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Abstract: In this paper, we generate some non-classical variants of Julia and Mandelbrot sets, utilizing
the Jungck-Ishikawa fixed point iteration system equipped with s-convexity. We establish a novel
escape criterion for complex polynomials of a higher degree of the form zn + az2 − bz + c, where a, b
and c are complex numbers and furnish some graphical illustrations of the generated complex fractals.
In the sequel, we discuss the errors committed by the majority of researchers in developing the escape
criterion utilizing distinct fixed point iterations equipped with s-convexity. We conclude the paper by
examining variation in images and the impact of parameters on the deviation of dynamics, color and
appearance of fractals. It is fascinating to notice that some of our fractals represent the traditional
Kachhi Thread Works found in the Kutch district of Gujarat (India) which is useful in the Textile
Industry.
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1. Introduction

The Mandelbrot and Julia sets are celebrated graphics of a very complex chaotic system created
by a straightforward mathematical practice. Julia sets were explored in the early twentieth century by
French mathematician Gaston Maurice Julia [10] and a French mathematician and astronomer Pierre
Joseph Louis Fatou [9]. However, Mandelbrot sets were proposed by a Polish-born French-American
mathematician and polymath Benoit B. Mandelbrot [15] much later in the late 1970s. Mandelbrot
visualized the Julia sets for z2+c, while working at IBM. Later on, numerous mathematicians explored
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distinct characteristics of Mandelbrot and Julia sets and generalized these in different directions.
For instance, some generalizations of quadratic functions are anti-polynomials [5], transcendental
functions [7], elliptic functions [14], rational functions [27], and so on. The most natural and first
generalization is the function of the form zn + c which was utilized by Mandelbrot [15]. In 2004,
Rani and Kumar [30, 31] initiated the use of fixed point iteration process in the visualization of some
interesting fractals, by utilizing the Mann iteration process. Since then various iteration processes
have been exploited like Ishikawa iteration [17], Noor iteration [23], S-iteration [11], Jungck-Ishikawa
iteration [25], Jungck-Noor iteration [12], Jungck-CR iteration [34], Picard-Mann iteration with s-
convexity [32], Jungck-SP iteration with s-convexity [19], implicit iterative scheme [40], and so on.
Recently, Antal et al. [1] obtained interesting Julia sets of complex sine functions using celebrated
fixed point iterations.

The Julia and Mandelbrot sets are fascinating from both a mathematical as well as application
viewpoint having several applications in real life. In biology, fractals have been utilized to understand
the nerve fibbers pattern [28], the growth culture of micro-organisms (like Chlamydomonas, bacteria,
and amoeba) [13], and so on. In physics (in Fluid Mechanics), fractals have been utilized to understand
turbulent flows [33]. In telecommunication, fractals have been utilized to manufacture antennae [4].
In computer networking, fractals have been utilized in architectural models, radar systems, and so
on [24]. Some more applications are in computer graphics, dictionaries with domain blocks, image
encryption algorithms, and the arts (see [16,26,36]). Recently, Usurelu et al. [35] initiated two Newton-
like methods to provide necessary postulates for the convergence of the induced iterative procedures
and obtained visual investigations of some modified Thakur iteration processes, via polynomiographic
practices which are not the outcome of an artistic methodology but these graphics encode specific
mathematical data.

There are numerous conclusions related to characteristics of fractional order dynamic in physical
phenomena. For instance, heat transfer [2], a novel fractional order hydro-turbine-generator unit [39],
and so on. The fractional order system also finds applications in cellulose degradation [8], digital
cryptography [21], and so on. A modified DLA (diffusion-limited aggregation) model relying on a
fractional diffusion mechanism, provides a new dimension to modeling fractal growth [38], and so
on. A fractal simulation of flocculation processes utilizing the DLA model with different particle
numbers, launch radii, motion step lengths, and finite motion steps are also significant. These four
model parameters have a huge impact on the morphology and structures of the model parameters/the
DLA aggregates [20]. Flocculation is a significant procedure in the area of water and wastewater
treatment that may help in migrating, removing and transforming particulate matter in water. Recently,
Wang et al. [37] addressed the significant problem of the parameter estimation of the Julia set because
without knowing the precise system parameters, the existing theoretical results cannot be effectively
applied to applications areas.

In this work, we concentrate just on the visualization of Julia and Mandelbrot sets via Jungck-
Ishikawa fixed point iteration system with s-convexity. We establish a novel escape criterion for
complex polynomials of a higher-order of the form zn + az2 − bz + c, where a, b and c are
complex numbers. This polynomial is a slight modification of nth degree polynomial studied by
Jolaoso et al. [18] for the development of biomorphs. The motivation behind this is the fact that on
altering the iteration process the dynamics and behavior of the generated fractals are also altered, which
are significant from the graphical as well as applications point of view. Our theorems and corollaries
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are generalizations, enrichment, and sharpened versions of some existing conclusions. Towards the
end, we visualize aesthetic non-classical fractals and give concluding remarks to demonstrate the
significance of our conclusion.

2. Preliminaries

Definition 2.1. (Julia set [3, 10]) The set of all points in C for which the orbits do not converge to a
point at infinity is a filled Julia set of the polynomial p : C → C of degree ≥ 2 and we denote it by Fp,
that is,

Fp = {z ∈ C : {|p(zk)|}∞k=0 is bounded}.

The Julia set of p is the boundary of Fp, that is, Jp = ∂Fp.

Definition 2.2. (Mandelbrot set [6,15]) The Mandelbrot set M is the set of parameters c ∈ C for which
the filled Julia set Fpc of the polynomial pc(z) = z2 + c is connected, that is,

M = {c ∈ C : Fpc is connected}.

Equivalently

M =
{
c ∈ C : {|pc(zk)|}↛ ∞ as k → ∞

}
.

Nazeer et al. [22] utilized Jungck-Mann and Jungck-Ishikawa iterations with s-convexity to generate
Julia and Mandelbrot sets. If S ,T : C → C is two complex-valued maps so that the degree of T is
greater or equal to two and S is injective. Then sequence {zk} of iterates for any initial point z0 ∈ C,
u, v, s ∈ (0, 1], k = 1, 2, . . . , is known as:

(i) Jungck-Mann orbit (JMOs) with s-convexity if

S zk : S zk = (1 − u)sS zk−1 + usTzk−1.

Clearly, it is a function of four arguments (T, z0, u, s) and is a one-step feedback procedure.
(ii) Jungck-Ishikawa orbit (JIOs) with s-convexity if

S zk : S zk = (1 − u)sS zk−1 + usTyk−1,

S yk−1 = (1 − v)sS zk−1 + vsTzk−1.

Clearly, it is a function of five arguments (T, z0, u, v, s) and is a two-step feedback procedure.

Remark 2.1. The Jungck-Ishikawa orbit reduces to: Picard orbit [42] when S (z) = z, u = 1, v = 0
and s = 1; Mann orbit [41] when S (z) = z, v = 0 and s = 1; Ishikawa orbit [17] when S (z) = z and
s = 1; Jungck-Mann orbit with s-convexity [22] when v = 0.
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3. Escape time algorithm for the complex polynomials in Jungck-Ishikawa orbit

Motivated by numerous applications of complex polynomials in science and engineering, we
establish the escape time algorithm via Jungck-Ishikawa fixed point iteration system extended with
s-convex combination for complex polynomials of the type p(z) = zn + az2 − bz + c, where n ≥ 3
and a, b and c are complex numbers. We break the polynomial p(z) into two maps S and T so that
p(z) = Tz − S z, where S z is injective. Consequently, we establish a novel threshold escape radii and
utilize these to visualize some nonclassical variants of classical fractals in the following result.

Theorem 3.1. Let p(z) = zn + az2 − bz + c be a higher-order complex polynomial. Assume that z0 ∈ C,
|z0| ≥ |c| >

(
2(1+|b|)

su|(cn−2+a)|

)
and |z0| ≥ |c| >

(
2(1+|b|)

sv|(cn−2+a)|

)
, where 0 < u, v, s ≤ 1, and c is a complex parameter.

Define

S zk = (1 − u)sS zk−1 + usTyk−1,

where

S yk−1 = (1 − v)sS zk−1 + vsTzk−1,

where S z = bz is injective, Tz = zn + az2 + c is a higher-order polynomial, and k = 1, 2, 3, 4, 5, . . . .
Then the orbit of z0 tends to∞ as k tends to∞.

Proof. For k = 1,

S yk−1 = (1 − v)sS zk−1 + vsTzk−1

implies

|S y0| = |(1 − v)sS z0 + vsTz0|

= |(1 − v)sbz0 + vs(zn
0 + az2

0 + c)|.

Since v, s ∈ (0, 1], so vs ≥ sv, we get

|S y0| ≥ |(1 − v)sbz0 + sv(zn
0 + az2

0 + c)|
≥ |sv(zn

0 + az2
0) + (1 − v)sbz0| − sv|c|

≥ |sv(zn
0 + az2

0) + (1 − v)sbz0| − sv|z0|, |z0| ≥ |c|

≥ |sv(zn
0 + az2

0)| − |(1 − v)sbz0| − sv|z0|.

Utilizing binomial expansion of (1 − v)s up to linear terms of v, we attain

|S y0| ≥ |sv(zn
0 + az2

0)| − |(1 − sv)bz0| − sv|z0|

= sv|(zn
0 + az2

0)| − |bz0| + |svbz0| − sv|z0|

≥ sv|(zn
0 + az2

0)| − |bz0| − sv|z0|, |b| ≥ |0|,

which gives us

AIMS Mathematics Volume 7, Issue 6, 10939–10957.



10943

|by0| ≥ sv|(zn
0 + az2

0)| − |z0| − |bz0|, sv < 1
= sv|z2

0||(z
n−2
0 + a)| − |z0|(1 + |b|)

≥ |z0|
(
sv|z0||(cn−2 + a)| − (1 + |b|)

)
= |z0|(1 + |b|)

( sv|z0||(cn−2 + a)|
(1 + |b|)

− 1
)
.

Thus,

|y0| ≥
|by0|

(1 + |b|)
≥ |z0|

( sv|z0||(cn−2 + a)|
(1 + |b|)

− 1
)
.

Now

|z0| ≥ |c| >
2(1 + |b|)

sv|(cn−2 + a)|
implies that

sv|z0||(cn−2 + a)|
(1 + |b|)

− 1 > 1.

Hence |y0| > |z0|.
Now

S zk = (1 − u)sS zk−1 + usTyk−1

implies

|S z1| = |(1 − u)sS z0 + usTy0|

= |(1 − u)sbz0 + us(yn
0 + ay2

0 + c)|.

Since u, s ∈ (0, 1], so us ≥ su, we get

|S z1| ≥ |(1 − u)sbz0 + su(zn
0 + az2

0 + c)|
≥ |su(yn

0 + ay2
0) + (1 − u)sbz0| − su|c|

≥ |su(yn
0 + ay2

0) + (1 − u)sbz0| − su|z0|, |z0| ≥ |c|

≥ |su(yn
0 + ay2

0)| − |(1 − u)sbz0| − su|z0|.

Utilizing binomial expansion of (1 − u)s up to linear terms of u, we attain

|S z1| ≥ |su(yn
0 + ay2

0)| − |(1 − su)bz0| − su|z0|

= su|(yn
0 + ay2

0)| − |bz0| + |subz0| − su|z0|

≥ su|(yn
0 + ay2

0)| − |bz0| − su|z0|, |b| ≥ |0|,

which gives us

|bz1| ≥ su|(yn
0 + ay2

0)| − |z0| − |bz0|, su < 1
= su|y2

0||(y
n−2
0 + a)| − |z0|(1 + |b|)

> su|z2
0||(z

n−2
0 + a)| − |z0|(1 + |b|), |y0| > |z0|

≥ |z0|
(
su|z0||(cn−2 + a)| − (1 + |b|)

)
= |z0|(1 + |b|)

( su|z0||(cn−2 + a)|
(1 + |b|)

− 1
)
.
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Thus,

|z1| ≥
|bz1|

(1 + |b|)
≥ |z0|

( su|z0||(cn−2 + a)|
(1 + |b|)

− 1
)
.

Since |z0| ≥ |c| >
2(1+|b|)

su|(cn−2+a)| , there exists λ > 0 so that su|z0 ||(cn−2+a)|
(1+|b|) − 1 > 1 + λ.

As a result,
|z1| ≥ (1 + λ)|z0|.

Following the same pattern repeatedly, we obtain |zk| > (1+ λ)k|z0|. Consequently, |zk| → ∞ as k → ∞,
that is, the orbit of z0 tends to infinity. □

Corollary 3.1. If we consider |zm| > max
{
|c|, 2(1+|b|)

su|(cn−2+a)| ,
2(1+|b|)

sv|(cn−2+a)|

}
, m ≥ 0, then |zm+k| > (1 + λ)k|zk| and

the Jungck-Ishikawa orbit with s-convexity of sequence {zk} of iterates for any initial point z0 ∈ C tends
to∞ as k tends to∞.

Remark 3.1. (i) Jolaoso et al. [18] considered a = {0, 1}, and b, c to be complex numbers. However,
we have considered a, b, c to be complex numbers by taking −b instead of b. The selection of
these parameters is new and has not been studied till now in this perspective.

(ii) Similarly, we can easily derive the escape criterion for Jungck-Mann fixed point iteration with
s-convexity for a higher-order complex polynomial of the type p(z) = zn + az2 − bz + c, where
n ≥ 3 and a, b, c ∈ C by taking v = 0 and making use of simple algebraic calculations. The term
az2, where a is any complex number makes our conclusions very fascinating. On the other hand,
Nazeer et al. [22] had investigated the escape criterion via Jungck-Mann and Jungck-Ishikawa
iterations with s-convexity for p(z) = zn − az + c, without actually exploring the fractals. Further,
in the proof of Theorem 4.9 (respectively Theorem 3.9) [22], the authors claimed that they follow
the mathematical induction but this is not true. They used Theorems 4.1 and 4.5 (respectively
Theorems 3.1 and 3.5) to show that for the first steps the theorem is true, then they made an
inductive assumption. But in the whole proof for n+ 1, they did not use the inductive assumption,
so actually, they did not use the principle of mathematical induction. Besides this, the proofs of
other theorems also contain mathematical mistakes since authors have utilized binomial series up
to linear terms which is not true for the assumed parameters. One may easily check that neither
(1 − v)s ≥ 1 − sv nor (1 − (1 − v))s ≥ 1 − s(1 − v) is true in (0, 1]. If we take a = 0, then we get
the function p(z) = zn − bz + c which is utilized by Nazeer et al. [22]. However, when we take
a = 0 in Theorem 3.1, we do not get the desired conclusion [22]. This discrepancy is due to the
involved mathematical technique. In the sequel, we have suggested the technique to obtain the
escape criterion for more general higher-order polynomials. Similar mathematical errors may
also be seen in papers involving complex polynomials equipped with convexity parameter s, for
instance Kumari et al. [19], Kwun et al. [29] and many others existing in the literature.

(iii) Corollary 3.1 provides algorithms for exploring Julia and Mandelbrot sets of Tc. If |z0| ≤

|c|, we obtain the orbit JIOs of z. If |zk| lies in the exterior of the circle of radius
max
{
|c|, 2(1+|b|)

su|(cn−2+a)| ,
2(1+|b|)

sv|(cn−2+a)|

}
for some n, then the orbit JIOs escapes meaning thereby that z0 is

not inside the Julia or Mandelbrot sets. However, if |zk| does not exceed this bound, then utilizing
the definitions of the Julia and Mandelbrot sets, we utilize these algorithms to generate fractals
in the next section.
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4. Generation of Julia and Mandelbrot sets

We use MATLAB 7.5.0 (R2007b) via colourmap (Figure 1), Algorithm 1 (for Julia set), and
Algorithm 2 (for Mandelbrot set) for developing fractals for higher-order polynomials. During the
simulation process, we have obtained and analyzed many fractals. But in this paper, we discuss the
behavior of only a limited number of fractals for the different parameter values associated with it.
The parameters u, v and the convexity s perform a very significant role in giving the vibrant colors
and exploring the characteristics of the associated Julia sets and Mandelbrot sets. The structure of
the fractals is very much dependent on the iterative method we choose. The number of petals in a
standard fractal is (n−1), for the nth order polynomial. As n increases the fractal takes a circular shape.
Throughout the paper, we are using a maximum number of iterations K = 30.

Figure 1. Colourmap used in the graphical examples.

Algorithm 1 Geometry of Julia-Set
Input: T (z) = zn + az2 + c, S z = bz where a, b, c ∈ C, b , 0 and n = 1, 2, 3, . . . ; A ⊂ C− area;
K− a maximum number of iterations; u, v, s ∈ (0, 1]−parameter of the Jungck-Ishikawa iteration with
s-convexity; colourmap[0..C − 1]−color with C colors.
Output: Julia set for area A.

for z0 ∈ A do
R1 =

(
2(1+|b|)

su|(cn−2+a)|

)
R2 =

(
2(1+|b|)

sv|(cn−2+a)|

)
R = max(|c|,R1,R2)
n = 0
while n ≤ K do

yn =
(1−v)sS zn+vsT (zn)

b

zn+1 =
(1−u)sS zn+usT (yn)

b
if |zn+1| > R then

break
end if
n = n + 1

end while
i = ⌊(C − 1) n

K ⌋

color z0 with colourmap[i]
end for
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Algorithm 2 Geometry of Mandelbrot-Set
Input: T (z) = zn + az2 + c, S z = bz where a, b, c ∈ C, b , 0 and n = 1, 2, 3, . . . ; A ⊂ C− area;
K− a maximum number of iterations; u, v, s ∈ (0, 1]−parameter of the Jungck-Ishikawa iteration with
s-convexity; colourmap[0..C − 1]−color with C colors.
Output: Mandelbrot set for area A.

for c ∈ A do
R1 =

(
2(1+|b|)

su|(cn−2+a)|

)
R2 =

(
2(1+|b|)

sv|(cn−2+a)|

)
R = max(|c|,R1,R2)
n = 0
z0 = 0
while n ≤ K do

yn =
(1−v)sS zn+vsT (zn)

b

zn+1 =
(1−u)sS zn+usT (yn)

b
if |zn+1| > R then

break
end if
n = n + 1

end while
i = ⌊(C − 1) n

K ⌋

color z0 with colourmap[i]
end for

4.1. Julia sets

For n = 3, the parameter values as given in Table 1, we get amazing fractal objects, which are
visible in Figure 2(i,ii).

The parameter s, which denotes the convexity is responsible for the volume of the fractal. As s
decreases from 0.95 to 0.55555, the resulting fractal shrinks as shown in Figure 3(i,ii). The parameters
used in Figure 3(i,ii) are as in Table 2.

Table 1. Effect of parameters a and s on cubic Julia sets.

a b c u v n s A
(i) −1 + 90i 100 −60i 0.045 0.045 3 0.45 [−7, 7] × [−5.5, 9.5]
(ii) 8i 100 −60i 0.045 0.045 3 0.10 [−17, 17] × [−19.5, 15.5]

Table 2. Effect of parameter s on Quartic Julia sets.

a b c u v n s A
(i) 0 −190i −6.0 + 60i 0.0005 0.045 4 0.95 [−25, 25] × [−25, 25]
(ii) 0 −190i −6.0 + 60i 0.0005 0.045 4 0.55555 [−18, 18] × [−18, 18]

AIMS Mathematics Volume 7, Issue 6, 10939–10957.
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(i) (ii)

Figure 2. Cubic Julia sets.

(i) (ii)

Figure 3. Quartic Julia sets (showing the effect of a decrease in value of parameter s).

The parameters used in Figure 4(i,ii) are as in Table 3. The parameter b affects the volume of the
entire fractal. As the absolute value of b decreases, the volume of the fractal decreases, as shown in
Figure 4(i,ii).

(i) (ii)

Figure 4. Quartic Julia sets (showing the effect of a decrease in the absolute value of complex
parameter b).
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Table 3. Effect of parameter b on Quartic Julia sets.

a b c u v n s A
(i) 0 −190i −17 0.000005 0.00045 4 0.0195 [−9, 9] × [−9, 9]
(ii) 0 −9.2i −17 0.000005 0.00045 4 0.0195 [−3, 3] × [−3.5, 2.5]

The parameter b also gives rotational symmetry when it is purely real (imaginary) and changes the
sign. For the same set of parameters and different values of b (change in sign in the real and complex
values of b as in Table 4), the resultant fractals can be seen in Figure 5(i–iv).

Table 4. Effect of change in sign in parameter b (real and complex) on Quintic Julia sets.

a b c u v n s A
(i) 0 44 −19 0.000005 0.00045 5 0.33 [−6.5, 6.5] × [−6.5, 6.5]
(ii) 0 −44 −19 0.000005 0.00045 5 0.33 [−6.5, 6.5] × [−6.5, 6.5]
(iii) 0 44i −19 0.000005 0.00045 5 0.33 [−6.5, 6.5] × [−6.5, 6.5]
(iv) 0 −44i −19 0.000005 0.00045 5 0.33 [−6.5, 6.5] × [−6.5, 6.5]

(i) (ii)

(iii) (iv)

Figure 5. Quintic Julia sets

AIMS Mathematics Volume 7, Issue 6, 10939–10957.
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The parameters used in Figure 6(i–v) are as in Table 5.

Table 5. Effect of change in the degree (n) of polynomials on Julia sets.

a b c u v n s A
(i) 0 44 + 44i −30i 0.000005 0.000545 4 0.55 [−25, 25] × [−25, 25]
(ii) 0 44 + 44i −30i 0.000005 0.000545 5 0.55 [−10, 10] × [−10, 10]
(iii) 0 44 + 44i −30i 0.000005 0.000545 6 0.55 [−7, 7] × [−7, 7]
(iv) 0 44 + 44i −30i 0.000005 0.000545 9 0.55 [−3.5, 3.5] × [−3.5, 3.5]
(v) 0 44 + 44i −30i 0.000005 0.000545 15 0.55 [−2, 2] × [−2, 2]

(i) Quartic (ii) Quintic

(iii) Sextic (iv) Nonic (v) Higher-order

Figure 6. Julia sets.

During the generation of fractals, it is surprising to see that, for the same parameter values of
a, b, c, u, v, s and different values of n artistic fractals are obtained which are similar to Kachhi Tread
Work found in the Kutch district of Gujarat (India). Noticeably, the number of petals in each figure is
(n − 1) (one less than the degree of polynomial) which represents the effect of Threadwork of these.

For a variety of parameter sets (see Table 6), we obtain aesthetic Julia fractals (see Figure 7(i–iii)).
Figure 7 demonstrates the effect of a decrease in values of u and v on Septic Julia sets. To be specific,
Figure 7(i) is for higher values of u and v (greater than 0.5) whereas Figure 7(ii,iii) is for lower values
of u and v (nearly 0). Noticeably each figure has 6 leaves (one less than the degree of polynomial).

AIMS Mathematics Volume 7, Issue 6, 10939–10957.
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Table 6. Effect of parameters u and v on Septic Julia sets.

a b c u v n s
(i) 0 −19 0.285 + 0.01i 0.6 0.6 7 0.51 [−2.5, 2.5] × [−2.5, 2.5]
(ii) 0 −19 0.285 + 0.01i 0.0001 0.0001 7 0.51 [−5, 5] × [−5, 5]
(iii) 0 −19 0.285 + 0.01i 0.0000056 0.00054 7 0.51 [−4, 4] × [−4, 4]

(i) (ii) (iii)

Figure 7. Septic Julia sets.

As u tends to 0 and a = 0, the stunning fractal can be seen in Figure 8. The parameter used in the
Figure 8 are a = 0, b = −44 − 44i, c = 88, v = 0.0045, u = 0.000000045, n = 5, s = 0.264973, and
A = [−10, 10] × [−10, 10].

Figure 8. Quintic Julia set.

Remark 4.1. It has been observed that not only does the polynomial of degree n give a beautiful
fractal but sometimes the simple expressions having a non-integer value as a degree also gives beautiful
fractal, as seen in Figure 9. It is a great task to select appropriate parameters to obtain the desired
fractal pattern. The parameter used in Figure 9 are a = 0, b = 90.8i, c = 0, u = 0.067, v = 0.067, n =
3.14, s = 0.4, and A = [−17, 17] × [−17, 17].
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Figure 9. Julia set for n = 3.14.

4.2. Mandelbrot sets

To generate Mandelbrot sets, the parameters used in Figure 10(i,ii) are as in Table 7.

Table 7. A pair of Quartic Mandelbrot set for random parameters.

a b u v n s A
(i) 0.02 −3 0.02 0.02 4 0.394 [−42, 34] × [−38, 38]
(ii) −1.87897 −3 0.04045 0.04045 4 0.00612 [−5, 5] × [−5, 5]

(i) (ii)

Figure 10. Quartic Mandelbrot set.

In the overall analysis, we say that the effect of even minor changes in one parameter causes a
major effect on the appearance of the resultant fractal. The parameters used in Figure 11(i–iii) are as in
Table 8. Figure 11(ii,iii) shows the variation in shape when only a is varied and all the other parameters
are fixed.

For values of the parameter as shown in Table 9 given below, we found very interesting fractal
patterns in the Mandelbrot set of n = 3, 4, 5, 6, 9 and 50 (Figure 12(i–vi)).

Table 8. The effect of parameters a and b on Quintic Mandelbrot set with a higher value of u.

a b u v n s A
(i) 3 1 0.77 0.77 5 0.394 [−0.9, 0.3] × [−0.6, 0.4]
(ii) 2i −3 0.0102 0.0102 5 0.394 [−38, 38] × [−30, 35]
(iii) 5i −3 0.0102 0.0102 5 0.394 [−27, 27] × [−21, 33]
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Table 9. Effect of change in the degree (n) of polynomials on Mandelbrot set.

a b u v n s A
(i) 0 −6.9 0.094045 0.094045 3 0.00612 [−25, 25] × [−25, 25]
(ii) 0 −6.9 0.094045 0.094045 4 0.00612 [−15, 15] × [−15, 15]
(iii) 0 −6.9 0.094045 0.094045 5 0.00612 [−11, 11] × [−11, 11]
(iv) 0 −6.9 0.094045 0.094045 6 0.00612 [−7, 7] × [−7, 7]
(v) 0 −6.9 0.094045 0.094045 9 0.00612 [−4, 4] × [−4, 4]
(vi) 0 −6.9 0.094045 0.094045 50 0.00612 [−1.5, 1.5] × [−1.5, 1.5]

(i) (ii) (iii)

Figure 11. Quintic Mandelbrot set.

(i) Cubic (ii) Quartic (iii) Quintic

(iv) Sextic (v) Nonic (vi) Higher-order

Figure 12. Mandelbrot set.

AIMS Mathematics Volume 7, Issue 6, 10939–10957.



10953

Figure 13(i,ii) demonstrate the effect of a increase in values of parameters u and v (see Table 10) on
Quintic Mandelbrot sets. Noticeably as the values of both the parameters u and v increase from 0.0006
to 0.9 the Quintic Mandelbrot set become fatter.

Table 10. Effect of parameters u and v on Quintic Mandelbrot sets.

a b u v n s A
(i) 2 + 2i −10 0.0006 0.0006 5 0.05 [−25, 25] × [−25, 25]
(ii) 2 + 2i −10 0.9 0.9 5 0.05 [−20, 20] × [−20, 20]

(i) (ii)

Figure 13. Quintic Mandelbrot set.

As the convexity parameter s decreases from 0.99 to 0.1 (see Table 11) the Quartic Mandelbrot set
shrinks (see Figure 14). Noticeably each figure has 3 branches (one less than the degree of polynomial).

Table 11. Effect of parameter s on Quartic Mandelbrot sets.

a b u v n s A
(i) 90 1.7 + 1.7i 0.05 0.05 4 0.99 [−25, 25] × [−40, 10]
(ii) 90 1.7 + 1.7i 0.05 0.05 4 0.5 [−2, 2] × [−3, 1]
(iii) 90 1.7 + 1.7i 0.05 0.05 4 0.1 [−0.2, 0.2] × [−0.3, 0.1]

(i) (ii) (iii)

Figure 14. Quartic Mandelbrot set.
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Remark 4.2. (i) It is sometimes difficult, for anybody, to command perfectly on the results
and discussion section, as the fixed point iteration (Jungck-Ishikawa) itself, involves three
parameters (u, v, s). Moreover, some additional parameters come from the polynomial p(z) under
consideration (like a, b, c). It is again a topic of research to comment on the effect of resulting
fractals when we make changes in any of these parameters. Even if we keep all the parameters
fixed and vary only any one of them (for instance, s), then also we may obtain a variety of fractals.
This comment applies to other parameters also (see, Table 10 in which all the parameters are fixed
and only n varies. For n = 3, 4, 5, 6, 9 and 10 we have obtained a variety of stunning variants
of classical Mandelbrot set). Therefore, we have restricted our discussion to a limited type of
combination of parameters. However, we have tried to cover the maximum possible combination
of parameters involved in developing the algorithm (escape criterion) in Corollary 3.1. We have
generated Mandelbrot and Julia sets of various polynomials and showed some selected fractals
only. We notice that the role of each parameter is distinct. For instance, as n increases the
fractal takes a circular shape (see, Figure 12(vi) looks like a stunning sunflower of a higher-order
Mandelbrot set) and the area covered by the fractal decreases.

(ii) Our theorem and corollary demonstrate the significance of the Jungck-Ishikawa iteration with
s-convexity in the generation of complex graphs of fractal sets. For s = 1, we obtain
the improvements of analogous conclusions for the Jungck-Ishikawa iteration existing in the
literature. Noticeably, the value of s has a great impact on the shape and the obtained sets
are completely different from the original Julia set (see Figure 3).

5. Conclusions

We have established the escape radii and escape criteria of Julia and Mandelbrot sets for the nth

degree complex polynomials of a special kind in Jungck-Ishikawa orbit equipped with s-convexity.
Consequently, we have provided the technique to obtain an escape criterion for a more general higher-
order polynomial that is not correct in related results (for instance [19, 22, 29], and so on). We
have developed and analyzed the behavior of variants of the Julia set and the Mandelbrot set for
different parameter values after obtaining fascinating non-classical variants of classical Mandelbrot
and Julia fractals using MATLAB software. It is worth mentioning here that polynomials are often
utilized to encode information about different objects and are useful in distinct branches of science and
engineering. Also, we have observed that as we zoom in on the edges of the petals of the Mandelbrot
set, we come across the Julia set meaning thereby each point of the Mandelbrot set includes massive
image data of a Julia set. Also, the size of fractals explored using the Jungck-Ishikawa iteration
depends on the parameter u and the convexity parameter s, whereas the shape and symmetry depend
on the parameter a, b and c. As n increases the area occupied by the fractals decreases. In the sequel,
we have provided some interesting features to compare with the existing one and demonstrate the
significance of our outcomes such as some of our fractals resemble the traditional Kachhi Thread
Works (see Figure 15) found in the Kutch district of Gujarat (India) which are useful in the textile
industry.
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Figure 15. Real Kachhi work images-beauty of Julia sets.
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