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Abstract: The aim of this paper is to propose a novel Noor iteration technique, called the CT-iteration
for approximating a fixed point of continuous functions on closed interval. Then, a necessary and
sufficient condition for the convergence of the CT-iteration of continuous functions on closed interval
is established. We also compare the rate of convergence between the proposed iteration and some other
iteration processes in the literature. Specifically, our main result shows that CT-iteration converges
faster than CP-iteration to the fixed point. We finally give numerical examples to compare the result
with Mann, Ishikawa, Noor, SP and CP iterations. Our findings improve corresponding results in the
contemporary literature.
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1. Introduction

Fixed point theory takes a large amount of literature, since it provides useful tools to solve many
problems that have applications in different fields like engineering, economics, chemistry and game
theory etc. Iterative methods are popular tools to approximate fixed points of nonlinear mappings.
In computational mathematics, it is of vital interest to know which of the given iterative procedures
converge faster to a desired solution, commonly known as the rate of convergence. Thus, when
studying an iterative procedure, we should consider two criteria which are the faster and the simplify.
In this direction, some of notable studies were conducted by Mann, Ishikawa, Noor, Phuengrattana
and Suantai, Cholamjiak and Pholasa (see [1-5]). In addition, the fixed point mappings were studied
as much as studies on the iterative methods. Different varieties of these mappings are available
in the literature. The well known of them, are contraction mappings, nonexpansive mappings and
Lipschitzian mappings, and these are the continuous ones. Therefore, in this study, we handle the
general mapping which is a class of continuous mapping.

Let C be a closed interval on the real line and let f : C — C be a continuous function. A point
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p € C is called a fixed point of f if f(p) = p.
Now, we will consider some of these schemes related to this work. Mann [1] introduced Mann
iteration, which generates a sequence {u,} as follows :

Upy1 = (1 - a'n)un + a’nf(un) (11)

for all n > 1, where @, € [0,1]. Such an iteration process is known as Mann iteration. In 1991,
Borwein and Borwein [6] proved the convergence theorem for a continuous function on the closed and
bounded interval in the real line by using iteration (1.1).

Another classical iteration process was introduced by Ishikawa [2] which is formulated as follows:

t, = (1 _,Bn)sn +;8nf(sn)’
Sp+l = (1 - an)sn + a'nf(tn) (12)

for all n > 1, where {e,} and {$,} are sequences in [0,1]. Such iterative method is called Ishikawa
iteration. In 2006, Qing and Qihou [7] proved the convergence theorem of the sequence generated by
iteration (1.2) for a continuous function on the closed interval in the real line (see also [8]).

In 2000, Noor [3] defined the following iterative scheme by /; € C and

m, = (1 - ,un)ln + ,unf(ln)’
Vo = (1 _ﬁn)ln +ﬁnf(mn)a
bivi = (I=a)l, + anf(vn) (1.3)

for all n > 1, where {«,}, {8,} and {u,} are sequences in [0,1], which is called Noor iteration [3] for
continuous functions on an arbitrary interval in the real line. Clearly, the Mann and Ishikawa iteration
processes are special cases of the Noor iteration process. Because of its simplicity, the method (1.3)
has been widely utilized to solve the fixed point problem, and as a result, it has been enhanced by many
works, as seen in [9-12].

In 1976, Rhoades [13] proved the convergence of the Mann and Ishikawa iterations for the class
of continuous and nondecreasing functions on unit closed interval. After that in 1991, Borwein and
Borwein [6] obtained the convergence result to Mann iteration for continuous functions on a bounded
closed interval. Qing and Qihou [7] extended results in [6] to an arbitrary interval and to Ishikawa
iteration and presented a necessary and sufficient condition for the convergence of Ishikawa iteration
of continuous functions on an arbitrary interval (see also [8]). There are many articles have been
published on the iterative methods using for approximation of fixed points of nonlinear mappings, see
for instance [1-3, 6-8, 13]. However, there are only a few articles concerning comparison of those
iterative methods in order to establish which one converges faster. As far as we know, there are two
ways for comparison of the rate of convergence. The first one was introduced by Berinde [14]. He used
this idea to compare the rate of convergence of Picard and Mann iterations for a class of Zamfirescu
operators in arbitrary Banach spaces. Popescu [15] also used this concept to compare the rate of
convergence of Picard and Mann iterations for a class of quasi-contractive operators. It was shown
in [16] that the Mann and Ishikawa iterations are equivalent for the class of Zamfirescu operators. In
2006, Babu and Prasad [17] showed that the Mann iteration converges faster than the Ishikawa iteration
for this class of operators. Two years later, Qing and Rhoades [18] provided an example to show that
the claim of Babu and Prasad [17] is false. However, this concept is not suitable or cannot be applied
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to a class of continuous self-mappings defined on a closed interval. In order to compare the rate of
convergence of continuous self-mappings defined on a closed interval, Rhoades [13] introduced the
other concept which is slightly different from that of Berinde to compare iterative methods which one
converges faster as follows.

Definition 1. ( [13]) Let C be a closed interval on the real line and let f : C — C be a continuous
mapping. Suppose that {x,} and {w,} are two iterations which converge to the fixed point p of f. Then
{x,} is said to converge faster than {w,} if

|xn_p| < |Wn _p|

foralln > 1.

Phuengrattana and Suantai [4] introduced and studied the SP-iteration as follows: #; € C and

€, = (1 - ,un)hn + /lnf(hn)a
dn = (1 _ﬁn)en +:8nf(en)’
hn+1 = (1 - an)dn + anf(dn) (14)

for all n > 1, where {a,}, {8,} and {u,} are sequences in [0,1]. They showed that (1.4) converges to a
fixed point of f. Moreover, the rate of convergence is better than those of Mann (1.1), Ishikawa (1.2)
and Noor (1.3) in the sense of Rhoades [13].

Clearly Mann iteration is special cases of SP-iteration. Some interesting results concerning fixed
point theory of continuous functions can be found in [19].

Recently, by combining the SP-iteration and Noor iteration, Cholamjiak and Pholasa [5] proposed
the CP-iteration as follows: w; € C and

rn = (1 - :un)wn + ,unf(wn),
qdn = (1 —Tn _ﬂn)wn + Tyl +ﬁnf(rn)»
Wil = (1 —Yn— a’n)rn + Vndn + Can(CIn) (15)

foralln > 1, where {«,}, {8,}, {t.}, {T,,} and {y,.} are sequences in [0, 1]. They proved some convergence
theorems of such iterations for continuous functions on an arbitrary interval. Also, they compared the
rate of convergence of Mann, Ishikawa, Noor and CP iterations by numerical examples and concluded
that CP-iteration converges faster than all of them.

Inspired and motivated by these facts, we introduce and study a new accelerated iteration process
for solving a fixed point problem for continuous function on an arbitrary interval in the real line. The
scheme is defined as follows.

Let C be a closed interval on the real line and f : C — C given mapping. Then for an arbitrary
x; € C, the following iteration scheme is studied:

in = (1 - ,un)xn + ,unf(-xn)a
Yn = (1 —Tn _ﬂn)xn + Tnf(xn) +ﬂnf(zn)a
X1 = (1= Yn — @)z, + ')/nf(zn) + a’nf(yn)’ n>xl, (16)
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where, {a,}, {8,.}, {t.}, (v} and {7,} are appropriate real sequences in [0, 1]. The iterative scheme (1.6)
is called the CT-iteration for continuous functions.

The first purpose of this article is to give a necessary and sufficient condition for the strong
convergence of the CT-iteration of continuous functions on an arbitrary interval. The second purpose
is to improve the rate of convergence compared to previous work. Specifically, our main result shows
that CT-iteration converges faster than CP-iteration to the fixed point. Numerical examples are also
presented to compare the result with Mann, Ishikawa, Noor, SP and CP iterations. Consequently, we
have that CT-iteration converges faster than the other schemes in the same category.

2. Convergence theorem

In this section, we provide the convergence theorem of CT-iteration (1.6) for continuous functions
on an arbitrary closed interval. Now, we will give some crucial lemmas for proofs of our main results.

Lemma 1. Let C be a closed interval on the real line (can be unbounded) and let f : C —
C be a continuous functton Let { a/n {Bnts i), {yn} and {t } be sequences in [0,1] such that

Za/,,—oo llma/,,—O Zﬁn<oo Z,un<oo Zyn<ooand27n<oo From an arbitrary initial

n=1 n=1

guess x, € C, define the sequence {xn} usmg (].6). Ifx,l - a, then a is a fixed point of f.

Proof. Let x, — a, and suppose a # f(a). Then {x,} is bounded. So, {f(x,)} is bounded by the
continuity of f. So are {y,}, {z.}, {f(y»)} and {f(z,)}. Moreover, z, — a since x, — a and y, — 0. We
also have y, — a since x,, — a, ﬁ,, — 0 and 7, — 0. From (1.6), we get

Xn+l = (1 —Yn— an)zn + 7nf(zn) + anf(yn)
= Zn + Vu(f(z0) = 20) + @u(f (V) — 20)- (2.1)

Let pr = f(zx) — zk, g = f (k) — zx- Then, we have

,}1_{{)10 Pk = gi_{g(f(zk) —21) = f(a)—a #0,
]}1_{?0 qr = ]}i_glo(f()’k) -z) = fa) —a #0.

From (2.1) we get

~
S
I

2+ ) nf@) -0+ ) alfow) - 20
k=1 k=1

n n
71+ Z YiPr t Z 0777] 8
k=1 k=1

It is worth noting here that Z ViPr < o0 since gim pr # 0 and Zyk < oo, This shows that {x,} is
=1 ® =1

a divergent sequence since I}im qr # 0 and Z a; = oo. This contradicts to the convergence of {x,}.
—00

k=1
Hence f(a) = a and a is fixed point of f. O
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Lemma 2. Let C be a closed interval on the real line (can be unbounded) and let f : C —

C be a continuous functlon Let { an B}, {unt, Ly} and {T,,} be sequences in [0,1] such that
Za/,, = o0, 11m a, =0, Z,Bn < 00, Z,u,, < 00, Zyn < 00 andZ‘rn < oo. From an arbitrary initial
n=1 n=1 n=1 n=1 n=1

guess x, € C, define the sequence {x,} using (1.6). If {x,} is bounded, then {x,} is convergent.

Proof. Suppose {x,} is not convergent. Let a = liminf, x, and b = limsup, x,. Then a < b. We first
show that if @ < m < b, then f(m) = m. Suppose f(m) # m. Without loss of generality, we suppose
f(m) —m > 0. Since f is continuous, there exists 6 with 0 < 6 < b — a such that for |[x — m| < 0,
f(x) — x > 0. By continuity of f and {x,} is bounded we have that {f(x,)} is bounded, so {z,}, {y.},
{f(z,)} and {f(y,)} are bounded sequences. Using

Xn+l — Xp = (1 ~—Yn— Q’n)(Zn - xn) + Yn(f(zn) - xn) + a’n(f(yn) - xn)9
Vo= Xn = To(f(xn) = X) + Bu(f(20) — Xn),
in—Xn = ,un(f(xn) - xn)7

we can easily show that |z, — x,| = 0, |y, — x,| = 0 and |x,,; — x,| — 0. Thus, there exists a positive
integer N such that

) o) )
n _n<_a n_n<_, n_n<_,v >N- 22
%41 = X 2Iy Xnl 2Iz Xp| 5 n (2.2)
Since b = limsup, x, > m, there exists k; > N such that Xng, > M. Let ny, = k, then x; > m. For x;,

there exist two cases as follows:

1) xy>m+ %, then x;.1 > x;, — g > musing (2.2). So, we have x;,; > m.

(ii)m<xk<m+g,thenm—g <yk<m+6andm—§ < zx < m+ 6 by (2.2). So, we obtain

lx —ml < § < 6,lyx —ml <6,z —ml < 6. Hence

S = x>0, fu) =y >0, f(z) —z > 0. (2.3)

In addition,

yi—z = (=7 =B — z) + T(f () — z1)

+Bi(f (zi) — z1)

= (I =7 = B — z) + 7(f (X)) — x1)
+7r(x — zi) + Bi(f (2e) — 21)

= (1 =B0x — z) + 7(f (1) — %)
+Bi(f (i) — z1)

= (I = Buu(xe = f(x)) + 7 (f (xi) — xi)
+Bi(f (z1) — z0)- (2.4)

From (2.1), (2.3) and (2.4), we have

2 + Vil f (zi) — zi) + a(f ) — )
X+ pi(f ) = x) + v (f (@) — z0) + a(f ) — yi) + @y — 2x)

Xk+1
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= X+ u(f ) = x) + ve(f (20 — z) + a(f () = yi)
+a(—(1 = B (f (xx) — x1) + T(f () — xi) + Bi(f(21) — )

= X+ m(f ) — x) + vi(f (@) — 20 + e FOn) — yi)
=i (1 = B (f () — xi) + artie(f () — xi) + awBi(f (i) — 1)

= x+ (1 = a1 = B (k) — xi) + Yi(f (z0) — zi) + a(f ) — i)
+au T (f () — x0) + anBi(f (2) — 1)

= X+ (1 = ax + aB(f () — x0) + vi(f (@) — z1) + a(f ) = yi)

+arTi(f (xx) — xi) + arBi(f(zx) — 2x)
> Xg.

Thus x4 > x; > m. This together with (i) and (i1), imply x;,; > m. Similarly, we get that x;., > m,
Xg3 > m, ... Thus we have x, > m for alln > k = ny,. So a = lim;_, x,, > m, which is a contradiction
with a < m. Thus f(m) = m.

We next consider the following two cases.
(i) There exists x), such that a < xp; < b. Then f(xy) = x). It follows that

2y = (U= mp)xm + pe f(Xpr) = Xy

and
yu = =71y =PBw)zu +7uf(xn) + Buf(zm)
= (I =1y = Bm)xm + i f(xp) + B f(Xnm)
= Xum.
It follows that
Xy = A —yu—amzm +ymfam) + aufu)
= (I =—my—ymxu +ymfpm) + apf(xy)
= Xum.
Similarly, we obtain xy; = Xxp41 = Xp42 = ... It clear that x,, — x),. Since there exists x,, — a, xy = a.

This shows that x,, — a, which is a contradiction.
(ii) For all n,x, < a or x, > b. Since b —a > 0 and lim |x,,; — x,| = O, there exists N such that
n—o0

X1 — Xl < &2 forn > N. So, it is seen that x, < a for n > N, or it is always that x, > b forn > N.
If x, < aforn > N, then b = lim x,, < a, which is a contradiction with a < b. If x,, > b forn > N,

j—ooo

then a = ]}im Xu, = b, which is a contradiction with a < b. Thus we conclude that x,, — a. The proof is
completed. O

We are now ready to prove the main theorem.

Theorem 1. Let C be a closed interval on the real line (can be unbounded) and let f : C —
C be a continuous function. Let {a,},{B.}, {.}, {y.} and {t,} be sequences in [0, 1] such that
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Zan = o0, hm a, =0, Zﬁn < 00, Z,u,, < 0o, Zy,, < 00 andZT,, < oo. From an arbitrary initial
guess x1 € C, define the sequence {xn} usmg (1.6 ) Then {x,} is bounded if and only if it converges to a
fixed point of f .

Proof. Sufficiency is obvious. It suffices to show that if {x,} is bounded, then {x,} converges to a fixed
point. Let {x,} be a bounded sequence. Using Lemma 2, we have {x,} is a convergent sequence. Hence,
by Lemma 1, it converges to a fixed point of f. O

When C = [a, b] in Theorem 1, we obtain the following result.

Corollary 1. Let f : [a,b] — la,b] be a continuous function. Let {a,}, {8}, {u.},{y.} and {T,} be
sequences in [0, 1]. Let {x,} be a sequence generated iteratively by x, € [a, b] and

in = (1 - /Jn)xn + ,unf(xn)a
Yn = (1 —Tn _ﬁn)xn + Tnf(xn) +ﬁl’lf(zl’l)a
Xn+yl = (1 —Yn— a’n)Zn + ’)/nf(zn) + a’nf(yn)9 nx>1,

whereZan_oo hma/,,—O Z/g’n<oo Z,un<oo Zyn<ooandZTn<oo

Then {xn} converges to a fixed pomt of f.
3. Rate of convergence

In this section, we compare the convergence rate of (1.6) with the CP-iteration proposed in [5]. We
show that the CT-iteration (1.6) converges faster than the CP-iteration (1.5) for the class of continuous
nondecreasing functions on an arbitrary interval in the sense of Rhoades [13].

We next prove some crucial lemmas which will be used in the sequel.

Lemma 3. Let C be a closed interval on the real line and let f : C — C be a continuous and
nondecreasing function. Let {a,},{B,}, {u.}, {v.} and {T,} be sequences in [0, 1). Let {w,} and {x,} be
sequences defined by (1.5) and (1.6), respectively. Then the following hold:

(i) If f(wy) < wy, then f(w,) <w, foralln > 1 and {w,} is nonincreasing.

(ii) If f(wy) > wy, then f(w,) > w, for all n > 1 and {w,} is nondecreasing.

(iii) If f(x1) < x3, then f(x,) < x, for all n > 1 and {x,} is nonincreasing.

(iv) If f(x1) > xy, then f(x,) > x,, for all n > 1 and {x,} is nondecreasing.

Proof. (i) Let f(w;) < w;. Then f(w;) < r; < wy. Since f is nondecreasing, we have f(r;) < f(w;) <
ri < wy. This implies f(r;) < ¢ < wy. Thus f(q;) < f(wy) < r; < wy. For g;, we consider the
following two cases.

Case 1: f(ry) < g1 < ry. Then f(q) < f(r1) < q1 < r; < wy. This implies f(g;) < w, < wy. Thus
fwo) < f(wy) <rp < wy. It follows that if f(g;) < wy < gy, then f(wy) < f(q1) <wa,if g1 <wy <1y,
then f(w,) < f(r)) < g1 < wp and if r; < wy, < wy, then f(w;) < f(w;) < r; < w,. Thus we have
Jwa) <ws.
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fwy) < fwy) < rp < g1 < wy. It follows that if f(g;) < w, < g, then f(w;) < f(q1) < w, and if
q1 < wy < wy, then f(w,) < f(wy) < g1 < wy. Hence, we have f(w,) < w,.

In conclusion by Case 1 and Case 2, we have f(w,) < w,. By continuing in this way, we can show
that f(w,) < w, for all n > 1. This implies r,, < w, for all » > 1. Since f is nondecreasing, we have
f(ry) < fw,) <w, foralln > 1. Thus g, < w, forall n > 1, then f(q,) < f(w,) <w, foralln > 1.
Hence, we have w,,; < w, for all n > 1, that is {w,} is nonincreasing.

(i) By using the same argument as in (i), we obtain the desired result.

(iii) Let f(x;) < x;. Then f(x;) < z; < x;. Since f is nondecreasing, we have f(z;) < f(x;) <z <
x1. This implies f(z;) < y; < xy. Thus f(y;) < f(x1) < z; < x;. For y;, we consider the following two
cases.

Case 1: f(z1) < y1 < z1. Then f(y;) < f(z1) < z1 < x;. It follows that if f(y;) < x, < yy,
then f(x2) < f(y1) < xp, if y1 < xp < 7y, then f(x2) < f(z1) < y1 < x and if 71 < x < xy, then
f(x2) < f(x1) < 71 < x,. Thus we have f(x;) < x;.

Case 2: z;7 < y; < x1. Then f(y;) < f(x1) < z1 < x;. This implies f(y;) < x, < x;. Thus
f(x) < f(x1) < z1 <y £ xp. It follows that if f(y;) < x, < yy, then f(x) < f(y1) < x; and if
y1 < X2 < x1, then f(x;) < f(x1) < y; < x2. Hence, we have f(x;) < x,.

In conclusion by Case 1 and Case 2, we have f(x;) < x,. By continuing in this way, we can show
that f(x,) < x, for all n > 1. This implies z, < x, for all » > 1. Since f is nondecreasing, we have
f(z) < f(x,) < x, foralln > 1. Thus y, < x, forall n > 1, then f(y,) < f(x,) < x, foralln > 1.
Hence, we have x,,; < x, for all n > 1, that is {x,} is nonincreasing.

(iv) Following the proof line as in (iii), we obtain the desired result. O

Case 2: r1 < g < wy. Then f(q1) < f(wy) < r; < wy. This implies f(q;) < wy < w;. Thus

Lemma 4. Let C be a closed interval on the real line and let f : C — C be a continuous and
nondecreasing function. Let {a,},{B,}, {u.}, {v,} and {1,} be sequences in [0,1). For w, = x; € C, let
{w,} and {x,} be sequences defined by the CP-iteration (1.5) and CT-iteration (1.6), respectively. Then
the following are satisfied:

(i) If f(wy) < wy, then x, < w, foralln > 1.

(ii) If f(wy) > wy, then x, > w, foralln > 1.

Proof. (i) Let f(w;) < wy. Then f(x;) < x; since w; = x;. From (1.6), we get f(x;) < z; < x;. Since
f is nondecreasing, we obtain f(z;) < f(x;) < z; < x;. Hence f(z;) < y; < z;. Using the CP-iteration
(1.5) and CT-iteration (1.6), we obtain the following estimation:

zi —r =1 =) = wy) + i (f(xr) = fwr)) = 0.
So, z; = r, and so

yi—qi =0 -7 =) —wp) +7(f(x1) —r) + B1(f(z1) = f(r1)) < 0.
Hence, we have y; < ¢g;. Since f is nondecreasing, we have f(y;) < f(q;). We next obtain

X —=wy ==y —a)(z —r) +yi(f() —q) +a(f(y) — flg) <0,
S0, X < w,. Assume that x; < wy. Thus f(x;) < f(wy). From Lemma 3 (i) and Lemma 3 (iii), we get
JFw) < wi and f(x) < x. It follows that f(x;) < zx < xx and f(zx) < f(xx) < zx. Thus

Ze = e = (I = ) — wi) + i (f () — f(wg)) < 0.
So, z;x < ri. Since f(zx) < f(rr), we have

Vi = g = (1= 7 = Bi)(xx — wi) + To(f(xe) — ) + Bi(f(zx) — f(re)) < 0,
S0, Yk < qx, Which yields f(yx) < f(qi). In addition, f(z;) < f(xx) < zx < X, using (1.6), we have
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F@) =y = A =7 = B)(f(z) — x) + 7 f (@) — fa)) + Be(f (i) — f(z) < 0.
So, f(zi) = qr = (f(z) = yi) + (k — qr) < 0.
This shows that
X1 = Wie1 = (1 =y — @)@ — r) + vi(f (@) — qi) + a(f ) = f(qi)) <0,
which gives, x;,1 < wiy. By induction, we conclude that x, < w, for all n > 1.
(if) From Lemma 3 (ii), Lemma 3 (iv) and the same argument as in (i), we can show that x,, > w,
foralln > 1. O

For convenience, we write algorithm (1.6) by CT (xy, @, Bn, Uns V> Tns f)-

Proposition 1. Let C be a closed interval on the real line and let f : C — C be a continuous
and nondecreasing function such that F(f) is nonempty and bounded with x, > sup{p € C : p =
f(p)}. Let {a,}, {6}, {un}, {vn} and {t,} be sequences in [0,1). If f(x1) > xi, then {x,} defined by
CP(x1, @, By s V> Tns f) and CT (xy, @y, Bus tns Vn» Tns [) do not converge to a fixed point of f.

Proof. From Lemma 3 ((ii), (iv)), we know that {x,} is nondecreasing. Since the initial point x; >
sup{p € C : p = f(p)}, it follows that {x,} does not converge to a fixed point of f. |

Proposition 2. Let C be a closed interval on the real line and let f : C — C be a continuous
and nondecreasing function such that F(f) is nonempty and bounded with x; < inf{p € C : p =
f(p)}. Let {a,}, Bn}, {a), {yn) and {t,} be sequences in [0,1). If f(x;) < xi, then {x,} defined by
CP(x1, @, Bus Mus Vs Tn,f) and CT(xy, @, B, ns> Vns Ty ) do not converge to a fixed point of f.

Proof. From Lemma 3 ((i), (iii)), we know that {x,} is nonincreasing. Since the initial point x; <
inf{p € C : p = f(p)}, it follows that {x,} does not converge to a fixed point of f. O

Next, we compare the rate of convergence of CT-iteration with CP-iteration.

Theorem 2. Let C be a closed interval on the real line and let f : C — C be a continuous and
nondecreasing function such that F(f) is nonempty and bounded. Let {a,},{B,},{u.}, {v.} and {1,} be
sequences in [0, 1). For w; = x; € C, let {w,} and {x,} be sequences defined by the CP-iteration (1.5)
and the CT-iteration (1.6), respectively. If the CP-iteration {w,} converges to p € F(f), then the CT-
iteration {x,} converges to p. Moreover, the CT-iteration (1.6) converges faster than the CP-iteration
(1.5).

Proof. Assume that the CP-iteration {w,} converges to p € F(f). Put L = inf{p € C : p = f(p)} and
U =sup{p € C: p= f(p)}. For w; = x;, we devide our proof into the following three cases:

Casel: wy =x;>U,Case2: wy =x;<L,Case3: L<w; =x; <U.

Case 1: w; = x; > U. By Proposition 1, we get f(w;) < w; and f(x;) < x;. So, by Lemma 4 (i),
we have x, < w, for all » > 1. By induction, we can show that U < x, for all n > 1. Then, we have
0 <x,—-p <w,— p, which yields |x, — p| < |w, — p| for all n > 1. This shows that x, — p. By
Definition 1, we conclude that the CT-iteration {x,} converges faster than the CP-iteration {w,}.

Case 2: w; = x; < L. By Proposition 2, we get f(w;) > w; and f(x;) > x;. This implies, by Lemma
4 (ii), that x, > w, for all n > 1. So, by induction, we can show that x,, < L for all n > 1. Then, we
have |x, — p| < |w, — p| for all n > 1. It follows that x, — p and the CT-iteration {x,} converges faster
than the CP-iteration {w,}.
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Case 3: L < w; = x; < U. Suppose that f(w;) # wy. If f(w;) < wy, we have, by Lemma 3 (i),
that {w,} is nonincreasing with limit p. Lemma 4 (i) gives p < x,, < w, for all n > 1. It follows that
|x, — p| < |w, — p| for all n > 1. Therefore x, — p and the result follows. If f(w;) > wy, by Lemma 3
(i7) and Lemma 4 (ii), then we can also show that the result holds. O

4. Numerical examples

In this section, some numerical examples are given to demonstrate the convergence of the algorithm
defined in this paper. For convenience, we call the iteration (1.6) the CT-iteration.

Example 1. f : [-1,4] — [-1,4] defined by f(x) = "3?—’9‘_3. The fixed point of the function is p =
—0.166925066. Initial point is x; = 4 and control conditions are @, = m, Bn = W, Hn =

1 1 1 . . .. —
i Yn = oS and T, = TTUNER The stopping criteria is |x, — p| < 1078,

Example 2. f : [l,o0] — [l,00] defined by f(x) = x"3 — (+/log(x+9)—1)> The

fixed point of the function is p = 1. Initial point is x, = 9 and control conditions are

- 1 - 1 _ 1 _ 1 _ 1 . e
Uy = Grose Bn = G0 Mn = Grer Yn = i and T, = TR The stopping criteria is
Ix, — p| < 1075

Tables 2 and 4 confirm that the proposed method performs favorably with rapid convergence and
Tables 1, 3, Figures 1, 2, 3 and 4 show the behavior of six comparative methods consisting of Mann
iteration, Ishikawa iteration, Noor iteration, CP-iteration, SP-iteration and CT-iteration in converging
to the fixed point of the numerical experiments. The results of the both examples indicates that the CT-
iteration converges faster than the other methods. Even though the initial points are differently selected
as shown on Figures 2 and 4, the convergence of CT-iteration still be better than other methods. The
effect of initial point being close to or far from p is not observed from these examples. The control
sequnces {a@,}, {B.}, {1}, {7y} and {7,,} of the examples are chosen to satisfy on conditions with Corollary
1. The option of sequences is flexible for user application. However, the optimal chioce of them is an
open problem to investigate.
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Table 1. Mann, Ishikawa, Noor, CP, SP and CT iterations for f(x) =

C+x=3

19

n Mann Ishikawa Noor CP SP CT-iteration
Up Sn Iy Wy I Xy lx, — pl

1 4 4 4 4 4 4 4.1669251
5 1.3932393  0.7533402  0.6286365 0.451696663  0.2932282  0.0012006 0.1681257
10 0.0461983  -0.0497313 -0.0662004 -0.090005411 -0.1191936 -0.1529447 0.0139804
15 -0.1207432  -0.1415242  -0.1450865 -0.150271594 -0.1573078 -0.1643412 0.0025839
20 -0.1538461 -0.1597323 -0.1607405 -0.162211234 -0.1643099 -0.1662565 0.0006686
25 -0.1625577 -0.1645237 -0.1648603 -0.165351661 -0.1660745 -0.1667147 0.0002104
30 -0.1652901 -0.1660262 -0.1661522 -0.166336214 0.1666125 -0.1668496  0.0000755
35 -0.1662585 -0.1665587 -0.1666100 -0.166685055 -0.1667994 -0.1668953  0.0000298

No. of 133 126 124 ell9 113 97
iterations

Table 2. The sequences generated by CT-iteration for given x;= -0.3, -0.2, -0.1, 0, 0.1, 1, 2
and 3 in Example 1.

%, = pl
n Initial points were close to p Initial points were far from p
x1=-0.3 x1=-0.2 x;=-0.1 x=0 x;=0.1 xi=1 x1=2 x=3
1 0.1330749 0.0330749 0.0669251 0.1669251  0.2669251 | 1.1669251 2.1669251  3.1669251
5  0.0001234 321x10~° 6.72x107  0.0001716  0.0002780 | 0.0008025 0.0023414  0.0209243
10 1.03x1075  2.71x10° 5.58x107%  1.43x107> 2.31x107° | 6.70x107>  0.0001956  0.0017466
15 1.93x10%  529x1077  1.01x10° 2.61x10°% 4.26x107° | 1.23x10>  3.61x107>  0.0003229
20 526x107  1.61x1077  235x1077  6.52x1077  1.07x107% | 3.17x10° 9.38x107%  8.35x107°
25 1.88x1077  7.39x10%  5.10x107%  1.82x1077  3.16x1077 | 9.75x1077  2.97x10™°  2.63x107°
30 891x107%  4.80x10® 3.21x107° 4.38x10® 9.18x107® | 3.28x1077 1.08x10° 9.45x107¢
35 5.54x107%  1.43x10%  2.15x107®  3.00x10™° 1.59x107% | 1.09x1077 4.49x1077 3.75x107¢
AIMS Mathematics Volume 7, Issue 6, 10958—-10976.
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Figure 2. Convergence behaviors for given x;=-0.3, -0.2, -0.1,0, 0.1, 1, 2 and 3 in Example
1.
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Table 3. Mann, Ishikawa, Noor, CP, SP and CT iterations for f(x) = x*3—(/log(x +9) — 1)’

and x; = 9.
n Mann Ishikawa Noor CP SP CT-iteration
Uy Sn L, Wy hy, Xn |x, — pl

1 9 9 9 9 9 9 8

5 1.5901350 1.5674767 1.5674116 1.4934240 1.3822427 1.2214054 0.2214054
10 1.1277881 1.1222912  1.1222778 1.1071548 1.0795988 1.0458060 0.0458060
15 1.0423403 1.0404612 1.0404568 1.0355209 1.0259652 1.0148665 0.0148665
20 1.0170313 1.0162644 1.0162626 1.0142875 1.0103511 1.0059037 0.0059037
25 1.0077061 1.0073563 1.0073555 1.0064638 1.0046562 1.0026478 0.0026478
30 1.0037823 1.0036097 1.0036093 1.0031722  1.002276  1.0012913 0.0012913
35 1.0019726  1.0018822 1.0018820 1.0016542 1.0011834 1.0006701 0.0006701
40 1.0010788 1.0010292 1.0010291 1.0009046 1.0006457 1.0003650 0.0003650
45 1.0006131 1.0005849 1.0005849 1.0005141 1.0003663 1.0002068 0.0002068

No. of 124 123 123 121 116 108

iterations

Table 4. The sequences generated by CT-iteration for given x;= 1.5, 2, 2.5, 3, 3.5, 15, 40

and 70 in Example 2.
%, = pl
n Initial points were close to p Initial points were far from p
x=1.5 x=2 x=2.5 x=3 x1=3.5 x=15 x;=40 x1=70
1 0.5 1 1.5 2 2.5 14 39 69
5 0.0227557 0.0421025 0.0594148 0.0753317  0.0902155 | 0.3361598 0.7234206  1.1203709
10 0.0048476  0.008938  0.0125785 0.0159083  0.0190081 | 0.0685687  0.1417523  0.2124014
15 0.0015833 0.0029173  0.0041027  0.0051859  0.0061934 | 0.0221860  0.0454512  0.0675607
20 0.0006301 0.0011607 0.0016320 0.0020625 0.0024627 | 0.0088014 0.0179776  0.0266527
25 0.0002829 0.0005210 0.0007325 0.0009256 0.0011051 | 0.0039458  0.0080498 0.0119216
30 0.0001380 0.0002542  0.0003573  0.0004515 0.0005391 | 0.0016798 0.0039226  0.0058065
35  7.16x1075  0.0001319  0.0001854  0.0002343  0.0002798 | 0.0009983  0.0020349  0.0030114
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Next, we will consider on the rate of convergence between the CT-iteration and the algorithm
defined in this paper. The Definition 1 will be used to indicate the rate of convergence in the numerical
aspects and results are scoped only on the Example 1 and Example 2.

We also give a graphic to compare the rates of convergence of the iterations mentioned in Example
1 visually, as Figure 5.

096 —Ixn - pl/lun -pl -
08 Ixn - pI/Isn -pl |
Ixn - pI/Iln -pl
0.7+ B ) i
Ixn pI/Iwn pl
S 06k —IxrI - pI/Ihn -pl |
oF
= 05 4
e
T, 0.4 -
03 4
0.2 J
0.1 -
0 | | | | | |
0 10 20 30 40 50 60

Iterations Number(n)

Figure 5. Convergence comparison of sequence generated by Mann iteration (u,), Ishikawa
iteration (s,), Noor iteration (/,), CP-iteration (w,) and SP-iteration (4,) with CT-iteration
(x,) for Example 1.

We also give a graphic to compare the rates of convergence of the iterations mentioned in Example
2 visually, as Figure 6.

_Ixn - pI/Iun -pl
Ixn - pI/Is“ -pl
Ixn - pI/Iln -pl
Ixn - pI/Iwn -pl

—Ixn - pI/Ihn -pl

04 -

03 ! ! ! ! ! !
0 10 20 30 40 50 60

Iterations Number(n)

Figure 6. Convergence comparison of sequence generated by Mann iteration (u,), Ishikawa
iteration (s,), Noor iteration (/,), CP-iteration (w,) and SP-iteration (/,) with CT-iteration
(x,) for Example 2.
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Tables 5 and 7 show the absolute errors of Mann, Ishikawa, Noor, CP, SP and CT itertations of the
Example 1 and Example 2, respectively. Tables 6 and 8 show ratios between the absolute error of CT-
iteration and those of other methods and graphs of Tables 6 and 8 are represented on Figures 5 and 6.
Clearly, the graphs on both figures converge to constants less than 1. It indicates that the sequences of
absolute error of CT-iteration are less than those sequences of other methods. By Definition 1, we can
conclude that CT-iteration converges to the fixed point faster than other method. These results verify
the proof on the section 3 which show that CT-iteration converge faster than Mann, Ishikawa, Noor,
CP, and SP iterations.

Table 5. The rate of convergence of Mann, Ishikawa, Noor, CP, SP and CT iterations for
fx) = xﬁ—g* given in Example 1.

Mann Ishikawa Noor CP SP CT-iteration

n |t — pl s, — pl |1, — pl wn, = pl |h, — pl %, = pl

1 4.1669251 4.1669251 4.1669251 4.1669251 4.1669251 4.1669251

22 8.2979337E-03 4.5630635E-03 3.9235100E-03 2.6579550E-03  1.6397483E-03 4.1302723E-04
23 6.6660003E-03 3.6655020E-03 3.1517630E-03  2.1335990E-03  1.3103941E-03  3.2789365E-04
24 5.3826746E-03 2.9597038E-03 2.5448946E-03 1.7216513E-03  1.0529971E-03 2.6185811E-04
58  2.1520207E-05 1.1825202E-05 1.0168014E-05 6.8241504E-06  3.9132032E-06  8.7880715E-07
59 1.8878297E-05 1.0373410E-05 8.9196769E-06 5.9858026E-06  3.4293688E-06 8.7880712E-07
60 1.6580113E-05 9.1105165E-06 7.8337653E-06 5.2566342E-06  3.0089633E-06 6.7356212E-07

Table 6. Convergence comparison of sequences generated by Mann iteration, Ishikawa
iteration, Noor iteration, CP-iteration and SP-iteration with CT-iteration (see in Table 5) for
numerical experiment of Example 1.

Rate of convergence between two sequences

X, = P

[x, — pl

|un_p|

|Sn_p|

X, = P

[x, — pl

|xn - P|

|ln_p|

|Wn_p|

|hn_p|

1.0000
0.1077615
0.0655970
0.0511132
0.0461208
0.0434849
0.0418128
0.0406258

1.0000
0.1826927
0.1192918
0.0929416
0.0838958
0.0791196
0.0760882
0.0739361

1.0000
0.2113296
0.1387968
0.1080929
0.0975696
0.0920146
0.0884893
0.0859869

1.0000
0.2876608
0.2003645
0.1592907
0.1446444
0.1367792
0.1317378
0.1281362

1.0000
0.3653690
0.2928943
0.2556291
0.2412792
0.2331997
0.2278379
0.2238863
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Table 7. The rate of convergence of Mann, Ishikawa, Noor, CP, SP and CT iterations for

f(x) = x93 — ({/log(x + 9) — 1)* given in Example 2.

Mann Ishikawa Noor CP SP CT-iteration
n |un_p| |Sn_p| |ln_p| |Wn_p| |hn_p| |Xn_17|
1 8 8 8 8 8 8
35 1.9725555E-03  1.8822249E-03  1.8820245E-03  1.5884142E-03  1.1834264E-03 6.7014401E-04
36 1.7422239E-03  1.6623962E-03  1.6622192E-03  1.4029143E-03  1.0447074E-03  5.9139201E-04
37  1.5415695E-03 1.4708985E-03 1.4707419E-03 1.2413182E-03 9.2393975E-04  5.2285805E-04
86  1.4487895E-05 1.3817536E-05 1.3816066E-05 1.1662020E-05 8.5946173E-06 4.8221305E-06
87  1.3400554E-05 1.2780466E-05 1.2779106E-05 1.0786712E-05 7.9488484E-06 4.4593406E-06
88  1.2400552E-05 1.1826702E-05 1.1825443E-05 9.9817516E-06 7.3550156E-06 4.1257981E-06

Table 8. Convergence comparison of sequences generated by Mann iteration, Ishikawa
iteration, Noor iteration, CP-iteration and SP-iteration with CT-iteration (see in Table 7) for
numerical experiment of Example 2.

Rate of convergence between two sequences

|xn_p| l-xn_pl |xn_p| I-xn_pl |xn_p|

|un_p| |Sn_p| |ln_p| |Wn_p| |hn_p|

1 1.0000 1.0000 1.0000 1.0000 1.0000
S 03751776 0.3901578 0.3902026 0.4675022 0.5792274
10 0.3584529 0.3745653 0.3746062 0.4453414 0.5754611
20 0.3466405 0.3629859 0.3630247 0.4303450 0.5703508
40 0.3384200 0.3547035 0.3547413 0.4202962 0.5653881
60 0.3350960 0.3513080 0.3513454 0.4162480 0.5629381
80 0.3332460 0.3494062 0.3494434 0.4139888 0.5614158
100 0.3537939 0.3709719 0.3710114 0.4220645 0.5970553

5. Conclusions

In this article, the novel Noor iteration technique, called the CT-iteration is proposed for
approximating a fixed point of continuous functions on closed interval. The convergence theorems
are also established. The numerical examples comparing with Mann, Ishikawa, Noor, SP and CP
iterations are demonstrated. From Examples 1 and 2, we observe that the sequence generated by the

CT-iteration converges to a fixed point faster than Mann, Ishikawa, Noor, SP and CP iterations.
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