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Abstract: In this work, we present some numerical results about variable order fractional differential
equations (VOFDEs). For the said numerical analysis, we use Bernstein polynomials (BPs) with non-
orthogonal basis. The method we use does not need discretization and neither collocation. Hence
omitting the said two operations sufficient memory and time can be saved. We establish operational
matrices for variable order integration and differentiation which convert the consider problem to some
algebraic type matrix equations. The obtained matrix equations are then solved by Matlab 13 to get
the required numerical solution for the considered problem. Pertinent examples are provided along with
graphical illustration and error analysis to validate the results. Further some theoretical results for time
complexity are also discussed.
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1. Introduction

Calculus of arbitrary order derivatives and integrations has been found very applicable in mathematical
modeling of various real world problems. Such differential and integral operators have greater degree
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of freedom. Therefore its dynamical behavior is global instead of local. Also various features related
to represent memory and hereditary process can be comprehensively explained through the said area
[1–3]. Therefore in last few decades Fractional order differential and integral equations (FODIEs) has
got proper attention from researchers. Interesting applications regarding FODIEs have been investigated
in variety of disciplines including engineering, technology and applied sciences [4–6]. Numerous features
related to memory and hereditary characteristics corresponding to different materials and processes can be
found [7]. Due to these applications FODIEs have appealed researchers for further analysis and progress.

Since arbitrary order differential equations are infact definite integrals which include the classical
derivative as a special case. Therefore, arbitrary order derivative has not a unique definition. It
is interesting that researchers have introduced various definitions for the said differential operators.
Geometrically fractional order derivative provides a complete spectrum of a function which include
the classical order curve as a special case. Among all the definitions of fractional derivative, the
definitions of Caputo and Riemann-Liouville has gained more popularity among the researchers. On
the other hand various aspects including qualitative analysis, stability theory and numerical treatment
have been studied for FODIEs. For such investigations the authors have used fixed point approach,
tools of nonlinear analysis to handle the mentioned aspects for various problems of FODIEs [8]. One
of the most important area in the theory of FODIEs is known as numerical solutions of the mentioned
area. In variety of situations it is difficult to obtain analytical solution of numerous FODIEs due to the
complex behavior of fractional order. In such conditions approximating the solutions to that problem
will be more suitable to be determined. For this purposes, large numbers of analytical and numerical
methods have been established. In this regards, eigen function procedure [9], perturbation tools [10],
iteration techniques [11], transform methods [12], decomposition schemes [13] have been established for
analytical or semi-analytical results of FODIEs. Also for numerical solutions, difference methods [14],
numerical method for multi-terms FODEs [15], Tau method [16], collocation techniques [17], wavelet
analysis [18] have been introduced in literature. Also spectral methods based on operational matrices [19]
have been constructed in large numbers. The aforementioned methods have been very well applied for
classical differential and integral equations. Here we remark that the said tools have also applied in the
area of fractional calculus very well. Among the mentioned methods, spectral techniques are the most
powerful and significant for the numerical solutions to various problems. The said methods are based
on some operational matrices of integration and differentiations. Based on these matrices, the proposed
problem is converted to some algebraic equation known as Sylvester equation of the form

MX + XN = L, (1.1)

where L,M,N are constant co-efficient matrices and X is an unknown matrix that has to be determined.
Further a Sylvester equation is a linear matrix equation having a unique solution if the spectra of L and
M has an empty intersection. If X has order m × n, then the order of matrix L will be m × n and that of
M will be n × n, where the order of X and N will be m × n. Sylvester linear matrix equation plays very
important role in control and stability theory of many applied problems.

Keeping in mind the importance of numerical solutions to fractional order problems, various powerful
techniques have been established in last two decades. For instance authors [20] have developed numerical
scheme for two dimensional stochastic Volterra-Fredholm integral equations. In same line the authors
[21] have developed a hybrid numerical scheme for partial-integro type problems. Further some more
advanced numerical methods have been recently established for ordinary and partial fractional order
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problems. For the mentioned problems the authors have used various procedure including BPs and
Bernoulli and some other complex tools. For the mentioned numerical methods we refer [22–28].

In present literature, the operational matrices have been developed by using different orthogonal
polynomials like Legendre, Laguerre, Jacobi, etc. All the operational matrices have been obtained from
the aforesaid polynomials by using descritization techniques to solve FODIEs subject to some initial or
boundary conditions [29]. However, boundary value problems are rarely investigated which constitute
a very applicable branch of applied analysis. Also some new operational matrices for BPs have been
developed recently [30]. Keeping in mind that the said polynomials are non orthogonal, some researchers
have used discretization together with collocation method to construct some operational matrices for
arbitrary order differentiation and integration. But the mentioned approach is limited to only initial value
problems. Recently some simple problems of fractional order differential equations (FODEs) have been
investigated by using the said nonorthogonal polynomials. Since in most of the literature discretization
and collocation techniques have jointly used which exploit extra memory and consume much time. For
some frequent results in this regards see [31,32]. Therefore to omit discretization and collocation to save
memory and time from wastage, we will directly construct the operational matrices for solving FODIEs
numerically with some initial/boundary conditions by using BPs. Authors [33] have started the area of
variable order integration and differentiation during 1993. Recently the mentioned area of variable order
FODEs has attracted much attention. The reason is that such problems have more degree of freedom in
choosing the most suitable order for the accurate description of a real world problems. Currently many
valuable articles have been published in this regards (see [34–38]). Recently various articles related to
fractional order dynamics of epidemiological disease, neural network and PD controller theory have been
published (see [39–43]). In respect of numerical analysis BPs give more accurate results as compared
to other polynomials. Because Bernstein polynomials have non orthogonal basis. For variable order the
said polynomials are very rarely used. Further BPs have been developed by a Russian mathematician
Sergie Natanovich Bernstein. According to the Weierstrass Approximation Theorem every continuous
real valued function can be approximated uniformly with the help of polynomial function over R. In this
regard, BPs play a very important role in function approximation. Though the BPs are non-orthogonal,
but good approximation for real valued continues functions. BPs play significant roles in distribution
functions theory. In recent time BPs estimators of density functions have got great popularity from
researchers of statistics. Some authors have investigated various problems of estimating a multivariate
distribution function by using BPs in multiple dimensions (see [44]).

Since it has been proved that spectral methods are stable and convergent. So far we know these type
of methods have been used for traditional fractional order derivatives very well. But in case of variable
order where the differential operators are more flexible and posses greater degree of freedom. The spectral
methods have not so properly applied in past many years. Also the mentioned tools have been shamefully
applied in many disciplines to perform simulations like heat conduction, quantum mechanics, fluid
dynamics, weather prediction and so on (see [45]). Further the proposed method has some advantages
like more accurate than finite difference method with the same number of degrees of freedom, can be used
spatial filters of very high order easily, and obtain power spectra directly. Also the present method does
not required any prior discretization of data like need by finite methods, Galerkin and wavelet methods.
Since these methods are scaling techniques depend on scale level. So for larger scale level it need more
time for compilation but produce more significant results (see [46]). Motivated by the aforesaid work,
here we consider the following two cases of VOFDEs including initial and boundary value problems of
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the form c
0Dϑ(t)

t v(t) = g(t, v(t)), 0 < ϑ(t) ≤ 1,
v(0) = v0,

(1.2)

and c
0Dϑ(t)

t v(t) = g(t, v(t)), 1 < ϑ(t) ≤ 2,
v(0) = v0, v(1) = v1,

(1.3)

where in both cases g : [0, 1] × R → R is linear continuous function. Here initially, we will construct
operational matrices of fractional integration and differentiation by using BPs. Afterwards, with the help
of developed matrices, we will transfer the proposed problems to algebraic equations of Sylvester type.
The proposed problem (3.1) and (1.3) include some problems as special case like:

• For instance if g(t, v(t)) = v(t) with 0 < ϑ(t) ≤ 1 then the concerned problem (3.1) reduces to the
famous growth type model. If g(t, v(t)) = −v(t) with 0 < ϑ(t) ≤ 1, then problem (3.1) becomes a
decay model which has various applications in radioactivity process of various elements.
• Similarly if we consider g(t, v(t)) = ±v(t), with 1 < ϑ(t) ≤ 2, the concerned problem (1.3) reduces

to two point boundary value problems been studied in [47].

We use the computational software Matlab 13 to find the unknown matrices for the required numerical
solution. Also the results are demonstrated graphically. A comparison between integer order and
numerical solutions at various fractional order is also given. Further some theoretical analysis in the
time complexity is provided.

2. Elementary results

Here we recall some basic results from [48].

Definition 2.1. If s : [0,∞) → R is a function whose integral converges overR+, then its fractional
integral of order ϑ(t) > 0 is given by

Iϑs(t) =
1

Γ(ϑ(t))

∫ t

0
(t − ν)ϑ(ν)−1s(ν)dν, (2.1)

Definition 2.2. The Caputo fractional derivative of a function s : R+ → R is defined as under

Dϑ(t)s(t) =


1

Γ(n − ϑ(t))

∫ t

0
(t − ν)n−ϑ(ν)−1s(n)(ν)dν, n − 1 < ϑ(t) < n,

dns
dtn .n = ϑ,

(2.2)

Lemma 2.3. For ϑ(t) > 0 fractional integral of a fractional derivative is defined as

Iϑ(t)[c
0Dϑ

t (t)v(t)] = v(t) − d0 − d1t − d3t2 + . . . + dm − 1tm−1, (2.3)

where dk ∈ R, k = 0, 1, 2, . . .m − 1.
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BPs are formed by the linear combination of Bernstein basis [27]. The polynomial is defined as

P j,k(t) =

(
k
j

)
t j(1 − t)k− j, j = 0, 1, 2, · · · , k,

where k is the order of the polynomial. The compact form of BPs [29] is obtained by using binomial
expansion as

P j,k(t) =

k∑
i=0

k− j∑
l=0

(−1)k

(
k
j

) (
k − j

l

)
tl+ j, j = 0, 1, 2, · · · , k,

where

Pi,l,k = (−1)k

(
k
j

) (
k − j

l

)
. (2.4)

The set of BPs of degree m is expressed as

Pi,m(t) = {P0,m(t), P1,m(t), P2,m(t), P3,m(t), · · · Pm,m(t)} (2.5)

(2.5) is known as the Bernstein basis. Further some needful results are given bellow. Since, BPs are
non-orthogonal, In this regard the inner product of two Bernstein basis is given by∫ 1

0
Pi,m(t)P j,m(t)dt =

∫ 1

0

(
k
i

)
ti(1 − t)k−i

(
k
j

)
t j(1 − t)k− jdt,

=

(
k
i

) (
k
j

) ∫ 1

0
ti+ j(1 − t)2k−i− jdt,

=

(
k
i

) (
k
j

)
β(i + j + 1, 2k − i − j + 1),

=

(
k
i

) (
k
j

)
Γ(i + j + 1)Γ(2k − i − j + 1)
Γ(i + j + 1 + 2k − i − j + 1)

,

=

(
k
i

) (
k
j

)
Γ(i + j + 1)Γ(2k − i − j + 1)

Γ(2k + 2)
,

=

(
k
i

) (
k
j

)
(2k + 1) Γ(2k+1)

Γ(i+ j+1)Γ(2k−i− j+1)

,

=

(
k
i

) (
k
j

)
(2k + 1)

(
2k

i + j

) .
Hence ∫ 1

0
Pi,m(t)P j,m(t)dt = Gi, j. (2.6)
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Which upon representation in matrix form can be written as This results into

∫ 1

0
Pi,m(t)P j,m(t)dt =



G0,0 G0,1 · · · G0,r · · · G0,m

G1,0 G1,1 · · · G1,r · · · G1,m

G2,0 G2,1 · · · G2,r · · · G2,m
...

...
...

...
...

...

Gr,0 Gr,1 · · · Gr,r · · · Gr,m
...

...
...

...
...

...

Gm,0 Gm,1 · · · Gm,r · · · Gm,m


. (2.7)

For the given two functions φ, ψ ∈ L2[0, 1], we can approximate any function φ(t) in term of Bernstein
basis as

φ(t) =

m∑
i=0

siPi,m(t). (2.8)

It implies

R1xm =

∫ 1

0
φ(t)P j,m(t)dt (2.9)

=

∫ 1

0

m∑
i=0

siPi,m(t)P j,m(t)d,

=

m∑
i=0

si

∫ 1

0
Pi,m(t)P j,m(t)d,

where j = 0, 1, 2, · · · . Hence we get

R1xm =
[

s0 s1 · · · sm

]


G0,0 G0,1 · · · G0,r · · · G0,m

G1,0 G1,1 · · · G1,r · · · G1,m

G2,0 G2,1 · · · G2,r · · · G2,m
...

... · · ·
... · · ·

...

G3,0 G3,1 · · · G3,r · · · G3,m
...

... · · ·
... · · ·

...

Gm,0 Gm,1 · · · Gm,r · · · Gm,m


,

where S 1xm =
[

s0 s1 · · · sm

]
is the coefficient matrix and as (2.7) Gmxm = Gi, j where

S 1xm = R1xmG−1
i, j . (2.10)

we provide the following two lemmas for our algorithm.

Lemma 2.4. [30] Let Pi,m(t) be function vector defined in (2.4) the then the fractional order integration
over the function is given as

Iϕ(t)Pi,k(t) = Vϕ(t)
k×k Pi,k(t), (2.11)
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where Vϕ(t)
k×k is the Operational Matrix for integration, and

Vϕ(t)
k×k = Υk×kG−1

k×k.

Moreover

Υ
ϕ(t)
k×k =



Λ0,0 Λ0,1 · · · Λ0,r · · · Λ0,k

Λ1,0 Λ1,1 · · · Λ1,r · · · Λ1,k

Λ2,0 Λ2,1 · · · Λ2,r · · · Λ2,k
...

... · · ·
... · · ·

...

Λr,0 Λr,1 · · · Λr,r · · · Λr,k
...

... · · ·
... · · ·

...

Λk,0 Λk,1 · · · Λk,r · · · Λk,k


, (2.12)

where by (2.4)

Λi, j =

k−i∑
l=0

k− j∑
c=0

Pi,l,kP j,c,k
Γ(k + i + 1)

(i + j + k + l + ϕ(t) + 1)Γ(k + i + ϕ(t) + 1)
(2.13)

Lemma 2.5. [30] Let Pi,k(t) be a vector function then the fractional order differentiation of the function
is given by

Dϕ(t)Pi,k(t) = Wϕ(t)
k×k Pi,k(t), (2.14)

where
Wϕ(t)

k×k = ¶
ϕ(t)
k×kG

−1
k×k, (2.15)

where

¶
ϕ(t)
k×k =



γ0,0 γ0,1 · · · γ0,r · · · γ0,k

γ1,0 γ1,1 · · · γ1,r · · · γ1,k

γ2,0 γ2,1 · · · γ2,r · · · γ2,k
...

... · · ·
... · · ·

...

γr,0 γr,1 · · · γr,r · · · γr,k
...

... · · ·
... · · ·

...

γk,0 γk,1 · · · γk,r · · · γk,k


, (2.16)

where

γi, j =



k−i∑
w=ϕ(t)

k− j∑
z=0

Pi,w,kP j,z,k
Γ(w + i − ϕ(t))

Γ(w + i − ϕ(t) + 1)Γ(w + z + i + j − ϕ(t) + 1)
, i < [ϕ(t)]

k−i∑
w=0

k− j∑
z=0

Pi,w,kP j,z,k
Γ(w + i − ϕ(t))

Γ(w + i − ϕ(t) + 1)Γ(w + z + i + j − ϕ(t) + 1)
, i >= [ϕ(t)].
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3. Numerical scheme

Here we divide this section to two subsection. In one subsection we establish numerical scheme for
initial values problems. In second subsection, we derive the scheme for boundary value problems under
variable order.

3.1. Numerical algorithm for initial value problem

Initial value problems have their own importance in the field of mathematics. We discuss different
cases of initial value problems to investigated for numerical analysis.
Case I: c

0Dϕ(t)
t v(t) = g(t, v), 0 < ϕ(t) ≤ 1,

v(0) = v0,
(3.1)

Assume that
c
0Dϕ(t)

t v(t) = AMPT
M(t).

Applying ϕ(t) order integral on both sides, we get

Iϕ(t)c
0Dϕ(t)

t v(t) = Iϕ(t)AMPT
M(t)

v(t) − d0 = Iϕ(t)AMPT
M(t),

v(t) = d0 + Iϕ(t)AMPT
M(t),

v(0) = v0 implies
v(t) = v0 + Iϕ(t)AMPT

M(t).

By using function approximation consider

v0 ≈ DMPT
M,

AMIϕ(t)PT
M(t) ≈ AMVϕ(t)

k×k PT
M(t).

Hence

v(t) = DMPM(t) + AMVϕ(t)
k×k PT

M(t), (3.2)

using v(t) in the given (3.1) we can get required matrix equation.
Case II: If we take g(t, v) = v(t), then one hasc

0Dϕ(t)
t v(t) = v(t), 0 < ϕ(t) ≤ 1,

v(0) = v0,
(3.3)

Considering
c
0Dϕ(t)

t v(t) = AMPT
M(t)

AIMS Mathematics Volume 7, Issue 6, 10917–10938.
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and applying ϕ(t) order integral, we get the following function v(t) with the given initial condition

v(t) = v0 + AMVϕ(t)
k×k PT

M(t).

So one has

v(t) = DMPT
M(t) + AMVϕ(t)

k×k PT
M(t), (3.4)

AMPT
M(t) = DMPT

M(t) + AMVϕ(t)
k×k PT

M(t). (3.5)

Therefore (3.18) implies that

AMPT
M(t) − DMPM(t) − AMVϕ(t)

k×k PT
M(t) = 0. (3.6)

from (3.6), we can write

AM − DM − AMVϕ(t)
k×k = 0,

AM − AMVϕ(t)
k×k − DM = 0. (3.7)

The given Eq (3.7) is a Sylvester type equation that can be solved by Matlab.
Case III: If the given differential equation is non-homogeneous then the given linear function will be as

g(v) = Kv(t) + f (t),

then the given differential equation will be asc
0Dϕ(t)

t v(t) = Kv(t) + f (t), 0 < ϕ(t) ≤ 1,
v(0) = v0.

(3.8)

In such case using the function v(t) in Eq (3.4), we get

c
0Dϕ(t)

t v(t) = K[DMPT
M(t) + AMVϕ(t)

k×k PT
M(t)] + f (t), (3.9)

approximating f (t) ≈ FMPT
M(t) in (3.9), we get

c
0Dϕ(t)

t v(t) = K[DMPT
M(t) + AMVϕ(t)

k×k PT
M(t)] + FMPT

M(t).

After rearrangement we have

AMPT
M(t) − K[DMPT

M(t) + AMVϕ(t)
k×k PT

M(t)] − FMPT
M(t) = 0,

AMPT
M(t) − KDMPT

M(t) − KAMVϕ(t)
k×k PT

M(t) − FMPT
M(t) = 0,

AMPT
M(t) − KAMVϕ(t)

k×k PT
M(t) − KDMPM(t)FMPT

M(t) = 0,

which implies that

AM − KAMVϕ(t)
k×k − (KDM + FM) = 0.

(3.10)
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Hence (3.10) is the required Sylvester equation that can be solved with the help of Matlab.
Case IV: Consider another versionc

0Dϕ(t)
t v(t) = g(v), 1 < ϕ(t) ≤ 2,

v(0) = v0, v′(0) = v1
(3.11)

Let assume that
c
0Dϕ(t)

t v(t) = AMPT
M(t).

Then taking ϕ(t) order integral of both sides yields

Iϕ(t)c
0Dϕ(t)

t v(t) = Iϕ(t)AMPT
M(t)

v(t) − d0 − d1t = Iϕ(t)AMPT
M(t),

v(t) = d0 + d1t + Iϕ(t)AMPT
M(t),

v(0) = v0 implies

v(t) = v0 + d1t + Iϕ(t)AMPT
M(t). (3.12)

Taking first order derivative of (3.13), we get

v′(t) = d1 + Iϕ(t)−1AMPT
M(t),

applying initial condition we have,

v′(0) = d1 + Iϕ(t)−1AMPT
M(0).v1 = d1,

By using values of v0 and v1 in (3.13), we get

v(t) = v0 + v1t + Iϕ(t)AMPT
M(t). (3.13)

consider

v0 + v1t ≈ DMPT
M(t),

AMIϕ(t)PT
M(t) ≈ AMVϕ(t)

k×k PT
M(t).

Hence

v(t) = DMPT
M(t) + AMVϕ(t)

k×k PT
M(t). (3.14)

The above equation is used to solve the (3.11) with the help of Matlab.
Case V: Let the Eq (3.11) be considered asc

0Dϕ(t)
t v(t) = v(t), 1 < ϕ(t) ≤ 2,

v(0) = v0, v′(0) = v1.
(3.15)
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Let us assume that
c
0Dϕ(t)

t v(t) = AMPT
M(t)

and applying ϕ(t) order integral, we get the following function v(t) ,

Iϕ(t)c
0Dϕ(t)

t v(t) = Iϕ(t)AMPT
M(t),

v(t) = d0 + d1t + Iϕ(t)AMPT
M(t). (3.16)

Taking derivative of (3.16), we get

v′(t) = d1 + Iϕ(t)AMPT
M(t).

Applying initial conditions in (3.16) implies v(0) = d0 + d1(0) + Iϕ(t)−1AMPT
M(0). Hence we get v0 = d0.

Also using boundary condition v′(0) = d1 + Iϕ(t)AMPT
M(0), implies v1 = d1. Then the given Eq (3.16)

become,

v(t) = v0 + v1t + Iϕ(t)AMPT
M(t). (3.17)

On using Lemma 2.4 and Lemma 2.5, one has

AMIϕ(t)PT
M(t) ≈ AMVϕ(t)

k×k PT
M(t),

v0 + v1t ≈ DMPT
M(t),

it implies

v(t) = DMPT
M(t) + AMVϕ(t)

k×k PT
M(t),

AMPT
M(t) = DMPT

M(t) + AMVϕ(t)
m×mPT

M(t),
AMPT

M(t) − DMPT
M(t) − AMVϕ(t)

k×k PT
M(t) = 0,

from above equation we can have

AM − DM − AMVϕ(t)
k×k = 0,

AM − AMVϕ(t)
k×k − DM = 0. (3.18)

The given Eq (3.18) is the transformed Sylvester equation that can be solved by Matlab.
Case VI: If the given differential equation is non-homogeneous then the given linear function will be as,

g(v) = Kv(t) + f (t),

and the given differential equation will be asc
0Dϕ(t)

t v(t) = Kv(t) + f (t), 1 < ϕ(t) ≤ 2,
v(0) = v0, v′(0) = v1

(3.19)

in such case using the function v(t) reference to Eq (3.17) we get

c
0Dϕ(t)

t v(t) = K[DMPT
M(t) + AMVϕ(t)

m×mPT
M(t)] + f (t), (3.20)

AIMS Mathematics Volume 7, Issue 6, 10917–10938.



10928

approximating f (t) ≈ FMPT
M(t) in (3.20), we get

c
0Dϕ(t)

t v(t) = K[DMPT
M(t) + AMVϕ(t)

m×mPT
M(t)] + FMPT

M(t),

it implies

AMPT
M(t) − K[DMPT

M(t) + AMVϕ(t)
m×mPT

M(t)] − FMPT
M(t) = 0,

AMPT
M(t) − KDMPT

M(t) − KAMVϕ(t)
m×mPT

M(t) − FMPT
M(t) = 0,

AMPT
M(t) − KAMVϕ(t)

m×mPT
M(t) − KDMPT

M(t)FMPT
M(t) = 0,

Thus we have

AM − KAMVϕ(t)
m×m − (KDM + FM) = 0.

(3.21)

Hence (3.21) is the required Sylvester equation.

3.2. General algorithm for boundary value problems

Here we establish algorithm for boundary value problems.
Case I: We consider the following problem as:c

0Dϕ(t)
t v(t) = g(v), 1 < ϕ(t) ≤ 2,

v(0) = v0, v(1) = v1, where v0, v1 ∈ R,
(3.22)

we will approximate the given VOFDEs in Bernstein Basis as per previous practice. Let us assume that

Dϕ(t)v(t) = CMPT
M(t), (3.23)

applying ϕ(t) order integral on both sides of (3.23), we get

0Iϕ(t)
t Dϕ(t)v(t) = 0Iϕ(t)

t CMPT
M(t),

v(t) − d0 − d1t = CM0Iϕ(t)
t PT

M(t),
v(t) = d0 + d1t + CM0Iϕ(t)

t PT
M(t), (3.24)

applying initial conditions given in (3.22), we can find the values of d0 and d1 as

v(0) = d0 + d1(0) + CM0Iϕ(t)
0 PT

M(0).

Hence we get v0 = d0. Similarly the value of d1 is found in the same manner by applying the boundary
condition v(1) = v1,

v(1) = d0 + d1(1) + CM0Iϕ(t)
1 PT

M(1),

v1 = v0 + d1 + CM0Iϕ(t)
1 PT

M(1),

d1 = v1 − v0 −CM0Iϕ(t)
1 PT

M(1), (3.25)
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putting the values of d0 and d1 in (3.24) we can find our function v(t) as

v(t) = v0 + (v1 − v0 −CM0Iϕ(t)
1 PT

M(1))t + CM0Iϕ(t)
t PT

M(t). (3.26)

Which implies

v(t) = v0 +
(
v1 − v0 −CM0Iϕ(t)

1 PT
M(1)

)
+ CM0Iϕ(t)

t PT
M(t),

v(t) = v0 + (v1 − v0)t − t(CM0Iϕ(t)
1 PT

M(1)) + CM0Iϕ(t)
t PT

M(t). (3.27)

We approximate v0 + (v1 − v0)t in terms of BPs as

v0 + (v1 − v0)t � RMPT
M(t),

where RM is the coefficient matrix. We proceed as

t(0Iϕ(t)
1 CMPT

M(t)) ≈ DMBϕ(t)
m×mPT

M(t), (3.28)

0Iϕ(t)
t PT

M(t) ≈ CMVϕ(t)
m×mPT

M(t). (3.29)

Hence the Eq (3.27) become

v(t) = RMPT
M(t) + DMBϕ(t)

m×mPT
M(t) + CMVϕ(t)

m×mPT
M(t). (3.30)

Therefore, the given scalar problem in (3.22) is transformed to

CMPT
M(t) = g

(
RMPT

M(t) + DMBϕ(t)
m×mPT

M(t) + CMVϕ(t)
m×mPT

M(t),
)
. (3.31)

g(RMPt
M(t) + DMBϕ(t)

mtimesmPT
M(t) + CMVϕ(t)

m×mPT
M(t)) −CMPT

M(t) = 0. (3.32)

Hence the system in Eq (3.22) can be solved with the help of Matlab. Every model that is in the form of
the given system can be solved with the help of algorithm given in (3.32) by algebraic Sylvester matrix
equation.
Case II: If in (3.22) the linear function g : [0, 1] → R is selected such that g(v(t)) = v(t), then the given
problem become a homogenous VOFDE and can be converted into following the matrix equation by
using functions v(t) in (3.30) as

CMPT
M(t) − RMPT

M(t) − DMBϕ(t)
m×mPT

M(t) −CMVϕ(t)
m×mPT

M(t) = 0,
PT

M(CM − RM − DMBϕ(t)
m×m −CMVϕ(t)

m×m) = 0,

since BPs are positive therefore

CM −CMVϕ(t)
m×m − (DMBϕ(t)

m×m − RM) = 0,

which is the required matrix equation that can be solved for unknown matrix CM with Matlab.
Case III: If in (3.22) the linear function g : [0, 1] → R is selected in a way that it become a non-
homogeneous differential equation, that is , let g(v(t)) = Kv(t) + f (t), then the given problem become a
non-homogenous VOFDE as c

0Dϕ(t)
t v(t) = Kv(t) + f (t), 1 < ϕ(t) ≤ 2,

v(0) = v0, v(1) = v1, where v0, v1 ∈ R,
(3.33)
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Dϕ(t)v(t) = CMPT
M(t), (3.34)

applying fractional integral of order ϕ(t), we get

Iϕ(t)Dϕ(t)v(t) = Iϕ(t)CMPT
M(t),

v(t) − d0 − d1t = CMIϕ(t)PT
M(t),

v(t) = d0 + d1t + CMIϕ(t)PT
M(t), (3.35)

with the given initial conditions v(0) = v0, we get d0 = v0. Similarly when v(1) = v1, we have d1 =

v1 − v0 −CMIϕ(t)PT
M(1) hence the given unknown function become

v(t) = v0 + (v1 − v0 −CM0Iϕ(t)
1 PT

M(1))t + CM0Iϕ(t)
t PT

M(t). (3.36)

We take some approximations for v0 + (v1 − v0)t and f (t) as under

v0 + (v1 − v0)t ≈ RMPT
M(t),

f (t) ≈ FMPT
M(t), (3.37)

where by using Lemma 2.4 and Lemma 2.5, we get required approximations as

t(0Iϕ(t)
1 CMPT

M(t)) ≈ DMBϕ(t)
m×mPT

M(t),

0Iϕ(t)
t PT

M(t) ≈ CMVϕ(t)
m×mPT

M(t). (3.38)

Thus the Eq (3.36) becomes

v(t) = RMPT
M(t) − DMBϕ(t)

m×mPT
M(t) + CMVϕ(t)

m×mPT
M(t).

Also the given Eq (3.33) becomes

CMPT
M(t) = K[RMPT

M(t) − DMBϕ(t)
m×mPT

M(t) + CMVϕ(t)
m×mPT

M(t)] + FMPT
M(t),

CMPT
M(t) − K[RMPT

M(t) − DMBϕ(t)
m×mPT

M(t) + CMVϕ(t)
m×mPT

M(t)] − FMPT
M(t) = 0. (3.39)

From the Eq (3.39), we have

CM − K[RM − DMBϕ(t)
m×m + CMVϕ(t)

m×m] − FM = 0,
CM + KCMVϕ(t)

m×m + (KDMBϕ(t)
m×m − FM − KRM) = 0. (3.40)

The given equation in (3.40) is the required Sylvester equation, which can be solved for the unknown
matrix CM by using Matlab.

4. Numerical examples

Here we enrich this part by providing some examples. In this section we provide some examples for
the demonstration of our proposed single valued problems of fractional order via using the suggested
scheme.
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Example 4.1. Consider the given problem with boundary conditionsDϕ(t)v(t) = v(t), t ∈ [0, 1], 1 < ϕ(t) ≤ 2,
v(0) = 0, v(1) = 1.

(4.1)

The exact solution at fixed fractional order ϕ ∈ (1, 2] of the problem is given by

v(t) =
e

e2 − 1

(
Eϕ(tϕ) − Eϕ(−tϕ)

)
.

We approximate the solution at various scale level and different fractional order by using the proposed
method. In Figures 1 and 2, we give the detail graphically.

Figure 1. Comparison between exact and numerical solution and absolute errors at various
variable different fractional order for Example 4.1.

Figure 2. Comparison between exact and numerical solution and absolute errors at different
scale level Example 4.1.
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Example 4.2. Consider the given problem with boundary conditions
Dϕ(t)v(t) = 4v(t) +

720t6−ϕ(t)

Γ(7 − ϕ(t))
+

24t4−ϕ(t)

Γ(5 − ϕ(t))
+

2t2−ϕ(t)

Γ(3 − ϕ(t))
− 4(t6 + t4 + t2), t ∈ [0, 1], 1 < ϕ(t) ≤ 2,
v(0) = 0, v(1) = 3.

(4.2)

The exact solution of the problem at fixed order ϕ(t) = 2 is given by

v(t) = t6 + t4 + t2.

We approximate the solution at various scale level and different variable fractional order by using the
proposed method in Figures 3 and 4 respectively as:

Figure 3. Comparison between exact and numerical solution and absolute errors at various
variable fractional orders Example 4.2.

Figure 4. Comparison between exact and numerical solution and absolute errors at various
scale level for Example 4.2.
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From Figure 3, we see as ϕ(t) → 2 the solution converges to exact solution at order 2. Also as we
increase scale level the absolute error is decreasing and greater the scale level higher be the accuracy and
vice versa in Figure 4.

Example 4.3. Consider the given problem with boundary conditionsDϕ(t)v(t) = 3v(t) + f (t), t ∈ [0, 1], 1 < ϕ(t) ≤ 2,
v(0) = 2, v(1) = 3.71.

(4.3)

The exact solution of the problem at ϕ(t) is given by

v(t) = sin(2t), where f (t) = −7 sin(2t).

We approximate the solution at various scale level and different variable fractional order by using the
proposed method.

Figure 5. Comparison between exact and numerical solution and absolute errors at various
variable fractional order for Example 4.3.

Figure 6. Comparison between exact and numerical solution and absolute errors at various
scale level for Example 4.3.
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From Figure 5, we see as ϕ(t) → 2 the solution converges to exact solution at order 2. Also as we
increase the scale level, the absolute error is decreasing and greater the scale level higher be the accuracy
and vice versa. This process can be seen in Figure 6.

Remark 4.4. Here we tabulate the absolute error in above three examples 4.1–4.3 for different scale level
and fixing the order in Table 1. The CPU time complexity has been recorded in seconds.

Table 1. Absolute errors at different Scale level with fractional order ϕ(t) = 1.8 in given three
Examples 4.1–4.3.

Scale Level Example 4.1 CPU time Example 4.2 CPU time Example 4.3 CPU time
6 5.0 × 10−6 40.5 1.6 × 10−5 48.7 8.0 × 10−12 44.3
8 4.0 × 10−6 50.8 1.4 × 10−5 70.4 7.0 × 10−13 57.6
10 3.5 × 10−6 70.9 1.3 × 10−5 80.6 5.0 × 10−14 75.3
12 2 × 10−6 90.2 1.2 × 10−5 95.9 8.0 × 10−15 88.8
14 1.0 × 10−6 110.6 1.0 × 10−5 112.4 5.0 × 10−16 105.6

5. Conclusions and Discussion

We have established an algorithm for VOFDEs including both initial and BVPs. BPs have been applied
to construct operational matrices for variable order derivative and integrations. Based on these matrices
we have converted our considered problems to some algebraic type equations. By using Matlab we have
solved the concerned algebraic equation to get the required numerical solution. VOFDEs have greater
degree of freedom in choosing of order for more accurate results. Hence these can be used as a powerful
tool to describe various real world problems more accurately as compared to constant fractional order.
By graphical presentation we have shown the validity of our results. Further we see that our method is
scaling based method greater the scale more will be the accuracy and vice versa. Further our method
has been omitted discretization and collocation which help in saving memory from wasting. We have
also computed some theoretical analysis of time complexity in Table 1 which indicates that as the scale
level is enlarging, the corresponding time is also increase. This is the weakness of the method but not a
major drawback as the precision and accuracy is increasing. In future the above technique will be used
for numerical treatment of various dynamical systems under different kinds of fractional order operators.
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40. J. F. Gómez-Aguilar, Analytical and numerical solutions of a nonlinear alcoholism
model via variable-order fractional differential equations, Physica A, 494 (2018), 52–75.
https://doi.org/10.1016/j.physa.2017.12.007

41. C. J. Zúniga-Aguilar, H. M. Romero-Ugalde, J. F. Gómez-Aguilar, R. F. Escobar-Jiménez, M.
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