right. \\
& \\
& \left.+2 h_{1244} h_{124}-2 h_{3444} h_{344}\right),
\end{aligned}
$$

which implies

$$
\begin{equation*}
\left(h_{1144}-h_{2244}+2 h_{3444}\right) h_{333}+\left(h_{3344}-h_{4444}+2 h_{1244}\right) h_{444}=0 . \tag{3.29}
\end{equation*}
$$

Putting $(l, m, n)=(3,3,3)$ into (3.28), we can get the following equation by a similar proof of the Eq (3.29):

$$
\begin{equation*}
\left(h_{1133}-h_{2233}+2 h_{3433}\right) h_{444}+\left(h_{4433}-h_{3333}-2 h_{1233}\right) h_{333}=0 . \tag{3.30}
\end{equation*}
$$

Combining (3.29) and (3.30), we have the following homogeneous system of linear equations involving h_{333} and h_{444} :

$$
\left\{\begin{array}{l}
\left(h_{1144}-h_{2244}+2 h_{3444}\right) h_{333}+\left(h_{3344}-h_{4444}+2 h_{1244}\right) h_{444}=0, \tag{3.31}\\
\left(h_{4433}-h_{3333}-2 h_{1233}\right) h_{333}+\left(h_{1133}-h_{2233}+2 h_{3433}\right) h_{444}=0 .
\end{array}\right.
$$

Using the Ricci identity (2.8) and (2.6), we get

$$
h_{1133}-h_{3311}=h_{2233}-h_{3322}=h_{1144}-h_{4411}=h_{2244}-h_{4422}=2 \lambda\left(c+\lambda^{2}\right) .
$$

Thus, it follows from (3.5) and Lemma 3.4 that

$$
\begin{equation*}
h_{1144}-h_{2244}=-\left(h_{3311}-h_{3322}\right)=-\left(h_{1133}-h_{2233}\right) . \tag{3.32}
\end{equation*}
$$

Combining Lemmas 3.5 and 3.6, we obtain

$$
\begin{aligned}
& h_{1144}-h_{2244}+2 h_{3444}=-\left(h_{1133}-h_{2233}+2 h_{3433}\right), \\
& h_{4433}-h_{3333}-2 h_{1233}=h_{3344}-h_{4444}+2 h_{1244} .
\end{aligned}
$$

Since (3.31) has a nonzero solution if and only if

$$
\begin{align*}
& h_{4433}-h_{3333}-2 h_{1233}=h_{3344}-h_{4444}+2 h_{1244}=0, \tag{3.33}\\
& h_{1144}-h_{2244}+2 h_{3444}=-\left(h_{1133}-h_{2233}+2 h_{3433}\right)=0 \tag{3.34}
\end{align*}
$$

Setting $(l, m, n)=(2,2,2)$ into the Eq (3.28), we have

$$
\sum_{i, j, k} h_{i j 2} h_{j k 2} h_{k i 2}+3 \sum_{i, j} h_{i j 22} h_{i j 2} \lambda_{i}=0 .
$$

Using (3.22) and (3.4), we also can get the first term

$$
\sum_{i, j, k} h_{i j 2} h_{j k 2} h_{k i 2}=0 .
$$

Then we have

$$
-h_{1122}+h_{2222}-2 h_{3422}=0
$$

Putting $(l, m, n)=(1,1,2)$ into the Eq (3.28), we have

$$
\sum_{i, j, k} h_{i j 1} h_{j k 1} h_{k i 2}+\sum_{i, j} \lambda_{i}\left(h_{i j 11} h_{i j 2}+2 h_{i j 12} h_{i j 1}\right)=0
$$

Using (3.22) and Lemma 3.2, we have

$$
\begin{aligned}
\sum_{i, j, k} h_{i j 1} h_{j k 1} h_{k i 2} & =0 \\
\sum_{i, j} h_{i j 11} h_{i j 2} \lambda_{i} & =\left(-h_{1111}+h_{2211}-2 h_{3411}\right) h_{222} \lambda \\
\sum_{i, j} h_{i j 12} h_{i j 1} \lambda_{i} & =\left(-h_{3312}+h_{4412}-2 h_{1212}\right) h_{222} \lambda
\end{aligned}
$$

Combining (3.25), (3.23) and Lemma 3.5, we can get the equality (3.26).
Similarly, taking $(l, m, n)=(4,4,3),(3,3,4)$ into the Eq (3.28), respectively, we can obtain

$$
\begin{aligned}
& \left(h_{4444}-2 h_{1244}+3 h_{3443}-4 h_{2243}\right) h_{333}+\left(h_{1144}-h_{2244}+2 h_{3343}+4 h_{1243}\right) h_{444}=0 . \\
& \left(h_{1133}-h_{2233}-2 h_{3334}-4 h_{1234}\right) h_{333}+\left(h_{3333}+2 h_{1233}+3 h_{4433}-4 h_{2234}\right) h_{444}=0 .
\end{aligned}
$$

Combining (3.32), Lemmas 3.5 and 3.6, we obtain

$$
\begin{aligned}
h_{4444}-2 h_{1244}+3 h_{3443}-4 h_{2243} & =h_{3333}+2 h_{1233}+3 h_{4433}-4 h_{2234}, \\
h_{1144}-h_{2244}+2 h_{3343}+4 h_{1243} & =-\left(h_{1133}-h_{2233}-2 h_{3334}-4 h_{1234}\right) .
\end{aligned}
$$

Then we can get the last equality in the lemma.

Proposition 3.8. Let M be a Willmore maximal spacelike hypersurface of $\mathbb{H}_{1}^{5}(c)$ with constant scalar curvature. If there exists a point with two distinct principal curvatures, then Subcase I-(i) does not occur.

Proof. It follows from (3.24) and (3.5) that

$$
\begin{equation*}
h_{1233}=h_{4433}-\frac{1}{4 \lambda} \sum_{i, j} h_{i j 3}^{2}, \tag{3.35}
\end{equation*}
$$

Substituting (3.35) into (3.27) and using Lemma 3.2, we have

$$
\begin{equation*}
h_{4433}=h_{2234} . \tag{3.36}
\end{equation*}
$$

Using (3.25) and (3.5), we get

$$
\begin{equation*}
h_{3422}=h_{2222}+\frac{1}{4 \lambda} \sum_{i, j} h_{i j 2}^{2} . \tag{3.37}
\end{equation*}
$$

On the other hand, it follows from (3.26) and (3.23) that

$$
\begin{equation*}
h_{1122}=h_{4412} . \tag{3.38}
\end{equation*}
$$

Combining (3.35)-(3.38), Lemmas 3.4-3.6, we can obtain

$$
\begin{align*}
h_{1233} & =h_{2222}, \tag{3.39}\\
h_{1122}+h_{1233} & =h_{4412}+h_{1233}=0 . \tag{3.40}
\end{align*}
$$

Hence, it follows from Lemma 3.4 that

$$
h_{1122}+h_{1233}=h_{1122}+h_{2222}=-\frac{1}{8 \lambda} \sum_{i, j, k} h_{i j k}^{2}=0,
$$

which implies

$$
h_{i j k}=0, \quad \forall i, j, k .
$$

This contradicts the hypothesis. Therefore, Subcase I-(i) does not occur.
Remark 3.1. The above proposition holds in the other three subcases too. Hence, Case I does not occur.

3.2. Case II does not occur

In Case II, for fixed e_{3} and e_{4}, we rotate e_{1} and e_{2} such that $h_{123}=0$. If $h_{444} \neq 0$, then we fix e_{1} and e_{2}, and rotate e_{3} and e_{4} such that $h_{444}=0$. By the above rotation transformation, we reselect the frame $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ such that $h_{123}=h_{444}=0$. Furthermore, this frame preserves $h_{i j}=\lambda_{i} \delta_{i j}$ at p. We discuss Case II under the frame if not specified. According to the assumption that $p_{1}=0, p_{2} \neq 0$ and Lemma 3.3, we get

$$
\begin{gather*}
h_{111}=h_{114}=h_{123}=h_{133}=h_{134}=h_{222}=h_{233}=h_{234}=h_{444}=0, \tag{3.41}\\
h_{113}^{2}=h_{124}^{2}=h_{333}^{2} \neq 0 . \tag{3.42}
\end{gather*}
$$

Lemma 3.9. In Case II, we get

$$
\begin{gather*}
h_{3333}=3 h_{4433}=h_{4444} . \tag{3.43}\\
h_{1133} h_{113}+h_{2233} h_{223}+2 h_{1234} h_{124}=0 \tag{3.44}
\end{gather*}
$$

Proof. Using (2.12) and (2.13), we find that $|\nabla h|^{2}$ is constant. Taking the covariant derivative of $|\nabla h|^{2}$, we get

$$
\begin{equation*}
\sum_{i, j, k} h_{i j k l} h_{i j k}=0 . \tag{3.45}
\end{equation*}
$$

Setting $l=3$, we get

$$
\begin{equation*}
\left(h_{3333}-3 h_{4433}\right) h_{333}+3\left(h_{1133}-h_{2233}\right) h_{113}+6 h_{1234} h_{124}=0 \tag{3.46}
\end{equation*}
$$

Next, according to Lemma 2.4 and (2.10), we have

$$
\begin{equation*}
\Delta f_{3}=3(S+4 c) f_{3}+6 \sum_{i, j, k} h_{i j k} h_{i j l} h_{k l}=0 \tag{3.47}
\end{equation*}
$$

Taking the covariant derivative of Δf_{3}, we get

$$
\begin{equation*}
\sum_{i, j, k}\left(h_{i j k m} h_{i j l} h_{k l}+h_{i j k} h_{i j l m} h_{k l}+h_{i j k} h_{i j l} h_{k l m}\right)=0 \tag{3.48}
\end{equation*}
$$

Putting $m=3$ into (3.48), we have

$$
\begin{equation*}
-\left(h_{3333}-3 h_{4433}\right) h_{333}+\left(h_{1133}-h_{2233}\right) h_{113}+2 h_{1234} h_{124}=0 \tag{3.49}
\end{equation*}
$$

Combining (3.46) and (3.49) and using Lemma 3.5, we immediately get (3.43) and (3.44).
Lemma 3.10. In Case II, we get

$$
\begin{gather*}
h_{1234} h_{124}+h_{4433} h_{333}=0, \tag{3.50}\\
h_{1234} h_{443}-h_{1122} h_{124}=0, \tag{3.51}\\
\left(h_{1144}-h_{2244}\right) h_{113}-\left(h_{3344}-h_{4444}\right) h_{333}=0 \tag{3.52}\\
\left(h_{1122}-h_{2222}\right) h_{113}-h_{3322} h_{333}-h_{4422} h_{443}=0 . \tag{3.53}
\end{gather*}
$$

Proof. The proof of the lemma is similar to Lemma 3.7. Putting $(l, m, n)=(3,3,3),(4,1,2),(4,4,3)$, $(2,2,3)$ into (3.28), respectively, and using (3.42), (3.41) and Lemma 3.2, we can get (3.50)-(3.53).

Proposition 3.11. Let M be a Willmore maximal spacelike hypersurface of $\mathbb{H}_{1}^{5}(c)$ with constant scalar curvature. If there exists a point with two distinct principal curvatures, then Case II does not occur.

Proof. It follows from (3.42) that there are two subcases:

$$
\begin{aligned}
& \text { Subcase II - (i) : } h_{333}=h_{113} \neq 0 \\
& \text { Subcase II - (ii) : } h_{333}=-h_{113} \neq 0 .
\end{aligned}
$$

The two subcases are similar, we only prove Subcase II-(i).

Using (3.5), (3.17), (3.43) and Lemma 2.2, we have

$$
\begin{equation*}
h_{3344}=h_{4433}=\frac{1}{32 \lambda}|\nabla h|^{2}=\frac{-S(S+4 c)}{32 \lambda}=-\frac{1}{2} \lambda\left(\lambda^{2}+c\right) . \tag{3.54}
\end{equation*}
$$

From (3.52), it yields

$$
\begin{equation*}
h_{1144}-h_{2244}-h_{3344}+h_{4444}=0 \tag{3.55}
\end{equation*}
$$

From (3.5), we can obtain

$$
\begin{align*}
& h_{1144}+h_{2244}+h_{3344}+h_{4444}=0 \tag{3.56}\\
& h_{1122}+h_{2222}+h_{3322}+h_{4422}=0 . \tag{3.57}
\end{align*}
$$

Combining (3.56), (3.55) and (3.43), we have

$$
\begin{equation*}
h_{2244}=-h_{3344}=-h_{4433} . \tag{3.58}
\end{equation*}
$$

Using (3.53), we have

$$
\begin{equation*}
h_{1122}-h_{2222}-h_{3322}+h_{4422}=0 . \tag{3.59}
\end{equation*}
$$

Combining (3.59) and (3.57), we obtain

$$
\begin{equation*}
h_{1122}=-h_{4422} . \tag{3.60}
\end{equation*}
$$

From (3.50), (3.51) and (3.42), we can deduce

$$
\begin{equation*}
h_{1122}=h_{4433}, \tag{3.61}
\end{equation*}
$$

Which together with (3.60) and (3.58) give that

$$
h_{4422}=h_{2244} .
$$

On the other hand, it follows from the Ricci identity (2.8) and (3.54) that

$$
h_{4422}=h_{2244}-2 \lambda\left(\lambda^{2}+c\right)=h_{2244}+\frac{1}{8 \lambda}|\nabla h|^{2},
$$

which implies

$$
h_{i j k}=0, \quad \forall i, j, k
$$

This contradicts the hypothesis. Therefore, Case II does not occur.
Remark 3.2. From the above discussion, it follows that Case I, Case II and Case III do not occur. Hence, at the point p, we have

$$
p_{1}=h_{111}^{2}+h_{222}^{2}=0, \quad p_{2}=h_{333}^{2}+h_{444}^{2}=0 .
$$

By Lemmas 3.4 and 2.2, we deduce that the second fundamental form of the hypersurface M is parallel. Therefore, we prove Theorem 3.1.

Proof of Theorem 1.2. Combining Theorem 3.1, Lemmas 2.1 and 2.2, we get $S \equiv 4$ on M. Therefore, by Theorem 1.1, M must be the hyperbolic cylinder

$$
\mathbb{H}^{2}(-2) \times \mathbb{H}^{2}(-2)=\left\{(x, y) \in \mathbb{R}_{1}^{3} \times \mathbb{R}_{1}^{3} \left\lvert\,\langle x, x\rangle=-\frac{1}{2}\right.,\langle y, y\rangle=-\frac{1}{2}\right\},
$$

where $\mathbb{H}^{2}(-2)$ denotes the hyperbolic surface with constant sectional curvature -2 . Thus we complete the proof of Theorem 1.2.

Acknowledgments

First author was supported by National Natural Science Foundation of China (Grant No. 11401537).

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

1. E. Calabi, Examples of Bernstein problems for some nonlinear equations, Proc. Symp. Pure Math., 15 (1970), 223-230.
2. L. F. Cao, G. X. Wei, A new characterization of hyperbolic cylinder in anti-de Sitter space $\mathbb{H}_{1}^{n+1}(-1)$, J. Math. Anal. Appl., 329 (2007), 408-414. https://doi.org/10.1016/j.jmaa.2006.06.075
3. R. M. B. Chaves, L. A. M. Sousa, B. C. Valério, New characterizations for hyperbolic cylinders in anti-de Sitter spaces, J. Math. Anal. Appl., 393 (2012), 166-176. https://doi.org/10.1016/j.jmaa.2012.03.043
4. Q. M. Cheng, Complete maximal spacelike hypersurfaces of $\mathbb{H}_{1}^{4}(c)$, Manuscripta Math., 82 (1994), 149-160.
5. Q. M. Cheng, Hypersurfaces of a Lorentz space form, Arch. Math., 63 (1994), 271-281. https://doi.org/10.1007/BF01189830
6. Q. M. Cheng, S. Ishikawa, Spacelike hypersurfaces with constant scalar curvature, Manuscripta Math., 95 (1998), 499-505. https://doi.org/10.1007/BF02678045
7. Q. M. Cheng, Y. J. Suh, Maximal space-like hypersurfaces in $\mathbb{H}_{1}^{4}(-1)$ with zero Gauss-Kronecker curvature, J. Korean Math. Soc., 43 (2006), 147-157. https://doi.org/10.4134/JKMS.2006.43.1.147
8. S. Y. Cheng, S. T. Yau, Maximal spacelike hypersurfaces in the Lorentz-Minkowski spaces, Ann. Math., 104 (1976), 407-419. https://doi.org/10.2307/1970963
9. Q. T. Deng, H. L. Gu, Q. Y. Wei, Closed Willmore minimal hypersurfaces with constant scalar curvature in $\mathbb{S}^{5}(1)$ are isoparametric, Adv. Math., 314 (2017), 278-305. https://doi.org/10.1016/j.aim.2017.05.002
10. T. Ishihara, Maximal spacelike submanifolds of a pseudo-Riemannian space of constant curvature, Michigan Math. J., 35 (1988), 345-352.
11. T. Lusala, M. Scherfner, L. A. M. Sousa, Closed minimal Willmore hypersurfaces of $\mathbb{S}^{5}(1)$ with constant scalar curvature, Asian J. Math., 9 (2005), 65-78.
12. S. C. Shu, J. F. Chen, Willmore spacelike submanifolds in an indefinite space form $N_{q}^{n+p}(c)$, Publ. I. Math., 102 (2017), 175-193. https://doi.org/10.2298/PIM1716175S
13. B. C. Yin, S. J. Zhai, Classification of Möbius minimal and Möbius isotropic hypersurfaces in \mathbb{S}^{5}, AIMS Mathematics, 6 (2021), 8426-8452. https://doi.org/10.3934/math. 2021489
© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
