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1. Introduction

Riemann-Liouville fractional integral given by

Iαa+ξ(℘) =
1

Γ(α)

∫ χ

a
(χ − ℘)α−1ξ(℘)dt.

Many different concepts of fractional derivative maybe found in [9–11]. In [12] studied a conformable
derivative:

℘α f (℘) = lim
ε→0

f (℘ + ε℘1−α) − f (℘)
ε

.
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The time scale conformable derivatives was introduced by Benkhettou et al. [17].
Further, in recent years, numerous mathematicians claimed that non-integer order derivatives and

integrals are well suited to describing the properties of many actual materials, such as polymers.
Fractional derivatives are a wonderful tool for describing memory and learning. a variety of materials
and procedures inherited properties is one of the most significant benefits of fractional ownership. For
more concepts and definition on time scales see [13–19, 33–35].

Continuous version of Steffensen’s inequality [7] is written as: For 0 ≤ g(℘) ≤ 1 on ∈ [a, b]. Then∫ b

b−λ
f (℘)dt ≤

∫ b

a
f (℘)g(℘)dt ≤

∫ a+λ

a
f (℘)dt, (1.1)

where λ =
∫ b

a
g(℘)dt.

Supposing f is nondecreasing gets the reverse of (1.1).
Also, the discrete inequality of Steffensen [6] is: For λ2 ≤

∑n
`=1 g(`) ≤ λ1. Then

n∑
`=n−λ2+1

f (`) ≤
n∑
`=1

f (`)g(`) ≤
λ1∑
`=1

f (`). (1.2)

Recently, a large number of dynamic inequalities on time scales have been studied by a small
number of writers who were inspired by a few applications (see [1–4,8,28–32,36,37,40–42,44,48–53]).

In [5] Jakšetić et al. proved that, if µ̂([c, d]) =
∫

[a,b]
g(℘)dµ̂(℘), where [c, d] ⊆ [a, b]. Then∫

[a,b]
f (℘)g(℘)dµ̂(℘) ≤

∫
[c,d]

f (℘)g(℘)dµ̂(℘) +

∫
[a,c]

(
f (℘) − f (d)

)
g(℘)dµ̂(℘),

and ∫
[c,d]

f (℘)dµ̂(℘) −
∫

[d,b]

(
f (c) − f (℘)

)
g(℘)dµ̂(℘) ≤

∫
[a,b]

f (℘)g(℘)dµ̂(℘).

Anderson, in [3], studied the inequality:∫ b

b−λ
φ(℘)∇℘ ≤

∫ b

a
φ(℘)ψ(℘)∇℘ ≤

∫ a+λ

a
φ(℘)∇℘, (1.3)

In [47] the authors have proved, for∫ m+λ1

m
ζ(℘)d℘ =

∫ k

m
ζ(℘)g(℘)d℘,

and ∫ n

n−λ2

ζ(℘)d℘ =

∫ n

k
ζ(℘)g(℘)d℘.

If there exists a constant A such that r(℘)/ζ(℘) − At is monotonic on the intervals [m, k], [k, n], and∫ n

m
tq(℘)g(℘)d℘ =

∫ m+λ1

m
tq(℘)d℘ +

∫ n

n−λ2

tq(℘)d℘,
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then ∫ n

m
r(℘)g(℘)d℘ ≤

∫ m+λ1

m
r(℘)d℘ +

∫ n

n−λ2

r(℘)d℘.

In particularly, Anderson [3] proved∫ n

n−λ
r(℘)∇℘ ≤

∫ n

m
r(℘)g(℘)∇℘ ≤

∫ m+λ

m
r(℘)∇℘.

where m, n ∈ Tκ with m < n, r, g : [m, n]T → R are ∇-integrable functions such that r is of one sign
and nonincreasing and 0 ≤ g(℘) ≤ 1 on [m, n]T and λ =

∫ n

m
g(℘)∇℘, n − λ,m + λ ∈ T.

We prove the next two needed results:
Theorem 1.1. Assume q > 0 with 0 ≤ g(℘) ≤ ζ(℘) ∀℘ ∈ [m, n]T and λ is given from

∫ n

m
g(℘)∆α℘ =∫ m+λ

m
ζ(℘)∆α℘, then ∫ n

m
r(℘)g(℘)∆α℘ ≤

∫ m+λ

m
r(℘)ζ(℘)∆α℘. (1.4)

Also, provided with 0 ≤ g(℘) ≤ ζ(℘) and
∫ n

n−λ
ζ(℘)∆α℘ =

∫ n

m
g(℘)∆α℘, we have∫ n

n−λ
r(℘)ζ(℘)∆α℘ ≤

∫ n

m
r(℘)g(℘)∆α℘. (1.5)

We get the reverse inequalities of (1.4) and (1.5) when assuming r/ζ is nondecreasing.
Theorem 1.2. Assume ψ is integrable on time scales interval [m, n], with ζ(℘)−ψ(℘) ≥ g(℘) ≥ ψ(℘) ≥
0 ∀℘ ∈ [m, n]T and

∫ m+λ

m
ζ(℘)∆α℘ =

∫ n

m
g(℘)∆α℘ =

∫ n

n−λ
ζ(℘)∆α℘ and g, r and ζ are ∆α-integrable

functions, ζ(℘) ≥ g(℘) ≥ 0, we have∫ n

n−λ
r(℘)ζ(℘)∆α℘ +

∫ n

m

∣∣∣∣(r(℘) − r(n − λ)
)
ψ(℘)

∣∣∣∣∆α℘

≤

∫ n

m
r(℘)g(℘)∆α℘

≤

∫ m+λ

m
r(℘)ζ(℘)∆α℘ −

∫ n

m

∣∣∣∣(r(℘) − r(m + λ)
)
ψ(℘)

∣∣∣∣∣∆α℘, (1.6)

and ∫ n

n−λ
r(℘)ζ(℘)∆α℘ ≤

∫ n

n−λ

[
r(℘)ζ(℘) −

(
r(℘) − r(n − λ)

)][
ζ(℘) − g(℘)

]
∆α℘

≤

∫ n

m
r(℘)g(℘)∆α℘

≤

∫ m+λ

m

[
r(℘)ζ(℘) −

(
r(℘) − r(m + λ)

)][
ζ(℘) − g(℘)

]
∆α℘

≤

∫ m+λ

m
r(℘)ζ(℘)∆α℘. (1.7)

Proof. The proof techniques of Theorems 1.6 and 1.7 are like to that in [4] and is removed. �
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Several authors proved conformable Hardy’s inequality [20,21], conformable Hermite-Hadamard’s
inequality [22–24], conformable inequality of Opial’s [26, 27] and conformable inequality of
Steffensen’s [25]. In [45] Anderson proved the followong results:
Theorem 1.3. [45] Suppose α ∈ (0, 1] and r1, r2 ∈ R such that 0 ≤ r1 ≤ r2. Suppose

∏
: [r1, r2] →

[0,∞) and Γ : [r1, r2] → [0, 1] are α-fractional integrable functions on [r1, r2] with Π is decreasing,
we get ∫ r2

r2−ℵ

Π(ζ)dαζ ≤
∫ r2

r1

Π(ζ)Γ(ζ)dαζ ≤
∫ r1+ℵ

r1

Π(ζ)dαζ,

where ℵ =
α(r2−r1)

rα2−rα1

∫ r2

r1
Γ(ζ)dαζ ∈ [0, r2 − r1].

In [46] the authors gave an extension for Theorem 1.8:
Theorem 1.4. Assume α ∈ (0, 1] and r1, r2 ∈ R such that 0 ≤ r1 ≤ r2. Suppose

∏
,Γ,Σ : [r1, r2] →

[0,∞) are integrable on [r1, r2] with the decreasing function Π and 0 ≤ Γ ≤ Σ, we get∫ r2

r2−ℵ

Σ(ζ)Π(ζ)dαζ ≤
∫ r2

r1

Π(ζ)Γ(ζ)dαζ ≤
∫ r1+ℵ

r1

Σ(ζ)Π(ζ)dαζ,

where ℵ =
(r2−r1)∫ r2

r1
Σ(ζ)dαζ

∫ r2

r1
Γ(ζ)dαζ ∈ [0, r2 − r1].

In this paper, we prove and explore several novel speculations of the Steffensen inequality obtained
in [47] through the conformable integral containing time scale concept. We furthermore recover certain
known results as special cases of our results.

2. Main results

Lemma 2.1. Assume ζ > 0 is rd-continuous function on [m, n]∩T, g, r be rd-continuous on [m, n]∩T
such that r/ζ nonincreasing function and 0 ≤ g(℘) ≤ 1 ∀℘ ∈ [m, n] ∩ T. Then

(Λ1) ∫ n

m
r(℘)g(℘)∆α℘ ≤

∫ m+λ

m
r(℘)∆α℘, (2.1)

where λ is given by ∫ n

m
ζ(℘)g(℘)∆α℘ =

∫ m+λ

m
ζ(℘)∆α℘.

(Λ2) ∫ n

n−λ
r(℘)∆α℘ ≤

∫ n

m
r(℘)g(℘)∆α℘, (2.2)

such that ∫ n

n−λ
ζ(℘)∆α℘ =

∫ n

m
ζ(℘)g(℘)∆α℘.

(2.1) and (2.2) are reversed when r/ζ is nondecreasing.

Proof. Putting g(℘) 7→ ζ(℘)g(℘) and r(℘) 7→ r(℘)/ζ(℘) in (1.4), (1.5) to get (Λ1) and (Λ2)
simultaneously. �
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Lemma 2.2. Under the same hypotheses of Lemma 2.1. with ψ be integrable functions on [m, n] ∩ T
and 0 ≤ ψ(℘) ≤ g(℘) ≤ 1 − ψ(℘) for all ℘ ∈ [m, n]T. Then∫ n

n−λ
r(℘)∆α℘ +

∫ n

m

∣∣∣∣∣( r(℘)
ζ(℘)

−
r(n − λ)
ζ(n − λ)

)
ζ(℘)ψ(℘)

∣∣∣∣∣∆α℘

≤

∫ n

m
r(℘)g(℘)∆α℘

≤

∫ m+λ

m
r(℘)∆α℘ −

∫ n

m

∣∣∣∣∣( r(℘)
ζ(℘)

−
r(m + λ)
ζ(m + λ)

)
ζ(℘)ψ(℘)

∣∣∣∣∣∆α℘,

where λ is obtained from∫ m+λ

m
h(℘)∆α℘ =

∫ n

m
ζ(℘)g(℘)∆α℘ =

∫ n

n−λ
ζ(℘)∆α℘.

Proof. Putting g(℘) 7→ ζ(℘)g(℘), r(℘) 7→ r(℘)/h(℘) and ψ(℘) 7→ ζ(℘)ψ(℘) in (1.6) . �

Lemma 2.3. Under the same conditions of Lemma 2.1. Then∫ n

n−λ
r(℘)∆α℘ ≤

∫ n

n−λ

(
r(℘) −

[ r(℘)
ζ(℘)

−
r(n − λ)
ζ(n − λ)

]
ζ(℘)

[
1 − g(℘)

])
∆α℘

≤

∫ n

m
r(℘)g(℘)∆α℘

≤

∫ m+λ

m

(
r(℘) −

[ r(℘)
ζ(℘)

−
r(a + λ)
ζ(m + λ)

]
ζ(℘)

[
1 − g(℘)

])
∆α℘

≤

∫ m+λ

m
r(℘)∆α℘,

where λ is obtained from ∫ m+λ

m
ζ(℘)∆α℘ =

∫ n

m
g(℘)∆α℘ =

∫ n

n−λ
ζ(℘)∆α℘.

Proof. Taking g(℘) 7→ ζ(℘)g(℘) and r(℘) 7→ r(℘)/ζ(℘) in (1.7). �

Theorem 2.1. Under the same conditions of Lemma 2.3 such that k ∈ (m, n) and λ1, λ2 are given from
(Λ3) ∫ m+λ1

m
ζ(℘)∆α℘ =

∫ k

m
ζ(℘)g(℘)∆α℘,

∫ n

n−λ2

ζ(℘)∆α℘ =

∫ n

k
ζ(℘)g(℘)∆α℘.

If rσ/ζ ∈ AHk
1[m, n] and∫ n

m
φ(℘)ζ(℘)g(℘)∆α℘ =

∫ m+λ1

m
φ(℘)ζ(℘)∆α℘ +

∫ n

n−λ2

φ(℘)ζ(℘)∆α℘, (2.3)
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then ∫ n

m
rσ(℘)g(℘)∆α℘ ≤

∫ m+λ1

m
rσ(℘)∆α℘ +

∫ n

n−λ2

rσ(℘)∆α℘. (2.4)

(2.4) is reversed if rσ/ζ ∈ AHk
2[m, n] and (2.3).

(Λ4) ∫ k

k−λ1

ζ(℘)∆α℘ =

∫ k

m
ζ(℘)g(℘)∆α℘,

∫ k+λ2

k
ζ(℘)∆α℘ =

∫ n

k
ζ(℘)g(℘)∆α℘.

If rσ/ζ ∈ AHk
1[m, n] and ∫ n

m
φ(℘)ζ(℘)g(℘)∆α℘ =

∫ k+λ2

k−λ1

φ(℘)ζ(℘)∆α℘, (2.5)

then ∫ n

m
rσ(℘)g(℘)∆α℘ ≥

∫ k+λ2

k−λ1

rσ(℘)∆α℘. (2.6)

If rσ/ζ ∈ AHk
2[m, n] and (2.5) satisfied, then we reverse (2.6).

(Λ5) If λ1, λ2 be the same as in (Λ3) and rσ/ζ ∈ AHk
1[m, n] so that∫ n

m
φ(℘)ζ(℘)g(℘)∆α℘

=

∫ m+λ1

m

(
φ(℘)ζ(℘) − [φ(℘) − m − λ1]ζ(℘)[1 − g(℘)]

)
∆α℘

+

∫ n

n−λ2

(
φ(℘)ζ(℘) − [φ(℘) − n + λ2]ζ(℘)[1 − g(℘)]

)
∆α℘, (2.7)

then ∫ n

m
rσ(℘)g(℘)∆α℘

≤

∫ m+λ1

m

(
rσ(℘) −

∣∣∣∣rσ(℘)
ζ(℘)

−
rσ(m + λ1)
ζ(m + λ1)

∣∣∣∣ζ(℘)[1 − g(℘)]
)
∆α℘

+

∫ n

n−λ2

(
rσ(℘) −

∣∣∣∣rσ(℘)
ζ(℘)

−
rσ(n − λ2)
ζ(n − λ2)

∣∣∣∣ζ(℘)[1 − g(℘)]
)
∆α℘. (2.8)

If rσ/ζ ∈ AHk
2[m, n] and (2.7) satisfied, the inequality in (2.8) is reversed.

(Λ6) If λ1, λ2 be defined as in (Λ4) and rσ/ζ ∈ AHk
1[m, n] and∫ n

m
φ(℘)ζ(℘)g(℘)∆α℘

=

∫ k

k−λ1

(
φ(℘)ζ(℘) − [φ(℘) − k + λ1]ζ(℘)[1 − g(℘)]

)
∆α℘
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=

∫ m+λ1

m

(
φ(℘)ζ(℘) − [φ(℘) − k + λ2]ζ(℘)[1 − g(℘)]

)
∆α℘, (2.9)

then ∫ n

m
rσ(℘)g(℘)∆α℘

≥

∫ k

k−λ1

(
rσ(℘) −

[rσ(℘)
ζ(℘)

−
rσ(k − λ1)
ζ(k − λ1)

]
ζ(℘)[1 − g(℘)]

)
∆α℘

+

∫ k+λ2

k

(
rσ(℘) −

[rσ(℘)
ζ(℘)

−
rσ(k + λ2)
ζ(k + λ2)

]
ζ(℘)[1 − g(℘)]

)
∆α℘. (2.10)

If rσ/ζ ∈ AHk
2[m, n] and (2.9) satisfied, we reverse (2.10).

Proof. (Λ3) Consider rσ/ζ ∈ AHk
1[m, n], and R1(`) = rσ(`) − Aφ(`)ζ(`), since A is given in

Definition 2.1. Since R1/ζ : [m, k] ∩ T→ R, using Lemma 2.1(Λ1), we deduce

0 ≤

∫ m+λ1

m
R1(℘)∆α℘ −

∫ k

m
R1(℘)g(℘)∆α℘

=

∫ m+λ1

m
rσ(℘)∆α℘ −

∫ k

m
rσ(℘)g(℘)∆α℘

−A
( ∫ m+λ1

m
φ(℘)ζ(℘)∆α℘ −

∫ k

m
φ(℘)ζ(℘)g(℘)∆α℘

)
. (2.11)

As R1/ζ : [k, n] ∩ T→ R is nondecreasing, using Lemma 2.1(Λ2), we obtain

0 ≥

∫ n

k
R1(℘)g(℘)∆α℘ −

∫ n

n−λ2

R1(℘)∆α℘

=

∫ n

k
rσ(℘)g(℘)∆α℘ −

∫ n

n−λ2

rσ(℘)∆α℘

−A
( ∫ n

k
φ(℘)ζ(℘)g(℘)∆α℘ −

∫ n

n−λ2

φ(℘)ζ(℘)∆α℘
)
. (2.12)

(2.11) and (2.12) imply that∫ m+λ1

m
rσ(℘)∆α℘ +

∫ n

n−λ2

rσ(℘)∆α℘ −

∫ n

m
rσ(℘)g(℘)∆α℘

≥ A
( ∫ m+λ1

m
φ(℘)ζ(℘)∆α℘ +

∫ n

n−λ2

φ(℘)ζ(℘)∆α℘ −

∫ n

m
φ(℘)ζ(℘)g(℘)∆α℘

)
Hence, if (2.3) is hold, then (2.4) holds. For rσ/ζ ∈ AHk

2[m, n], we get the some steps.
(Λ4) Let rσ/ζ ∈ AHk

1[m, n], also R1(x) = rσ(x) − Aφ(x)ζ(x), where A as in Definition 2.1. R1/ζ :
[m, k] ∩ T→ R is nonincreasing, so from Lemma 2.1(Λ1) we obtain

0 ≤

∫ k

m
rσ(℘)g(℘)∆α℘ −

∫ k

k−λ1

rσ(℘)∆α℘
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−A
( ∫ k

m
φ(℘)h(℘)g(℘)∆α℘ −

∫ k

c−λ1

φ(℘)ζ(℘)∆α℘
)
. (2.13)

Using Lemma 2.1(Λ1) we have

0 ≥

∫ k+λ2

k
rσ(℘)∆α℘ −

∫ n

k
rσ(℘)g(℘)∆α℘

−A
( ∫ k+λ2

k
φ(℘)ζ(℘)∆α℘ −

∫ n

k
φ(℘)ζ(℘)g(℘)∆α℘

)
. (2.14)

Thus, from (2.13), (2.14), we get∫ n

m
rσ(℘)g(℘)∆α℘ −

∫ k+λ2

k−λ1

rσ(℘)∆α℘

≥ A
( ∫ n

m
φ(℘)ζ(℘)g(℘)∆α℘ −

∫ k+λ2

k−λ1

φ(℘)ζ(℘)∆α℘
)

Therefore, if
∫ n

m
φ(℘)ζ(℘)g(℘)∆α℘ =

∫ k+λ2

k−λ1
φ(℘)ζ(℘)∆α℘ is satisfied, then (2.8) holds. Follow the same

steps for rσ/ζ ∈ AHk
2[m, n].

Using Lemma 2.3 and repeat the steps of Theorem 2.1(Λ3) and Theorem 2.1(Λ4) in the proof of
(Λ5) and (Λ6) respectively. �

Corollary 2.1. The inequalities (2.4), (2.6), (2.8) and (2.10) of Theorem 2.1 letting T = R takes

(i)
∫ n

m
f σ(℘)g(℘)dα℘ ≤

∫ m+λ1

m
rσ(℘)dα℘ +

∫ n

n−λ2

rσ(℘)dα℘. (2.15)

(ii)
∫ n

m
rσ(℘)g(℘)dα℘ ≥

∫ k+λ2

k−λ1

rσ(℘)dα℘. (2.16)

(iii)
∫ n

m
rσ(℘)g(℘)dα℘

≤

∫ m+λ1

m

(
rσ(℘) −

[rσ(℘)
ζ(℘)

−
rσ(m + λ1)
ζ(m + λ1)

]
ζ(℘)[1 − g(℘)]

)
dα℘

+

∫ n

n−λ2

(
rσ(℘) −

[rσ(℘)
ζ(℘)

−
rσ(n − λ2)
ζ(n − λ2)

]
ζ(℘)[1 − g(℘)]

)
dα℘. (2.17)

(iv)
∫ n

m
rσ(℘)g(℘)dα℘

≥

∫ k

k−λ1

(
rσ(℘) −

[rσ(℘)
ζ(℘)

−
rσ(k − λ1)
ζ(k − λ1)

]
ζ(℘)[1 − g(℘)]

)
dα℘

+

∫ k+λ2

k

(
rσ(℘) −

[rσ(℘)
ζ(℘)

−
rσ(k + λ2)
ζ(k + λ2)

]
ζ(℘)[1 − g(℘)]

)
dα℘. (2.18)
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Corollary 2.2. We get [47, Theorems 8, 10, 21 and 22], if we put α = 1 and φ(℘) = ℘ in Corollary 2.1
[(i), (ii), (iii), (iv)] simultaneously.
Corollary 2.3. In Corollary 2.1 taking T = Z, the results (2.15)–(2.18) will be equivalent to

(i)
n−1∑
℘=m

r(℘ + 1)g(℘)℘α−1 ≤

m+λ1−1∑
℘=m

r(℘ + 1) +

n−1∑
℘=n−λ2

r(℘ + 1)℘α−1.

(ii)
n−1∑
℘=m

r(℘ + 1)g(℘)℘α−1 ≥

k+λ2−1∑
℘=k−λ1

r(℘ + 1)℘α−1.

(iii)
n−1∑
℘=m

r(℘ + 1)g(℘)℘α−1

≤

m+λ1−1∑
℘=m

(
r(℘ + 1) −

[r(℘ + 1)
ζ(℘)

−
r(a + λ1 + 1)
ζ(m + λ1)

]
ζ(℘)[1 − g(℘)]

)
℘α−1

+

n−1∑
℘=n−λ2

(
r(℘ + 1) −

[r(℘ + 1)
ζ(℘)

−
r(n − λ2 + 1)
ζ(n − λ2)

]
ζ(℘)[1 − g(℘)]

)
℘α−1.

(iv)
n−1∑
℘=m

r(℘ + 1)g(℘))℘α−1

≥

k−1∑
℘=k−λ1

(
r(℘ + 1) −

[r(℘ + 1)
ζ(℘)

−
r(k − λ1 + 1)
ζ(k − λ1)

]
ζ(℘)[1 − g(℘)]

)
)℘α−1

+

k+λ2−1∑
℘=k

(
r(℘ + 1) −

[r(℘ + 1)
ζ(℘)

−
r(k + λ2 + 1)
ζ(k + λ2)

]
ζ(℘)[1 − g(℘)]

)
)℘α−1.

Theorem 2.2. Under the assumptions in Lemma 2.1 with 0 ≤ g(℘) ≤ ζ(℘) and λ1, λ2 be defined as
(Λ7) ∫ m+λ1

m
ζ(℘)∆α℘ =

∫ k

m
g(℘)∆α℘,∫ n

n−λ2

ζ(℘)∆α℘ =

∫ n

k
g(℘)∆α℘.

If rσ/ζ ∈ AHk
1[m, n] and∫ n

m
φ(℘)g(℘)∆α℘ =

∫ m+λ1

m
φ(℘)ζ(℘)∆α℘ +

∫ n

n−λ2

φ(℘)ζ(℘)∆α℘, (2.19)

then ∫ n

m
rσ(℘)g(℘)∆α℘ ≤

∫ m+λ1

m
rσ(℘)ζ(℘)∆α℘ +

∫ n

n−λ2

rσ(℘)ζ(℘)∆α℘. (2.20)
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(Λ8) ∫ k

k−λ1

ζ(℘)∆α℘ =

∫ k

m
g(℘)∆α℘,

∫ k+λ2

k
ζ(℘)∆α℘ =

∫ n

k
g(℘)∆α℘.

If rσ/ζ ∈ AHk
1[m, n] and ∫ n

m
φ(℘)g(℘)∆α℘ =

∫ k+λ2

k−λ1

φ(℘)ζ(℘)∆α℘, (2.21)

then ∫ n

m
rσ(℘)g(℘)∆α℘ ≥

∫ k+λ2

k−λ1

rσ(℘)ζ(℘)∆α℘. (2.22)

If rσ/ζ ∈ AHk
2[m, n] and (2.19), (2.21) satisfied, we get the reverse of (2.20) and (2.22).

Proof. By using Theorem 2.1 [(Λ3), (Λ4)] and by putting g 7→ g/h and f 7→ f h, we get the proof of
(Λ7) and (Λ8). �

Corollary 2.4. In Theorem 2.2 [(Λ7), (Λ8)], assuming T = R, the following results obtains:

(i)
∫ n

m
rσ(℘)g(℘)dα℘ ≤

∫ m+λ1

m
rσ(℘)ζ(℘)dα℘ +

∫ n

n−λ2

rσ(℘)ζ(℘)dα℘. (2.23)

(ii)
∫ n

m
rσ(℘)g(℘)dα℘ ≥

∫ k+λ2

k−λ1

rσ(℘)ζ(℘)dα℘. (2.24)

Corollary 2.5. In Corollary 2.4 [(i), (ii)], when we put α = 1 and φ(℘) = ℘ then [47, Theorems 16 and
17] gotten.
Corollary 2.6. In (2.23) and (2.24) letting T = Z, gets

(i)
n−1∑
℘=m

r(℘ + 1)g(℘)℘α−1 ≤

m+λ1−1∑
℘=m

r(℘ + 1)h(℘) +

n−1∑
℘=n−λ2

r(℘ + 1)h(℘)℘α−1.

(ii)
n−1∑
℘=m

r(℘ + 1)g(℘)℘α−1 ≥

k+λ2−1∑
℘=k−λ1

r(℘ + 1)ζ(℘)℘α−1.

Theorem 2.3. Using the same conditions in Lemma 2.3. Letting w : [m, n]∩T→ R be integrable with
0 ≤ g(℘) ≤ w(℘) ∀℘ ∈ [m, n] ∩ T and

(Λ9)
∫ m+λ1

m
w(℘)ζ(℘)∆α℘ =

∫ k

m
ζ(℘)g(℘)∆α℘,

∫ n

n−λ2

w(℘)ζ(℘)∆α℘ =

∫ n

k
ζ(℘)g(℘)∆α℘.
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If rσ/ζ ∈ AHk
1[m, n] and∫ n

m
φ(℘)ζ(℘)g(℘)∆α℘ =

∫ m+λ1

m
φ(℘)w(℘)ζ(℘)∆α℘ +

∫ n

n−λ2

φ(℘)w(℘)ζ(℘)∆α℘, (2.25)

then ∫ n

m
rσ(℘)g(℘)∆α℘ ≤

∫ m+λ1

m
rσ(℘)w(℘)∆α℘ +

∫ n

n−λ2

rσ(℘)w(℘)∆α℘. (2.26)

(Λ10)
∫ k

k−λ1

w(℘)ζ(℘)∆α℘ =

∫ k

m
ζ(℘)g(℘)∆α℘,∫ k+λ2

k
w(℘)ζ(℘)∆α℘ =

∫ n

k
ζ(℘)g(℘)∆α℘.

If rσ/ζ ∈ AHk
1[m, n] and ∫ n

m
φ(℘)ζ(℘)g(℘)∆α℘ =

∫ k+λ2

k−λ1

φ(℘)w(℘)ζ(℘)∆α℘, (2.27)

∫ n

m
rσ(℘)g(℘)∆α℘ ≥

∫ k+λ2

k−λ1

rσ(℘)w(℘)∆α℘. (2.28)

The inequalities in (2.26) and (2.28) are reversible if rσ/ζ ∈ AHc
2[a, b] and (2.25), (2.27) hold.

Proof. In Theorem 2.1 [(Λ3), (Λ4)], ζ changes wq, g changes g/w and r changes rw. �

Corollary 2.7. In (2.26) and (2.28). Letting T = R, we have

(i)
∫ n

m
rσ(℘)g(℘)dα℘ ≤

∫ m+λ1

m
rσ(℘)w(℘)dα℘ +

∫ n

n−λ2

rσ(℘)w(℘)dα℘. (2.29)

(ii)
∫ n

m
rσ(℘)g(℘)dα℘ ≥

∫ k+λ2

k−λ1

rσ(℘)w(℘)dα℘. (2.30)

Corollary 2.8. In Corollary 2.7 [(i), (ii)], letting α = 1 and φ(℘) = ℘ we get [47, Theorems 18 and 19].
Corollary 2.9. In (2.29) and (2.30), crossing T = Z, gets

(i)
n−1∑
℘=m

r(℘ + 1)g(℘)℘α−1 ≤

m+λ1−1∑
℘=m

r(℘ + 1)w(℘) +

n−1∑
℘=n−λ2

r(℘ + 1)w(℘)℘α−1.

(ii)
n−1∑
℘=m

r(℘ + 1)g(℘)℘α−1 ≥

k+λ2−1∑
℘=k−λ1

r(℘ + 1)w(℘)℘α−1.

Theorem 2.4. Using the same conditions in Lemma 2.1, and Theorem 2.1 [(Λ3), (Λ4)] with
ψ : [m, n] ∩ T→ R be a integrable: 0 ≤ ψ(℘) ≤ g(℘) ≤ 1 − ψ(℘).
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(Λ11) If rσ/ζ ∈ AHk
1[m, n] and∫ n

m
φ(℘)ζ(℘)g(℘)∆α℘

=

∫ m+λ1

m
φ(℘)ζ(℘)∆α℘ −

∫ k

m

∣∣∣φ(℘) − m − λ1

∣∣∣ζ(℘)ψ(℘)∆α℘ +

∫ n

n−λ2

φ(℘)ζ(℘)∆α℘

+

∫ n

k

∣∣∣φ(℘) − n + λ2

∣∣∣ζ(℘)ψ(℘)∆α℘, (2.31)

then ∫ n

m
rσ(℘)g(℘)∆α℘

≤

∫ m+λ1

m
rσ(℘)∆α℘ −

∫ k

m

∣∣∣∣rσ(℘)
ζ(℘)

−
rσ(m + λ1)
ζ(m + λ1)

∣∣∣∣ζ(℘)ψ(℘)∆α℘ +

∫ n

n−λ2

rσ(℘)∆α℘

+

∫ n

k

∣∣∣∣rσ(℘)
ζ(℘)

−
rσ(n − λ2)
ζ(n − λ2)

∣∣∣∣ζ(℘)ψ(℘)∆α℘. (2.32)

(Λ12) If rσ/ζ ∈ AHk
1[m, n] and∫ n

m
φ(℘)ζ(℘)g(℘)∆α℘

=

∫ k

k−λ1

φ(℘)ζ(℘)∆α℘ −

∫ k

m

∣∣∣φ(℘) − k + λ1

∣∣∣ζ(℘)ψ(℘)∆α℘

+

∫ n

k

∣∣∣φ(℘) − k − λ1

∣∣∣ζ(℘)ψ(℘)∆α℘, (2.33)

then ∫ n

m
rσ(℘)g(℘)∆α℘

≥

∫ k+λ2

k−λ1

rσ(℘)∆α℘ +

∫ k

m

∣∣∣∣∣rσ(℘)
ζ(℘)

−
rσ(k − λ1)
ζ(k − λ1)

∣∣∣∣∣ζ(℘)ψ(℘)∆α℘

−

∫ n

k

∣∣∣∣∣rσ(℘)
ζ(℘)

−
rσ(k + λ2)
ζ(k + λ2)

∣∣∣∣∣ζ(℘)ψ(℘)∆α℘. (2.34)

If rσ/ζ ∈ AHk
2[m, n] and (2.31) and (2.33) satisfied, we get the reverse of (2.32) and (2.34).

Proof. The same steps of Theorem 2.1 [(Λ3), (Λ4)] with Lemma 2.1, R1/ζ : [m, k] ∩ T → R

nonincreasing, R1/ζ : [k, n] ∩ T→ R nondecreasing. �

Corollary 2.10. In Theorem 2.4 [(Λ11), (Λ12)], letting T = R we get:

(i)
∫ n

m
rσ(℘)g(℘)dα℘
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≤

∫ m+λ1

m
rσ(℘)dα℘ −

∫ k

m

∣∣∣∣rσ(℘)
ζ(℘)

−
rσ(m + λ1)
ζ(m + λ1)

∣∣∣∣ζ(℘)ψ(℘)dα℘ +

∫ n

n−λ2

rσ(℘)dα℘

+

∫ n

k

∣∣∣∣rσ(℘)
ζ(℘)

−
rσ(n − λ2)
ζ(n − λ2)

∣∣∣∣ζ(℘)ψ(℘)dα℘. (2.35)

(ii)
∫ n

m
rσ(℘)g(℘)dα℘

≥

∫ k+λ2

k−λ1

rσ(℘)dα℘ +

∫ k

m

∣∣∣∣∣rσ(℘)
ζ(℘)

−
rσ(k − λ1)
ζ(k − λ1)

∣∣∣∣∣ζ(℘)ψ(℘)dα℘

−

∫ n

k

∣∣∣∣∣rσ(℘)
ζ(℘)

−
rσ(k + λ2)
ζ(k + λ2)

∣∣∣∣∣ζ(℘)ψ(℘)dα℘. (2.36)

Corollary 2.11. In (2.35) and (2.36), we put α = 1, with φ(℘) = ℘ we get [47, Theorems 23 and 24].
Corollary 2.12. Our results (2.35) and (2.36), by using T = Z gets

(i)
n−1∑
℘=m

r(℘ + 1)g(℘)℘α−1

≤

m+λ1−1∑
℘=m

r(℘ + 1)℘α−1 −

k−1∑
℘=m

∣∣∣∣r(℘ + 1)
ζ(℘)

−
r(m + λ1 + 1)
ζ(m + λ1)

∣∣∣∣ζ(℘)ψ(℘)∇̂℘

+

n−1∑
℘=n−λ2

r(℘ + 1)℘α−1 +

n−1∑
℘=k

∣∣∣∣r(℘ + 1)
ζ(℘)

−
r(n − λ2 + 1)
ζ(n − λ2)

∣∣∣∣ζ(℘)ψ(℘)℘α−1.

(ii)
n−1∑
℘=m

r(℘ + 1)g(℘)℘α−1

≥

k+λ2−1∑
℘=k−λ1

r(℘ + 1)℘α−1 +

k−1∑
℘=m

∣∣∣∣∣r(℘ + 1)
ζ(℘)

−
r(k − λ1 + 1)
ζ(k − λ1)

∣∣∣∣∣ζ(℘)ψ(℘)℘α−1

−

n−1∑
℘=k

∣∣∣∣∣r(℘ + 1)
ζ(℘)

−
r(k + λ2 + 1)
ζ(k + λ2)

∣∣∣∣∣h(℘)ψ(℘)℘α−1.

3. Conclusions

In this work, we explore new generalizations of the integral Steffensen inequality given in [38,39,43]
by the utilization of the α-conformable derivatives and integrals, A few of these results are generalised
to time scales. We also obtained the discrete and continuous case of our main results, in order to gain
some fresh inequalities as specific cases.
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