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1. Introduction

It is known that circular reflections on the unit circle leads to the computation of the digits of
the trigonometric constant π [1, 2]. A similar analysis shows that hyperbolic reflections on the unit
hyperbola leads to the computation of the digits of the logarithmic constant ln(2) [3]. Looking at those
two situations, we obtain a unified way to present an unusual alternating reflection method on conics
to evaluate inverse trigonometric and hyperbolic functions. A lot of research has been done on the
efficient evaluation of elementary functions, see for example [4–6]. The method we obtain is much
more a curiosity than an efficient practical method, but since it uses only an elementary geometric
operation (reflection), its presentation can be interesting.

In Section 2, we introduce parametrization of the conics and express reflections and rotations in
terms of the parameter. The numerical method is presented in Section 3. The way to compute the
digits of the solution of the problem is explained in Section 4. In Section 5 we present some examples
to illustrate the unusual methods we obtained to evaluate inverse trigonometric and inverse hyperbolic
functions.
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2. Reflection and rotation on conics

Let G =

(
1 0
0 δ

)
, where δ = ±1, so G2 = I, and

S =

{
(x, y) ∈ R2

∣∣∣∣∣ (x, y)G
(

x
y

)
= x2 + δy2 = 1, (1 − δ)x ≥ 0

}
.

So S is the unit circle for δ = +1, and S is the right branch (x ≥ 0) of the unit hyperbola for δ = −1.
Suppose we have two regular functions c(·) and s(·) defined in such a way that to every point

(x, y) ∈ S there exist θ such that (x, y) = (c(θ), s(θ)), so

c2(θ) + δs2(θ) = 1.

It is clear here that for δ = +1 we can take

(c(θ), s(θ)) = (cos(θ), sin(θ)),

and for δ = −1 we can take
(c(θ), s(θ)) = (cosh(θ), sinh(θ)).

For a given point (c(·), s(·)) ∈ S we observe that

(c(θ), s(θ))G
(
−δs(θ)

c(θ)

)
= 0,

we say that (−δs(θ), c(θ)) is G-orthogonal to (c(·), s(·)). From the regularity of c(·) and s(·) we get that

0 = c(θ)c′(θ) + δs(θ)s′(θ) = (c(θ), s(θ))G
(

c′(θ)
s′(θ)

)
,

and since (c′(θ), s′(θ)) and (−δs(θ), c(θ)) are both G-orthogonal to (c(θ), s(θ)), we can suppose that

(c′(θ), s′(θ)) = (−δs(θ), c(θ))

then (−δs(θ), c(θ)) is the direction of the tangent to S at (c(θ), s(θ)).
Let us also suppose that{

c(α + β) = c(α)c(β) − δs(α)s(β),
s(α + β) = s(α)c(β) + c(α)s(β),

and
{

c(−θ) = c(θ),
s(−θ) = −s(θ).

In particular (c(0), s(0)) = (1, 0).
We introduce the following definitions and notations

rot(α) =

(
c(α) −δs(α)
s(α) c(α)

)
,

AIMS Mathematics Volume 7, Issue 7, 11708–11717.



11710

and

ref(α) =

(
c(2α) δs(2α)
s(2α) −c(2α)

)
.

As expected we have

rot(α)
(

c(θ)
s(θ)

)
=

(
c(θ + α)
s(θ + α)

)
,

and

ref(α)
(

c(α + θ)
s(α + θ)

)
=

(
c(α − θ)
s(α − θ)

)
.

We can verify that rot(α)rot(β) = rot(α + β), and
ref(α) = rot(2α)ref(0),
ref(0)ref(α) = rot(−2α),
ref(α)rot(β) = rot(2α + β)ref(0).

3. The method

Let (c(α), s(α)) ∈ S be a fixed point in the first quadrant, so c(α) > 0 and s(α) > 0. Let us
start with an admissible x value such that there exists a point P = (x, y) ∈ S with y ≥ 0. Then
we look for θ such that c(θ) = x and y = s(θ) =

√
δ(1 − x2) ≥ 0, for an unknown θ. We apply to

P = P0 a sequence of reflections. We start with ref(α) followed by ref(0), and we repeat the process.
Starting with P0 = P ∈ S, after k reflections we get the point Pk = (c(θk), s(θk)) ∈ S. It follows
that after 2n reflections P2n = (c(θ − 2nα), s(θ − 2nα)), so θ2n = θ − 2nα, and after 2n + 1 reflections
P2n+1 = (c(2(n + 1)α − θ), s(2(n + 1)α − θ)), so θ2n+1 = 2(n + 1)α − θ.

Starting with θ = θ0 > α, we would like to stop when θk ∈ [0, α] for the first time. The trajectory of
the points Pk (k = 0, 1, 2, . . .) is illustrated for δ = +1 on Figure 1 and for δ = −1 on Figure 2, where
P f is the final point.

Figure 1. Trajectory of P on the unit circle (δ = +1).

AIMS Mathematics Volume 7, Issue 7, 11708–11717.



11711

Figure 2. Trajectory of P on the unit hyperbola (δ = −1).

If K is the total number of reflections (2n or 2n + 1), it means that

0 < θ − Kα ≤ α.

Indeed, for an even number of reflections K = 2n, the last reflection is with respect to the axis y = 0,
so θ2n cannot be 0 and we have θ2n ∈ (0, α], or 0 < θ − 2nα ≤ α. For an odd number of reflections
K = 2n + 1, the last reflection is with respect to the line of direction α, so θ2n+1 cannot be α, and we
have θ2n+1 ∈ [0, α), so 0 ≤ 2(n + 1)α − θ < α or 0 < θ − (2n + 1)α ≤ α.

So the total number K of reflections is

K =


θ
α
− 1 if θ

α
is an integer,⌊

θ
α

⌋
if θ

α
is not an integer.

In the applications the coordinates of P are known but not θ. Moreover, α is not known and only
some information about it is given that allow us to determine c(α) and s(α). The problem here is to
find an approximation of θ from K and an approximation of α. So as a result we get a method to find
θ = c−1(x), i.e. an evaluation of the inverse function c−1(·).

AIMS Mathematics Volume 7, Issue 7, 11708–11717.
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4. The digits of θ

The preceding result suggests a way to compute the digits of θ. Since the integer part of θ · 10N ,
noted

⌊
θ · 10N

⌋
, add the first N digits of the fractional part of θ, for an angle α ≈ 10−N we will be near

the goal.

4.1. Known exact value of α

To get the digits of θ we could take α = 10−N , then

K =


θ · 10N − 1 if θ · 10N is an integer,⌊
θ · 10N

⌋
if θ · 10N is not an integer.

Unfortunately it is not the interesting situation for the applications.

4.2. Approximate value of α

In the applications, α is not exactly given, but there is a function T(·) for which the value T(α) = σ

can be fixed, so α = T−1(σ) ≈ σ. It is possible to take σ = 10−N . We will consider the next two
situations using the Taylor’s expansion of T−1(·).

(a) Let us consider T(·) = sin(·) for δ = +1 , and T(·) = tanh(·) for δ = −1. Taylor’s expansions of their
corresponding T−1(·) are

arcsin(σ) =

+∞∑
`=0

(2`)!
4`(`!)2

σ2`+1

(2` + 1)
,

and

arctanh(σ) =

+∞∑
`=0

σ2`+1

(2` + 1)
.

Thanks to the geometric series, we can consider the following lower and upper bounds for both series

σ < T−1(σ) < σ
[
1 +

σ2

3

(
1

1 − σ2

)]
,

for 0 < σ < 1. Moreover

1 +
σ2

3

(
1

1 − σ2

)
≤

1

1 − σ2

2

,

for 0 < σ < 1/
√

2. So we can write

1
σ
−
σ

2
<

1
T−1(σ)

<
1
σ

for 0 < σ < ρ where 1/2 < ρ = 1/
√

2 < 1. We set σ = 10−N , α = T−1(10−N), and multiply by θ to get

θ · 10N −
θ

2
· 10−N <

θ

α
< θ · 10N

AIMS Mathematics Volume 7, Issue 7, 11708–11717.
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As long as θ
α

is not an integer and that θ · 10N − θ
2 · 10−N >

⌊
θ · 10N

⌋
we have K =

⌊
θ · 10N

⌋
. In general

in this case we get K =
⌊
θ · 10N

⌋
− 1 or K =

⌊
θ · 10N

⌋
.

(b) Let us consider T(·) = tan(·) for δ = +1 , and T(·) = sinh(·) for δ = −1. Taylor’s expansions of their
corresponding T−1(·) are

arctan(σ) =

+∞∑
`=0

(−1)`
σ2`+1

(2` + 1)
,

and

arcsinh(σ) =

+∞∑
`=0

(−1)`
(2`)!

4`(`!)2

σ2`+1

(2` + 1)
.

We can consider the following lower and upper bounds for both series

σ −
σ3

3
< T−1(σ) < σ,

for 0 < σ < 1. Moreover

1 −
σ2

3
>

1

1 + σ2

2

,

for 0 < σ < 1. So we can write
1
σ
<

1
T−1(σ)

<
1
σ

+
σ

2

for 0 < σ < ρ where 1/2 < ρ < 1. We set σ = 10−N , α = T−1(10−N), and multiply by θ to get

θ · 10N <
θ

α
< θ · 10N +

θ

2
· 10−N

As long as θ
α

is not an integer and that θ · 10N + θ
2 · 10−N <

⌊
θ · 10N

⌋
+ 1 we have K =

⌊
θ · 10N

⌋
. In

general in this case we get K =
⌊
θ · 10N

⌋
or K =

⌊
θ · 10N

⌋
+ 1.

In both cases, the result K =
⌊
θ · 10N

⌋
depends of the expansion of θ. let

θ = a0 . a1a2 · · · aNaN+1 · · · a2Na2N+1 · · ·

θ
2 = ã0 . ã1ã2 · · · ãN ãN+1 · · · ã2N ã2N+1 · · ·

and 
θ · 10N = a0a1a2 · · · aN . aN+1 · · · a2N−1 a2Na2N+1 · · ·

θ
2 · 10−N = 0 . 0 · · · 0︸    ︷︷    ︸

(N−1)times

ã0 ã1 · · · .

A sufficient condition to get K =
⌊
θ · 10N

⌋
can be given for the two cases. The conditions are:

(a) there exists an index n ∈ [N + 1, 2N − 1] such that an > 0,
(b) there exists an index n ∈ [N + 1, 2N − 1] such that an < 9.
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For example, up to now and with modern computational facilities and methods [7], for small values
of N and up to very large values of N it has not been observed sequences such that:

(a’) an = 0 for n ∈ [N + 1, 2N − 1],
(b’) an = 9 for n ∈ [N + 1, 2N − 1],

in the expansion of π and ln(2). So we could claim that K =
⌊
θ · 10N

⌋
holds up to very large values of

N for θ = π and θ = ln(2).

5. Algorithm and examples

5.1. Algorithm

The algorithm is as follows :

Alternating reflection method
Step 0. Enter P = (x, y) ∈ S with y ≥ 0, and σ = T (α).
Step 1. Determine c(α) and s(α) from the data σ.
Step 2. The target zone is { P ∈ S | P is between (1, 0) and (c(α), s(α)) }.
Step 3. Compute c(2α) = c2(α) − δs2(α) and s(2α) = 2s(α)c(α).
Step 4. Set

ref(0) =

(
1 0
0 −1

)
and ref(α) =

(
c(2α) δs(2α)
s(2α) −c(2α)

)
Step 5. With P0 = P, compute Pk+1 as long as Pk is not in the target zone

(i) for k = 2n, compute Pk+1 = P2n+1 = ref(α)P2n = ref(α)Pk,
(ii) for k = 2n + 1, compute Pk+1 = P2n+2 = ref(0)P2n+1 = ref(0)Pk.

5.2. First numerical examples

We have considered the two situations δ = ±1 and we got the results given in Table 1 for π and ln(2).

Table 1. Number of reflections needed to get θK ∈ [0, α].

θ = π = 3.14159265358979... θ = ln 2 = 0.69314718055995...

N σ = 10−N K =
⌊
π · 10−N

⌋
K =

⌊
ln(2) · 10−N

⌋

1 10−1 31 6
2 10−2 314 69
3 10−3 3141 693
4 10−4 31415 6931
5 10−5 314159 69314
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5.2.1. Circular case: δ = +1.

S is the unit circle, and (c(·), s(·)) = (cos(·), sin(·)). To get θ = π, we start with x = cos(π) = −1, so
we consider P = (−1, 0). K is computed using σ = 10−N for N = 1, 2, 3, 4, 5, for T (α) = sin(α) = σ

and T (α) = tan(α) = σ. As expected, both situations generate the same value of K.

5.2.2. Hyperbolic case: δ = −1.

S is the right branch (x ≥ 0) of the unit hyperbola, and (c(·), s(·)) = (cosh(·), sinh(·)). To get
θ = ln(2), we start with x = cosh(ln(2)) = 5/4, so we consider P = (5/4, 3/4). K is computed using
σ = 10−N for N = 1, 2, 3, 4, 5, for T (α) = tanh(α) = σ and T (α) = sinh(α) = σ. As expected, both
situations generate the same value of K.

5.3. Other numerical examples

We not only have an unusual method to find the digits of the trigonometric constant π and the
logarithmic constant ln(2) but also to evaluate the inverse trigonometric functions (for δ = +1) and
inverse hyperbolic functions (for δ = −1). Indeed the method can be extended to solve for θ the
equation c(θ) = x. If the given data for α allows us to say that α = 10−N + O(10−2N), we get that∣∣∣∣∣∣θ −

(
K +

1
2

)
· 10−N

∣∣∣∣∣∣ =
1
2

10−N + O(10−2N).

The next examples illustrate that both values of K can be obtained. Numerical results are reported in
Table 2 where examples were chosen to get the same figures.

Table 2. Values of K.

θ = 1.00000000 θ = 0.99999999

K K

N
⌊
θ · 10N

⌋
(a) (b)

⌊
θ · 10N

⌋
(a) (b)

1 10 9 10 9 9 10
2 100 99 100 99 99 100
3 1000 999 1000 999 999 1000
4 10000 9999 10000 9999 9999 10000
5 100000 99999 100000 99999 99999 99999
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5.3.1. Circular case: δ = +1.

We fix x and compute y =
√

1 − x2 ≥ 0 for the point P = P0. We use for (a) T (α) = sin(α), and
for (b) T (α) = tan(α). We consider two situations to illustrate that we can get the two values of K.
Firstly, we consider x = 0.540302305... = cos(1) (and y =

√
1 − x2 ≥ 0), so θ = 1 = arccos(x). We

get for (a) K =
⌊
1 · 10N

⌋
− 1 and for (b) K =

⌊
1 · 10N

⌋
. Secondly we consider x = 0.540302314... =

cos(0.99999999), so θ = 0.99999999 = arccos(x). We get for (a) K =
⌊
0.99999999 · 10N

⌋
for N =

1, 2, 3, 4, and for (b) K =
⌊
0.99999999 · 10N

⌋
+ 1 for N = 1, 2, 3, 4, but not for N ≥ 5.

5.3.2. Hyperbolic case: δ = −1.

We fix x and compute y =
√

x2 − 1 ≥ 0 for the point P = P0. We use for (a) T (α) = tanh(α),
and for (b) T (α) = sinh(α). We consider two situations to illustrate the different values of K. Firstly,
we consider x = 1.543080635... = cosh(1), so θ = 1 = arccosh(x). We get for (a) K =

⌊
1 · 10N

⌋
− 1

and for (b) K =
⌊
1 · 10N

⌋
. Secondly, we consider x = 1.543080623... = cosh(0.99999999), so θ =

0.99999999 = arccosh(x). We get for (a) K =
⌊
0.99999999 · 10N

⌋
and for (b) K =

⌊
0.99999999 · 10N

⌋
+

1 for N = 1, 2, 3, 4, but not for N ≥ 5.

5.4. Remarks on the algorithm

The computational cost of this method is quite low at each iteration. It requires 4 multiplications
and 2 additions to compute P2n+1 from P2n, and only a sign change to get P2n+2 from P2n+1. Also, at
each iteration a test is required to eventually terminate the process.

We used MATLAB with single-precision computation for the numerical examples. For σ = 10−N ,
we had c(α) = 1 + O(10−2N) and s(α) = O(10−N), and the matrix ref(α) looked like(

1 + O(10−2N) δO(10−N)
O(10−N) 1 + O(10−2N)

)
,

so it explains why we stopped at N = 5 in the computation. We could increase N with multi-precision
computation.

6. Conclusions

In this paper we have presented an unusual method to find θ = c−1(x). We have considered the
following problem:

{
Suppose given an admissible value x, and set y =

√
δ(1 − x2) ≥ 0,

then find θ such that θ = c−1(x), so (x, y) = (c(θ), s(θ)).

We can extend this problem to find also θ = s−1(y) and θ = t−1(z), where t(·) = s(·)/c(·). In-
deed we have θ = s−1(y) = sign(y)c−1

( √
δ(1 − δy2)

)
for an appropriate y value, and θ = t−1(z) =

sign(z)c−1
(
1/
√

1 + δz2
)

for an appropriate value of z.

AIMS Mathematics Volume 7, Issue 7, 11708–11717.



11717

Acknowledgement

This work has been financially supported by an individual discovery grant from the Natural Sciences
and Engineering Research Council of Canada.

Conflict of interests

The author declares no conflict of interests.

References

1. G. Galperin, Playing pool with π (the number π from the billiard point of view), Regul. Chaotic
Dyn., 8 (2003), 375–394. http://dx.doi.org/10.1070/RD2003v008n04ABEH000252

2. F. Dubeau, Collisions, or reflections and rotations, leading to the digits of π, Open Journal of
Mathematical Sciences, to appear, 2022.

3. F. Dubeau, Hyperbolic reflections leading to the digits of ln(2), J. Appl. Math. Phys., 10 (2022),
112–131. http://dx.doi.org/10.4236/jamp.2022.101009

4. C. T. Fike, Computer Evaluation of Mathematical Functions, Prentice-Hall Inc., Englewood Cliffs,
New Jersey, 1968.

5. R. J. Pulskamp, J. A. Delaney, Computer and Calculator Computation of Elementary Functions,
UMAP J., 12 (1991), 317–348.

6. J. M. Muller, Elementary Functions: Algorithms and Implementation, Third Edition, Birkhäuser
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