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1. Introduction

Consider the quasi-complementarity problem (QCP) [28, 35], to find a couple of vector solutions
z,w € R" such that

w=Az+q+¥(2) >0, z-®>)>0 and w'(z-d(2) =0, (1.1)

where A = (a;;) € R™" and g € R" are given, ‘¥'(-) is a nonlinear transformation from R" into itself and
®(-) denotes a point-to-point mapping. Here and in the sequel, ‘>’ denotes the componentwise defined
partial ordering between two vectors and (-)” stands for the transpose of either a vector or a matrix.
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In fact, the QCP (1.1) can be regarded as a generalized case of many well-known complementarity
problems [21]. In greater detail, if ®(-) is the zero mapping, then the QCP (1.1) reduces to the weakly
or restricted nonlinear complementarity problem (WNCP) [25]. If ¥(-) = 0, then the QCP (1.1) reduces
to the implicit complementarity problem (ICP) [11,19]. If the conditions about ®(-) and ‘¥'(-) mentioned
above are met simultaneously, then the QCP (1.1) reduces to the well-known linear complementarity
problem (LCP) [2, 13, 14].

As is well-known, many problems in engineering and economics applications result in the form of
QCP and its special cases, including the linear and quadratic programming [13], the Nash equilibrium
problems [12], the traffic bottleneck model simulation [10, 30], the free boundary problems [37], the
nonnegatively constrained image restoration [15] and so on, see [13, 16,21] and references therein
for more details. Due to the exponential computational complexity of direct complementarity pivot
algorithms, iterative methods for solving the QCP (1.1) are preferred and widely studied. For instance,
the inexact Newton methods [27,29], the projected methods [24], the matrix multisplitting iteration
method [1, 4, 5], the modulus-based matrix splitting (MMS) iteration methods [2, 14, 32, 35] and so
forth. Among these existing iterative methods, the MMS iteration method has attracted considerable
attention due to its simple structure and high performance.

The modulus method was first devised to solve the finite-dimensional discrete linear
complementarity problems [31]. The basic idea of the modulus method is to cast the LCP as an
absolute value equation (AVE) [34] by setting two nonnegative and orthogonal vectors and construct
high efficiency algorithm to solve the AVE. Then, on one hand, abundant improvements have been
done to accelerate the convergence rate and improve the computing efficiency of the modulus method,
including the modified modulus-based iteration method [14], the modulus-based matrix splitting
(MMYS) iteration method [2], the general MMS iteration method [26], the two-step MMS iteration
method [23, 36], the modulus-based synchronous multisplitting iteration method [8] and so on. On
the other hand, the classical modulus method and its improvements have been extended to study
the ICP [11, 19, 22], the WNCP [25, 38], the QCP [32, 35]. Numerical results indicate that the
modulus-based iteration methods perform much better than the Newton-based iteration methods and
the projected iteration methods.

Let g(z) = z—®(z) be invertible and A = M — N be a splitting of the matrix A € R™". By introducing
a positive parameter y > 0, a positive diagonal matrix Q and letting

1 1
8@)=z—-D@) = =(xl+x), w=-=-Q(x]-x),
Y Y

thenz = g~! (%(le + x)) and the QCP (1.1) can be equivalently expressed as the following implicit fixed
point equation

1 1
(Q+M)x=Nx+(Q-A)xl - )’A(D(g_](;(IXI + X)) - V‘P(g_l(;(IXI + X)) = 4. (1.2)

Further, define a set
Z={z|z-®(z) > 0,Az+ g+ ¥(z) > 0}, (1.3)

then the MMS iteration method is briefly summarized as follow.
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Method 1.1. [35] (The MMS iteration method for QCP)
Step 1. Givene > 0,79 € Z, setk = 0.
Step 2. Find the solution z**V:

(1) Calculate the initial vector

500 %(z(") —Q'wh — @0y

and set j=0.
(2) Compute xU*'"0 by iteratively solving

(Q + M)V = NxUR 1 (Q = A)xY0) — yAD(ZP) — yP () - v4.

(3) Compute

1 . .
Z(k+1) - _(lx(./+1,k)| + x(j+1,/<)) + (D(Z(k))-

Step 3. If RES (%) = |(AZ%D + g + P& D) (D — D MDY < g, then stop; otherwise, set
k = k + 1 and return to step 2.

It can be seen from Method 1.1 that the MMS iteration method for solving the QCP (1.1) belongs
to a class of inner-outer iteration methods. Depending on that the step of inner iteration j is fixed
or varies with the number of outer iteration k, the MMS iteration method can be classified into two
categories, i.e. the stationary and nonstationary MMS methods. Generally speaking, the convergence
rate of the inner solver has great impact on the global convergence rate [11,36].

To improve the convergence rate of the inner iteration of the MMS iteration method so as to obtain
fast global convergence rate, inspired and motivated by the general MMS iteration method studied
in [26] for solving the LCP, we propose a general modulus-based matrix splitting (GMMS) iteration
method for solving the QCP (1.1). In the GMMS iteration method, an additional diagonal matrix
is introduced for g(z). Through the selection of appropriate diagonal matrices, the GMMS iteration
method not only covers the existing MMS method, but also leads to a new series of modulus-based
relaxation methods. Convergence conditions are analyzed in detail when the system matrix is either
an H,-matrix or a positive definite matrix. Moreover, in the case of H,-matrix, weaker convergence
conditions than that given in [35, Theorem 3.3] can be obtained.

The rest of this paper is organized as follows. In Section 2, we establish the GMMS iteration
method for solving the QCP (1.1). Convergence conditions of the GMMS iteration method are proved
in Section 3. In Section 4, two numerical examples are presented to demonstrate the effectiveness
and advantages of the new proposed GMMS iteration method. Finally, we end this paper with a brief
conclusion and outlook in Section 5.

2. A general modulus-based matrix splitting iteration method

Let Q; € R™", Q, € R™" be two positive diagonal matrices, and
8(z) =z—-D(2) = Q(Ix +x), w=Q (x| - x),
then we have

1
2=g ' (Q(x +x), x= E(QIIZ _ QD) - O5'w).
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Further let AQ; = Mg, — Ng, be a splitting of AQ, € R™”. Then similar to (1.2), we can transform the
original QCP (1.1) into the following implicit fixed-point equation with respect to x:

(Q + Mo, )x = No,x + (Q — AQ))lx| — AD(g™ (i (1] + 1)) — P~ (Cu(Ixl + ) — ¢. 2.1)

It follows from [35, Theorem 3.1] that if x is a solution of (2.1), then (z, w) = (g~ (Q; (x| + x)), Q>(Jx| —
x)) is a solution pair of the QCP (1.1).

Based on (2.1), the initial set (1.3) and the MMS iteration method (Method 1.1), a general modulus-
based matrix splitting iteration method is proposed as follows.

Method 2.1. (The GMMS iteration method for QCP)

Step 1. Givene > 0,79 € Z, setk = 0.
Step 2. Find the solution z**V:
(1) Calculate the initial vector

wh = Az0 4 g+ Py,
1
£ 00 = E(Qflz(k) —- Q7'o®) — Q7 'wh), (2.2)

and set j=0.
(2) Compute x99 by iteratively solving

(Qy + Mg )XY = Ng x4 (Q, — AQ)IxH| — ADEY) - P (%) - q. (2.3)

(3) Compute
& = %(|x(j+1’k)| + U)o, (2.4)

Step 3. If RES (%) = |(AZ%D + g + P& D) (D — D MDY < g, then stop; otherwise, set
k = k + 1 and return to step 2.

Remark 2.1. In particular, if Q, = 51, Q, = %Q, Mg, = %M and Ng, = §N, then (2.3) can be
rewritten as

(Q + M)x 0 = NxU0 1+ (Q = A) X0 = yAD(Y) = y () — v,

which reduces to the MMS iteration scheme in [35].

From the new proposed GMMS iteration method (see Method 2.1) and the original MMS iteration
method (see Method 1.1), we see that only the inner iteration (i.e. the second step) is different. As we
discussed in Section 1, the inner iteration is critical for the MMS iteration method. Here, we provide
a general framework for the inner iteration. With suitable choices of the positive diagonal matrices €2,
and €Q,, we can speed up the inner iteration so as to get fast convergence rate of the outer iteration.

We would emphasize that the implicit fixed-point equation (2.1) is a weakly nonlinear system [3,7].
By selecting different parameter matrices, Method 2.1 can also yield a series of general modulus-based
relaxation methods. More specifically, let AQ; = Daq, — Lag, — Uag,, With Dao,, —Lao,, —Uaq, being
the diagonal, strictly lower-triangular, and strictly upper-triangular matrices of AQ, respectively. Then
four specific iteration schemes can be obtained:
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(a) When Mg, = Dsg, and No, = Lag, + Uagn,, Method 2.1 is known as the general modulus-based
Jacobi (GMJ) iteration method.

(Qy + Dag )XV = (Lag, + Uag)x™ + (Qy — AQ))|x9| — AD(ZP) - P() - g,

with 25D = Q,(|xU*10] + xRy 4 (zP),
(b) When Mg, = Daq, — Lag, and Ng, = Uaq,, Method 2.1 is named as the general modulus-based
Gauss-Seidel (GMGS) iteration method.

(Q + Daq, — Lag )XV = Upg, x99 +(Q, — AQ)|x9| — AD(ZP) — P(z*) - g,

with 5D = Q (|xU+10] + xR 1 D (z0),
(c) When Mg, = éDAQl —Lao, and Ng, = (é —1)Daq, + Usg,, Method 2.1 is referred to as the general
modulus-based successive overrelaxation (GMSOR) iteration method.

(@ + Dag, — aLso )XV = [(1 = @)Daq, + aUsq, ] X9 + a(Q, — AQ))|xY¥)]
—aA(D(z(k)) - a‘P(z(k)) - aq,

with 25D = Q (|xU*10] + xRy + (zP),
(d) When MQl = é(DAQI _BLAQI) and NQI = i [(1 — CL/)DAQI + (a —ﬁ)LAQI + G’UAQI], Method 2.1
reduces to the general modulus-based accelerated overrelaxation (GMAOR) iteration method.

(@Q + Dyg, — BLag, )X = [(1 = @)Daq, + (@ — B)Laq, + @Uxq, ] XV + a(Q, — AQ))|x¥)]
—a/A(D(z(k)) — a/‘{’(z(k)) - aq,

with zED = Q, (|xUHD| 4 xULRY 4 @(z®).

The above four modulus-based splitting iteration methods based on classical matrix splitting
iteration methods for system of linear equations [6]. Obviously, computational workload of solving
the inverse of system matrix A can be reduced. In addition, the relaxation parameters @ and 8 can
be tuned in order to improve the convergence speed in GMAOR method. But in practice, different
combination of parameters « and 8 have a great influence on the iteration steps. As a result, the GMGS
iteration method appears to be more competitive compared with the GMSOR and GMAOR methods.

Remark 2.2. In actual computations, the choices of the parameter matrices €, and €, in the GMMS
iteration method are flexible. One can choose tI (t > 0), or sD, (s > 0) with D, being the diagonal
matrix of A, or other positive diagonal matrices with unequal diagonal elements. By suitable choosing
the parameter matrices, faster convergence rate of the proposed GMMS iteration method can be
obtained.

3. Convergence analysis

In this section, we will make convergence analysis on the GMMS iteration methods when the system
matrix A of the QCP(1.1) is an H,-matrix and a positive definite matrix.

The following notations, definitions and lemmas are to be used in the subsequent sections. Let

A = (a;), B = (b;j) € R™" be two square matrices. Define A > B (A > B) if a;; > b;; (a;; > b)), for
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all 1 <i<n, 1< j<n Wesay A is anonnegative (positive) matrix if a;; > 0 (a;; > 0). A is called
a Z-matrix if a;; < 0 for any i # j. If A is a Z-matrix and A~!' > 0, then A is an M-matrix. If the
comparison matrix (A) = ({(a);;) € R™", where we define

la;jl, for i=j, . .
- =1.2....
<a>lj { _|alj|’ for i¢ j, l’] 9 9 ’n

is an M-matrix, A is called an H-matrix. In particular, an H-matrix is called an H,-matrix when its
diagonal entries are positive.

We use sp(A), p(A) to represent the spectrum and the spectral radius of the matrix A, respectively.
The splitting A = M — N is an M-splitting if M is a nonsingular M-matrix and N is nonnegative.
A = M — N is called an H-splitting if (M) — |N| is an M-matrix. Further, if (A) = (M) — |N|, then
A = M — N is called an H-compatible splitting [9]. I is the identity matrix of the corresponding scale.

Lemma 3.1. [/8] Let A € R™" be an M-matrix and B € R™" be an Z-matrix. If A < B, then B is an
M-matrix.

Lemma 3.2. [17] If A € R™" is an H -matrix, then |A~'| < (A)~.
Lemma 3.3. [33] Let A € R, then p(A) < 1 iff lim A" = 0.
n—+oo

Lemma 3.4. [6] A € R™ is a generalized strictly diagonally dominant matrix if and only if there
exists a positive diagonal matrix D such that the matrix AD is strictly diagonally dominant.

Lemma 3.5. [20] Let B € R™" be a strictly diagonally dominant (s.d.d.) matrix, then for any matrix
Ce Rnxn,

_ (ICle);
1B~ Clloo < max
1<i<n ((B) e);

holds, where e = (1,1,...1)T.

Assume that z*) is the exact solution of the QCP (1.1) and x™ is the exact solution of the implicit
fixed point equation (2.1). And from (2.2)—(2.4), we have

& = Qi (] + ) + (), (3.1)

1 .

and
(Q + Mg )x™ = No, x + (Q, — AQ)xY| — ADE™) - ¥(z™) — q.

3.1. The case of H,-matrix

In this subsection, we derive sufficient convergence conditions for the GMMS iteration method
when the system matrix A is an H,-matrix. To this end, the following two notations are introduced:

{ 61 = (o + (Mg, ) ' (INg,| + Q2 — AQ)),
82 = (o + (Mo, ) (Al + LI).

AIMS Mathematics Volume 7, Issue 6, 10994-11014.
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Theorem 3.1. Let QQ1,Q, € R™ be two positive diagonal matrices, A € R™" be an H,-matrix and
AQ| = Mg, — Nq, be an H-splitting of the matrix AQ,. Let ®(-) and ¥Y(-) be two Lipschitz continuous
functions, and satisfy

|D(s) — D) < Lils—t and |Y(s)—Y(@) < b|s—1.

ly, I, are Lipschitz constants. D is a positive diagonal matrix and (Mg, ) — |Ng,| is a generalized strictly
diagonally dominant matrix. If

2|1€216], + 1
Qe > DyQie — D'((Mq,) — INg,)De  and % <1,
— 11611l

+00

where ||01|l, < 1, then the sequence {Z(k)}k:O generated by GMMS method converges to the unique
solution 7 of the QCP (1.1) for any initial values for the vector 7V € Z.

Proof. Since AQ; = Mg, —Ng, 1s an H-splitting of the matrix AQ,, AQI = (Mg,)—|Ng,| 1s an M-matrix.
Evidently, (Mgq,) > Agl, by Lemma 3.1, (Mg, ) is an M-matrix and Q, + Mg, is an H,-matrix. Again
by the application Lemma 3.2, we have

Qs + Mg,) ™' < (Qy + (Mg, )™

Subtracting (3.1) from (2.4) and taking the absolute value, we obtain

LD =20 = (K] ) + () — Q]+ x) - ()
< REP) = B + Qi [P = [x] |+ QO - 5
< 0EP) = DR + 26U ),

Substituting x*) into (2.3) and then subtracting from (2.3) gives

XU — O = 1(Qy + Mg,)  [Ng, (X9 — x™) + (Q, — AQ)(IXY] — x))
—A@EY) - D)) = (PE?) - PE)I

< Q2 + Ma,) ™| INg, (x99 = xP) + (@ — AQ) (x| — |x))]

+H(Q2 + Ma) ' NADED) = DEW)| + 1(Q + Mo,) ™[ [(P(?) - P
< (o + (Ma,)) ™ (Nay | + 19 — AQ DX — x)

+(Qs + (Mo, ) A| (@R = DE™)| + (Qp + (Mg, ) 1(PEX) — P(E™)
< (Q + (Mg, ) (INg, | + 192 — AQ DX — x™)]

HQ + (M, ) (AL + LDIY = 29 = 611309 = x] + 61 — 20,

Then
LD — 291 < 4120 = 2] 4 2Q1(8,1x90 — x|+ 6,120 — 27))
= 2016 1xY0 = x| + (L1 + 20,6,z - 2|
< 20,67 XO0 - X9 4 2Q (8 + 677 + - 5D, + LiDIZP - 27|

J
2067 X0 = x|+ (2016, ) 8y + LD - 2.
i=0

AIMS Mathematics Volume 7, Issue 6, 10994-11014.
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From (3.2) and (2.2),
1 .
|x(0,k) _ x(*)l — 5|Ql—lz(k) _ Ql_lq)(Z(k)) _ lew(k) _ Ql—lz(*) + QI—I(D(Z(*)) + lew(*)|
1
= SIE -2 - 9] (@) - 0E) - (A - A7+ WE) - W)

—1
£ |ICD( ©) - <D(z(*))|+| 2 |I‘P(z(")) P

N

1
E|Q;1 - 5'AL 2% = 2] +

N

L _ L | 7 L|Q |
_|Qll _ Q21A| |Z(k) _ Z(*)| + 1 |Z(k) _ Z(*)| 2 Iz k) _ Z(*)|
2 2
L _ _ _ .
= 5(|Ql1 - AL+ L1QT + LIS IZY - 2.

Thus,

j
24D — 29 < (@677 1Q)! — @ Al + LIQT | + LIRS ) + 2Q16, Z &) + L1z = 2.
i=0

Let ¥ = Q61" (1Q;" — Q5'Al + LIQ!| + LIQS) + 29,6, X7, & + 1,1, now we just have to prove that
p(¥) < 1.

J
P87 (1T — QA+ LIQT + LIS ) + 296, Z )+ 1)

p(Y) =
i=0
' J
< 1967119 — QAL+ LIQT + LIS + 29,6, Z 8y + 1l
i=0
< 19167 119" = Q5 AL+ L1 + IO [l + 211182 ) 6l + 1.

i=0
From Lemma 3.4, since (Mg, ) — |[Nq,| is a generalized s.d.d., there exists a positive diagonal matrix

D such that ((Mg,) — |Ng,|)D i1s s.d. d And by Lemma 3.5, we have p(d,) < 1, refer to [26] for detailed
proof. Then by Lemma 3.3, lim 5f+1 = 0 holds true. Therefore, for any €; > 0, there exists J; such

Jj—o+oo

that for all j > Ji, ||, 5] I, < €. Note that || |Q;" — Q;'A| + L1Q;"| + LI, |l is a constant. Hence,
there is a positive integer J; such that

19067 L 117" — Q' Al+ 11Q7 [+ LIS [ < &

for any € > 0 (¢; < 1). Finally, we acquire

J
- ; 2/|12165l
Y) < + 2||Q6 Olh+h <g+—=+1
p(Y) € + 2|€2; 2; U +14h < e oL o
. 201216502 + I = Li[01]]2
= €
I =161l
2|10, + 1
6+ —— < 1.
I = |61l
This completes the proof. O
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Remark 3.1. In Theorem 3.1, AQ, = Mg, — Nq, is assumed to be an H-splitting of the matrix AQ};,
whereas the condition in [35, Theorem 3.3] is required A = M — N to be an H-compatible splitting
of the matrix A. We present a simple example to show that our convergence condition weakens from
H-compatible splitting to H-splitting. Suppose that Q, = I, the matrix A and the splitting matrices of
AQ are

2 4 2 _
A= (2 4)’ Mo, = ((8) 4)’ Ng, = (_03 O)’ (Mq,) — |Nq,| = (_83 46) # (AQ) = (A).

Obviously, one can see from the above simple example, this way of splitting does not satisfy [35,
Theorem 3.3], but it is possible in Theorem 3.1.

3.2. The case of positive definite matrix

In this subsection, the convergence analysis of the GMMS iteration method is analyzed when the
system matrix A is a positive definite matrix.

Theorem 3.2. Let Q;,Q, € R™" be two positive diagonal matrices, A € R™" be a positive definite
matrix and AQ, = Mg, — Ng, be a splitting of the matrix AQ,. Define n; = ||(Qy + MQI)_INQIHZ +
1€ + M) (Qy = AQ), 172 = Q0 + Mo) ' Allly + (€2 + Mg,) ™' lo. Suppose that ®(-) and P(-)
are Lipschitz continuous functions, i.e., for any s,t € R" satisfy

1D(s) = @D 2 < Lills =1l and  ||¥(s) = Y@ |l < Ll s = ]l2,

where [y, 1, are Lipschitz constants. If

j
7 QL+ DI Tl + (AT + LIRS ) + 211 [l Z m+h <l (3.3)

i=0

+00

holds true, then for any initial vector 79 € Z, the sequence {Z(k)}k:o generated by GMMS iteration
method converges to the unique solution 7 of the QCP (1.1).

Proof. Similar to the analysis of Theorem 3.1, subtracting (3.1) from (2.4) and taking the 2-norm on
both sides give the error expression:

k+1 * k * i+1,k *
25D =29 < IDE) = @E) + 201l [V — x|,
k * i+1,k *
< LD =290 + 209 [l 11XV = XL,

Substituting x* into (2.3) and subtracting from (2.3), we have

X0 — XD, = Qs + Ma,) ™ [Ng, (2 = x) + (Q, — AQ)(IxP] - X))
—A@(Y) = D)) — (P(®) = Y]l

1€ + Ma,) ™ No, llo 1699 = xPlp + Q2 + Mo,) ™' (2 — AQ))Il»
[0 = XD +11(Qa + M)Al 1(@(%) — @)l

+HI(Q2 + Ma) ™Ml I(¥(™) = ¥l

i

N

k
O + mallz® = 29,

N
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Then
k+1 * k * 2 Q ik * k *
”Z( ) Z( )”2 < ll||Z( ) Z( )”2 ” ]”2(1]1”)((] ) X( )”2 ”2”Z( ) Z( )”2)

J
i+1 0.k * 1 k *
< 27711l 160 = X9 + 2mall 12 E ) + I = 27l
i=0

Subtracting (3.2) from (2.2) and take the 2-norm, we have

||x(0’k) _ x(*)”2 — %”QI—lz(k) _ Ql_l(D(Z(k)) _ lew(k) _ Ql—lz(*)
+Q7'0) + Q7 w
:%mﬂw—ﬁrnﬂmW%®wm
—QEI(AZ(k) _ AZ(*) + \P(Z(k)) _ ‘P(Z(*)))Hz

N

| I -1 k . 11||Q1‘1||2 . .
Ellﬂl - Al 1129 = 2%l + ——1I2% = 27|l

2
+lz||951||z
2

| _ - - x
= E(Ilﬂll — Q" Al + L1IQ I + LI )Y = 2,

2% = 29I

Thus, the inequality holds,
1250 =290 < L3I — Q5 Al + LI 1 + LIRS )

J
201l Y-y + 111129 = 2l
i=0

< D119l + 11925 Al + LIl + LIRS Tl)
J
201l )y + 111129 = 2l
i=0
< DI (1 + DR + (ATl + I o)

J
#2012 Y- oty + 11 1120 = 2,

i=0

It can be seen from (3.3), the iteration method of Method 2.1 converges to the unique solution of the
QCP (1.1) for any initial vector z* € Z. This completes the proof. o

In particular, if Q = w1, Q, = w1 € R™" are positive diagonal matrices, define 7 = ||A||,, then

J
* j w i *
[F A S [U{H(l +1+ w—l(T + 1)) + 2(1Q4 72 E ny + L1129 = 290,
2 i=0

naturally, we can draw the following corollary.
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Corollary 3.1. Let Q; = w1, Q; = wyI € R™" be two positive diagonal matrices, AQ; = Mg, — Ng,
be a splitting of the matrix AQ; and A € R™" be a positive definite matrix. Define v = ||All,, 11 =
Q2 + Ma,) 'Ng,lla + [1(Q2 + Mo,) ' (Q = AQDI, 12 = I(Qa + Mg,) 'Allbly + 11(Q2 + Ma,) b
Suppose that O(-) and Y(-) are Lipschitz continuous functions, i.e., for any s,t € R" satisfy

1 @Cs) = POl < Ll s =l and ||'F(s) = Y@ [l < Ll s = 1]k,

where 1y, I, are Lipschitz constants. If

J
. w .
AL+ a4 )+ 2l Y+ L <
2 i=0

+00

holds true, then for any initial vector 7Y € Z, the sequence {Z(k)}k:o generated by GMMS iteration
method converges to the unique solution 7 of the QCP (1.1).

Suppose that Mg, € R™" is a symmetric positive definite matrix and Q, = wl € R™" is a positive
scalar matrix, a specific sufficient condition for the convergence is discussed in the next theorem.

Theorem 3.3. Let AQ, = Mg, — No, be a splitting of the matrix AQ, € R™" with My, € R™"
being symmetric positive definite, Q, = wl € R™" being a positive scalar matrix. Use A, and
Amin to represent the largest and smallest eigenvalues of the matrix Mg,. Define 7, = ||M5}NQI||2,
Ty = ||M§‘2} (Q; — AQy)||o. If the Lipschitz constant 1, and the iteration parameter w meet the following

conditions:
2[|Q4llom2 + 1

1-m
then the iteration sequence {ZP}y , € R generated by Method 2.1 converges to the unique solution z
of the QCP (1.1) for any initial vector 7 € Z.

<1, w>Adu(t1+172—-1)and n, < 1, (3.4)

Proof. We only need to prove the condition for (3.3) is true. From the characteristics of the matrices
Mg, and €, we have

Q2 + Mqo,) 'No,ll. < II(Q + Ma,)™ Mg, I, ||M§}NQ.||2
= |l(wI + Mq,)"' Mg, ||> Mg No,Il»
/lTl Amale
max = .
tespMa) W+ A W+ Ay

Analogously, we have

Q2 + Mo,) ' (Q —AQ)DIL < [I(Q2 + Mo,) ™' Mq |12 IMg) (2 — AQ))|I2
= |l(wl + Mg, Mg, ILIIMg) (Q; — AQI|>

/lTZ /lmaxTZ
= max = .
despMo) W+ A W+ Ay

Hence, it holds that when w > A,,,, (71 + 72 — 1), then

/lmale /lmaxT2 ﬂmax(Tl + TZ)
m < + = <

= 1
< ’
w + /lmax w + /lmax w + /lmax
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accordingly, lim n'{“ = 0. Note that ||Q;],((1 + 11)||Ql_1||2 + (||A]], + lz)||951||2) is a constant. Therefore,
Jj—o+oo

there must exist a positive integer J, such that for any €, > 0, when j > J,, the following inequality
holds:

; 1
m Qa1+ IR + SUAl + L) < &. (3.5

From n; < 1, we can derive

J
20l Y 1y + 1 < Al - 2l + 4

(3.6)
pars I—m lL—m

Combine (3.3), (3.5) and (3.6), we can find a small enough €, > O(¢, < 1) for all j > J,, it satisfies

ol Ly ] L 201l + 1y
IR+ DIz + (Al + 1)+ 20l Y i+ L < & + —
i=0 !

. i
Therefore, when j — +co, we have 77/ IQuL((1 + I b + L(lIAll + L) + 211 b S+ 1< |

provided that the condition (3.4) holds. This completes the proof. O

4. Numerical experiments

In this section, two numerical experiments are performed to verify the effectiveness of Method 2.1
for solving the QCP (1.1). Both experiments are investigating the factors of iteration steps (denoted by
“IT”), the elapsed CPU time in seconds (denoted by “CPU”) and residual errors (denoted by “RES”).
Experiment 1 is studying when the matrix considered is symmetric, while Experiment 2 is focusing on
a nonsymmetric case.

In our experiments, “RES” is defined as
RES (2°) = 1(Az + ¢ + () (¥ - 0(z)),

initially, the vector z¥ is chosen to be z® = (0,0, - --0)" € R". For Method 1.1, we take Q = 71,y = 1.
For Method 2.1, we take Q; = 0.06D,4, D4 = diag(A), £, = I. Parameters « and S are experimentally
found optimal ones, which lead to the least iteration steps. The total step of inner iteration is set j = 2
in both Methods 1.1 and 2.1 to simplify the process. The termination criteria is RES (z¥) < 107°,
or when k reaches the maximum number of iterations, e.g. 50. Both experiments are performed in
MATLAB (R2018b) where all variables are defined as double. Intel(R) Core(TM) with i7-10710U
CPU and 16 GB RAM, under Windows 10 operating system are used. Table 1 lists the abbreviations
used in the following description of the experiments.
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Table 1. Test methods.

Method  Description

MM The modulus-based iteration method

MGS The modulus-based Gauss-Seidel iteration method

MSOR The modulus-based SOR iteration method

MAOR  The modulus-based AOR iteration method

GMGS The general modulus-based Gauss-Seidel iteration method
GMSOR  The general modulus-based SOR iteration method
GMAOR The general modulus-based AOR iteration method

4.1. Experiment I-the case of symmetric [32]

Let m be a positive integer and n = m?. Consider QCP (1.1), in which A = A+ ul e R and g € R”
are defined as follows.

S -1 0 --- 0 O ]
- s -1 --- 0 O
. O -1 § --- 0 O
A = Tridiag(-1,S,-Dh=| . . . . . |eR™
0 0 O S -1
0 0 O -1 S
is a symmetric block tridiagonal matrix,
4 -1 0 0 O
-1 4 -1 0 O
o -1 4 --- 0 O
S = Tridiag(-1,4,-1)=| . . . o |ermm
0O 0 O 4 -1
0 0 O -1 4

is a tridiagonal matrix, and

g=(-11,-1,1,--- (=)', (=",

the point-to-point mapping ®(z) and the nonlinear transformation ‘¥'(-) are defined as
®(z) = (atan(zy), atan(z,), - -+ , atan(z,))" € R"

and Y(2) = (osin(zy), osin(z), - - - , osin(z,))’ € R™.

In the Experiment 1, we take u = 0 and u = 1, respectively. Five different sizes of matrix A are
analyzed with n is given the values of 900, 3600, 14400, 57600, 230400. For each matrix size, seven
iteration methods have been employed with o = 0.01. The three performance evaluation indicators are
given in Tables 2 and 3 when u = 0 and u = 1 respectively. In addition, the factor of o is investigated
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by giving it three different values: 0.001, 0.01 and 0.1, when the size of matrix n = 14400 and x = 1.
The results are shown in Table 4.

Table 2. Numerical results for Experiment 1 with u = 0, oo = 0.01.

n
900 3600 14400 57600 230400

IT 10 11 12 13 14
MM CPU  0.0551 0.0309 0.1023 0.5239 2.9227
RES 9.10E-7 7.56E-7 5.99E-7 4.66E-7 3.59E-7

IT 12 13 14 15 16
MGS CPU  0.0017 0.0062 0.0345 0.1518 0.8573
RES 4.84E-7 5.19E-7 5.24E-7 5.15E-7 5.01E-7

Methods

a 2.0 1.9 1.8 1.7 1.6
IT 9 10 11 12 13
MSOR CPU  0.0012 0.0050 0.0233 0.1347 0.6957
RES 9.23E-7 8.74E-7 845E-7 8.68E-7 9.70E-7
(o,p) (2.0,2.0)0 (1.7,2.0) (1.5,2.0) (1.3,2.0) (1.2,2.0)
MAOR IT 9 10 11 12 13

CPU  0.0011 0.0050 0.0278 0.1339 0.6600
RES 9.23E-7 945E-7 9.16E-7 998E-7 9.49E-7
IT 7 7 8 8 9
GMGS CPU  0.0097 0.0033 0.0165 0.0795 0.4487
RES  8.53E-8 3.15E-7 7.99E-8 294E-7 7.36E-8
a 1.7 2.6 2 2.1 1.7
IT 4 3 4 4 5
GMSOR CPU  0.0006 0.0015 0.0078 0.0409 0.2512
RES  8.55E-7 443E-7 7.89E-7 6.94E-7 7.24E-7
(o,p) (15,200 (1.8,2.0) (2.0,1.8) (1.3,2.0) (1.5,1.9)
IT 4 4 4 5 5
GMAOR CPU  0.0006 0.0025 0.0081 0.0509 0.2451
RES 9.64E-7 9.79E-7 9.53E-7 9.20E-7 9.11E-7
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Table 3. Numerical results for Experiment 1 with u = 1, o0 = 0.01.

n

Methods

900 3600 14400 57600 230400
IT 6 7 7 8 8
MM CPU  0.0034 0.0147 0.0731 0.3915 2.2515
RES 493E-7 142E-7 5.78E-7 1.60E-7 6.39E-7
IT 7 8 9 9 10
MGS CPU  0.0044 0.0040 0.0147 0.0830 0.4336
RES 546E-7 242E-7 1.03E-7 4.20E-7 1.74E-7
a 1.8 1.5 1.8 2.0 1.7
IT 5 6 6 6 7
MSOR CPU  0.0006 0.0026 0.0094 0.0621 0.3162
RES 7.62E-7 7.81E-7 6.04E-7 9.13E-7  8.13E-7
(o,p) (1.6,2.0) (1.2,2.0) (1.6,1.9) (2.0,2.0) (1.5,2.0)
IT 5 6 6 6 7
MAOR CPU  0.0006 0.0029 0.0109 0.0612 0.4298
RES 897E-7 8.09E-7 9.01E-7 9.13E-7 7.97E-7
IT 5 5 6 6 6
GMGS CPU  0.0015 0.003 0.0127 0.0601 0.2854
RES 3.85E-8 226E-7 230E-8 1.10E-7 4.71E-7
a 0.6 0.6 0.6 0.5 0.6
IT 4 4 4 5 5
GMSOR CPU  0.0006 0.0018 0.0077 0.0530 0.2709
RES 3.14E-7 3.89E-7 3.27E-7 5.02E-7 1.69E-7
(o,B) (0.6,0.3) (0.6,0.3) (0.8,0.3) (0.9,0.3) (0.7,0.3)
IT 3 3 3 3 4
GMAOR CPU  0.0004 0.0015 0.0072 0.0435 0.2783
RES 5.74E-7 4.20E-8 239E-7 3.02E-7 2.89E-7

Table 4. Numerical results for Experiment 1 with i = 1, n = 14400.

¥(2) Methods IT CPU  RES  Methods IT CPU  RES

MGS 8 00176 9.39E-8 GMGS 7 0022 7.18E-7

0.1sin(zy MSOR 4 0.072 8.08E-7 GMSOR 6 0.0111 9.91E-7
MAOR 4 0.0069 8.08E-7 GMAOR 4 0.0080 2.94E-7

MGS 9 00147 1.03E57 GMGS 6 0.0127 2.30E-8

0.01sin(z) MSOR 6 0.0094 6.04E-7 GMSOR 4 0.0077 3.27E-7
MAOR 6 0.0109 9.01E-7 GMAOR 3 0.0072 2.39E-7

MGS 9 0.0278 1.30E-7 GMGS 5 0.0148 5.46E-7

0.001sin(z) MSOR 6 00115 8.70E-7 GMSOR 4 0.0093 4.32E-7
MAOR 6 00136 937E-7 GMAOR 3 0.0063 131E-7

AIMS Mathematics

Volume 7, Issue 6, 10994-11014.



11009

The findings are as follows:

(a) For most methods except GMSOR and GMAOR methods when u = 0, o = 0.01 and n = 3600, the
iteration steps increase with the size of the matrix. However, all the methods can converge rapidly
in spite of the size n.

(b) MGS requires the most number of iteration steps while the proposed GMAOR method needs the
least number of iterations. The proposed GMSOR method achieves a similar performance as the
GMAOR.

(c) The three proposed methods: GMGS, GMAOR and GMSOR demonstrate a slight improvement
in terms of iteration steps and elapsed CPU times. GMMS iteration method uses almost half of
iteration steps of MMS, especially when y = 0.

(d) The proposed three methods show a close performance for all three indicators, however, GMAOR
and GMSOR need extra-optimization on the parameter « and S to complete the calculation.

4.2. Experiment 2-the case of nonsymmetric [32]

Given that m to be a positive integer and n = m? in the QCP (1.1), where A = A+ ul € R™" and
q € R" are defined as follows.

S -051 O e 0 0
-1.51 S -0.51 --- 0 0
. 0 -151 S e 0 0
A = Tridiag(-1.51,§,-0.5]) = . . . ) . . e R™"
0 0 0 e S -0.51
0 0 0 - =151 §

is a nonsymmetric block tridiagonal matrix,

4 -05 O 0 0
-1.5 4 =05 0 0
o -15 4 - 0 0
S = Tridiag(-1.5,4,-0.5) = ) ) ) ) ) ) e R™™
0 0 0 4 =05
0 0 0 -1.5 4

is a block tridiagonal matrix, and ¢ is still,
g=(11-11,-- (=)L (D) eR",
the ®(z) is the same as in the Experiment 1, and W(z) are defined as
¥(z) = (0.01sin(zy), 0.01sin(z,), - - - ,0.01sin(z,))" € R™.

In this experiment, we also take u = 0 and 4 = 1. Five different matrix sizes are considered, i.e.
n = 900, 3600, 14400, 57600, 230400. The results are shown in the Tables 5 and 6 foruy =0and u =1
respectively.

From Tables 5 and 6, we find:
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(a) The GMAOR method requires the least number of iterations among the proposed three methods.
For the four conventional methods, MAOR needs the least.

(b) The GMAOR method can obtain a better performance when = 1 than that when u = 0, where
the system matrix A is strictly diagonally dominant when p = 1.

(c) GMMS achieves a similar performance despite the chosen value for n.

Table 5. Numerical results for Experiment 2 with ¢ = 0.

n
900 3600 14400 57600 230400
IT 10 11 12 13 14
MM CPU 0.0044 0.0187 0.0895 0.4898 2.8718
RES 7.52E-7 6.88E-7 5.71E-7 4.54E-7  3.54E-7
IT 11 12 13 14 15
MGS CPU 0.0087 0.0059 0.0222 0.1382 0.7027
RES 5.39E-7 5.50E-7 S5.11E-7  4.57E-7  4.01E-7

Methods

a 1.5 2.0 1.8 1.7 1.6
IT 9 9 10 11 12
MSOR CPU 0.0013 0.0040 0.0192 0.1106 0.5986
RES 9.63E-7 9.07E-7 9.94E-7 8.82E-7  8.57E-7
(a,p) (0.6,1.9) (1.9,2.0) (1.5,2.0) (14,19) (1.2,1.9)
MAOR IT 8 9 10 11 12

CPU 0.0010 0.0046 0.0197 0.1183 0.6338
RES 2.87E-7 9.83E-7 9.95E-7 8.71E-7  9.56E-7
IT 5 6 6 7 7
GMGS CPU 0.0012 0.0035 0.0134 0.0902 0.3350
RES 8.64E-7 1.52E-7 3.94E-7 590E-8 149E-7
o' 1.6 1.1 1.2 1.3 1.4
IT 3 5 5 5 5
GMSOR CPU 0.0005 0.0028 0.0156 0.0502 0.2494
RES 391E-7 7.28E-7 6.02E-7 5.04E-7 4.09E-7
(a,p) (1.6,1.6) (1.5,1.6) (2.0,1.5) (09,14) (1.3,14)
IT 3 3 4 5 5
GMAOR CPU 0.0004 0.0016 0.0094 0.0575 0.2558
RES 391E-7 2.79E-7 3.54E-7 3.59E-7 7.11E-7
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Table 6. Numerical results for Experiment 2 with y = 1.

n
900 3600 14400 57600 230400
IT 6 7 7 8 8
MM CPU 0.0037 0.0148 0.0708 0.3984 2.2429
RES 4.38E-7 1.33E-7 5.59E-7 1.57E-7 6.33E-7
IT 7 7 8 8 9
MGS CpU 0.0019 0.0034 0.0146 0.0795 0.4032
RES 1.31E-7 5.82E-7 2.05E-7 8.36E-7 2.85E-7

Methods

a 1.5 1.8 1.5 1.7 1.4
IT 5 5 6 6 7
MSOR CPU 0.0007 0.0024 0.0132 0.0602 0.3247
RES 7.39E-7 9.00E-7 6.03E-7 8.29E-7 9.41E-7
(o, (1.3,1.8) (1.8,1.8) (1.3,1.7) (1.7,1.6) (1.3,1.6)
MAOR IT 5 5 6 6 7

CPU 0.0008 0.0026 0.0126 0.0632 0.3491
RES 9.55E-7 9.00E-7 8.74E-7 9.99E-7  8.05E-7
IT 5 5 6 6 7
GMGS CPU 0.0011 0.0028 0.0137 0.0631 0.347
RES 1.30E-7 6.72E-7 1.03E-7 4.32E-7 6.02E-8
a 1.1 0.6 1.1 1.2 1.1
IT 4 5 5 5 6
GMSOR CPU 0.0006 0.0028 0.0116 0.0523 0.3078
RES 591E-7 3.37E-7 243E-7 5.59E-7 7.39E-8
(o,p) (0.7,0.1) (0.7,0.2) (0.8,0.2) (0.7,0.2) (0.7,0.2)
IT 3 3 3 4 4
GMAOR CPU 0.0005 0.0019 0.0067 0.0442 0.1899
RES 6.57E-7 4.48E-7 7.09E-7 5.72E-9  1.30E-8

4.3. Discussions

It has been verified that the proposed GMMS iteration methods including GMGS, GMSOR and
GMAOR are much more efficient than that conventional MMS based methods. The performance is
improved in both the running time and the iteration steps. The effectiveness of the proposed methods
were proved regardless the status of symmetry for the system matrix.

In particular, GMGS method can converge without a need for @ and 8 optimization such as in
GMSOR and GMAOR, but with a slight increase in iteration steps. This implies that it might be more
useful in practice. Compared with the conventional methods, the three proposed methods involve two
scalar matrices rather than one, this added complexity to make a choice in the computation. However,
the benefit from the proposed methods weighs out the cost.
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5. Conclusions

For solving QCP (1.1), the general modulus-based matrix splitting iteration method including
GMGS, GMSOR, GMAOR are proposed. They are analogy to the MMS methods but with a better
convergence rate. Two experiments have been performed to verify the effectiveness of the proposed
methods considering the factor of symmetry condition of the system matrix. It is indicated that the
methods are more efficient for all three indicators. It was proven that the more stringent conditions
for the H-compatible splitting employed in the classic methods are relaxed to a simpler one, i.e., H-
splitting. GMGS method can converge without requiring optimization on the parameters @ and S,
which is considered to be more useful in practice.
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