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1. Introduction 

Data is a valuable source of knowledge that contains helpful information if exploited effectively [1]. 

One of the challenges facing data researchers is the ambiguity and uncertainty of the data they have 

access to, which makes it difficult for them to process information. But these challenges are, in a 

positive sense, opportunities for the development of new techniques and tools, such as they various 

approaches based on fuzzy set theory [2]. The advent of fuzzy theory has prompted extensive work on 

ideas such as fuzzy sets [3], vague sets [4], soft sets [5], and neutrosophic sets [6]. It was originally 

thought that the development of new theories would eclipse fuzzy theory, but that does not seem to be 

the case [7]. This research field is becoming more and more active, with a number of fundamental 

contributions to the rapid development of new theories [8,9]. One of the most prominent applications 

is the use of fuzzy set theory in emerging and vibrant fields like machine learning [10,11] or topological 

data analysis [12,13]. 

In recent years, the study of soft sets [5] and neutrosophic sets [14] has become an attractive 

research area. Neutrosophic sets recently emerged as a tool for dealing with imprecise, indeterminate, 

and inconsistent data [15]. In contrast, soft sets show potential for dealing with uncertainties that 

classical methods cannot control [16]. Combining these two types of sets results in a unique hybrid 

structure, a neutrosophic soft set (NS-set) [17], for working effectively in uncertain environments. Maji 

proposed this [17,18] in 2013 and it was modified by Deli and Broumi [19] in 2015. Furthermore, 

Karaaslan [20] redefined this concept and its operations to be more efficient and complete. Since then, 

this structure has proved to be quite effective when applied in real life in many fields, such as decision 

making [17], market prediction [21], and medical diagnosis [22,23]. 

The topology on NS-sets is one of the issues that needs more attention, alongside neutrosophic 

topology [24,25] and soft topology [26]. This issue has emerged recently to help complete the overall 

picture for NS and aid its practical applications based on topology [27,28]. In 2017, Bera and 

Mahapatra [29] gave general operations to construct a topology on NS-sets. They also presented 

concepts related to topological space such as interior, closure, neighborhood, boundary, regularity, base, 

subspace, separation axioms, along with specific illustrations and proofs. In 2018, these authors [30] 

continued to develop further studies on connectedness and compactness on NS-topological space. 

In 2019, Ozturk, Aras, and Bayramov [31] introduced a new approach to topology on NS-sets. This 

approach is quite different from the previous work [29], and was further developed by constructing 

separation axioms [32] in the same year, 2018. Recently, the continuum [33] or compactness [34] on 

the topological space generated on NS-sets has also been studied with the same properties as the normal 

space. Many variations [35] of the topological space on NS-sets have also attracted the attention of 

researchers, and most of the related works are inspired by topology on neutrosophic and soft sets with 

the idea of a hybrid structure [36,37]. 

In this work, we construct the topological space and related concepts on NS-sets through general 

operations in a way that is very different from the work of Bera and Mahapatra [29,30], but more 

general than the work of Ozturk, Aras, and Bayramov [31,32], with our operations based on the 

generality of min and max operations. This work begins by defining two new operations to create the 

relationships between NS-sets. These relations are then used as the kernel for forming topology and 

topological relations on NS-sets. One emphasis shown here is on elucidating the relationship between 

the topology on NS-sets and the component fuzzy soft topologies. All the ideas in this work are 

presented convincingly and clearly through definitions, theorems, and their consequences. 
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In summary, the significant contributions of this study are as follows: 

(1) Defining two novel concepts, called min−norm and max−norm, to provide a theoretical 

foundation for determining operations on NS-sets, including intersection, union, difference, AND, and 

OR. 

(2) Constructing the topology, open set, closed set, interior, closure, and regularity concepts on 

NS-sets based on just determined operations. 

(3) Elucidating the relationship between the topology on NS-sets and the fuzzy soft topologies 

generated by truth, indeterminacy, falsity degrees by the theorems and counterexamples. 

(4) The concepts are well-defined, and the theorems are proved convincingly and logically. 

This work is organized as follows: Section 1 presents the motivation and introduces the significant 

contributions. Section 2 briefly introduces NS-sets and related concepts. The two new ideas, 

min−norm and max−norm, are provided in Section 3 as a theoretical foundation for determining 

operations on NS-sets, including intersection, union, difference, AND, and OR. In Section 4, the 

topology on NS-sets is defined with related concepts such as open set, closed set, interior, closure, and 

regularity. Furthermore, the relationship between the topology on NS-sets and the fuzzy soft topologies 

generated by truth, indeterminacy, and falsity functions by theorems and counterexamples in Section 5. 

The last section presents conclusions and future research trends in this area. 

2. Preliminaries 

This section recalls the NS-set proposed in 2013 by Maji [17,18], then modified and improved in 

2015 by Deli and Broumi [19]. This concept is based on combining soft [5] and neutrosophic [6] sets. 

Some background related to NS-sets is briefly presented below so that readers can better understand 

the following sections. 

Without loss of generality, we consider 𝑋 to be a universal set, ℰ to be a parameter set, and 

𝒩(𝑋) to denote the collection of all neutrosophic sets on 𝑋. 

Definition 1. ([18,19]). The pair (𝐴, ℰ)  is a NS-set on 𝑋  where 𝐴: ℰ ⟶ 𝒩(𝑋)  is a set valued 

function determined by 𝑒 ⟼ 𝐴(𝑒) ≔ 𝐴𝑒 with 

𝐴𝑒: 𝑋 ⟶]−0; 1+[×]−0; 1+[×]−0; 1+[ 

𝑥 ⟼ 𝐴𝑒(𝑥) ≔ 〈𝑇𝐴𝑒(𝑥); 𝐼𝐴𝑒(𝑥); 𝐹𝐴𝑒(𝑥)〉       (1) 

for all 𝑒 ∈ ℰ, and the real function triples 𝑇𝐴𝑒 , 𝐼𝐴𝑒 , 𝐹𝐴𝑒: 𝑋 ⟶]−0; 1+[ indicate truth, indeterminacy, 

and falsity degrees, respectively, with no restriction on their sum. 

In other words, the NS-set can be described as a set of ordered tuples as follows: 

(𝐴, ℰ) = {(𝑒, 𝐴(𝑒)): 𝑒 ∈ ℰ, 𝐴(𝑒) ∈ 𝒩(𝑋)}       (2) 

    = {(𝑒, 〈𝑥, 𝑇𝐴𝑒(𝑥), 𝐼𝐴𝑒(𝑥), 𝐹𝐴𝑒(𝑥)〉): 𝑒 ∈ ℰ, 𝑥 ∈ 𝑋}    (3) 

∶= {(𝑒,
𝑥

𝑇𝐴𝑒(𝑥),𝐼𝐴𝑒(𝑥),𝐹𝐴𝑒(𝑥)
) : 𝑒 ∈ ℰ, 𝑥 ∈ 𝑋}.     (4) 
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If nothing changes, the symbol 𝒩𝒮(𝑋) indicates the collection of all NS-sets on 𝑋. Besides, if 

the NS-sets consider the same parameter set ℰ, then it is not mentioned repeatedly in order to simplify 

the notations. Moreover, because the values of 𝑇, 𝐼, 𝐹 belong to the unit interval [0; 1], the integral 

part of the values is almost zero. Typically, it may occur that the integer part is omitted (for example, 

. 1 instead of 0.1). Therefore, if it does not lead to confusion, this omitted format of a decimal is 

always used in all the tables used in this paper. 

Definition 2. ([18,19]). 

a. ∅ℰ is a null NS-set if 

∀𝑒 ∈ ℰ, ∀𝑥 ∈ 𝑋, {

𝑇∅ℰ(𝑥) = 0

𝐼∅ℰ(𝑥) = 0

𝐹∅ℰ(𝑥) = 1

.        (5) 

b. ∅ℰ̃ is a semi-null NS-set if 

∃𝑒 ∈ ℰ, ∀𝑥 ∈ 𝑋, {

𝑇∅ℰ̃(𝑥) = 0

𝐼∅ℰ̃(𝑥) = 0

𝐹∅ℰ̃(𝑥) = 1

.        (6) 

c. 𝑋ℰ is an absolute NS-set if 

∀𝑒 ∈ ℰ, ∀𝑥 ∈ 𝑋, {

𝑇𝑋ℰ(𝑥) = 1

𝐼𝑋ℰ(𝑥) = 1

𝐹𝑋ℰ(𝑥) = 0

.        (7) 

d. 𝑋ℰ̃ is a semi-absolute NS-set if 

∃𝑒 ∈ ℰ, ∀𝑥 ∈ 𝑋, {

𝑇𝑋ℰ̃(𝑥) = 1

𝐼𝑋ℰ̃(𝑥) = 1

𝐹𝑋ℰ̃(𝑥) = 0

.        (8) 

Definition 3. ([19,31]). Let 𝐴 and 𝐵 be two NS-sets on 𝑋. 

a. 𝐴 is a NS-subset of 𝐵,written as 𝐴 ⊆ 𝐵, if 

∀𝑒 ∈ ℰ, ∀𝑥 ∈ 𝑋, {

𝑇𝐴𝑒(𝑥) ≤ 𝑇𝐵𝑒(𝑥)

𝐼𝐴𝑒(𝑥) ≤ 𝐼𝐵𝑒(𝑥)

𝐹𝐴𝑒(𝑥) ≥ 𝐹𝐵𝑒(𝑥)

.       (9) 

b. 𝐴 is a NS-superset of 𝐵,written as 𝐴 ⊇ 𝐵, if 𝐵 is a NS-subset of 𝐴. 

c. �̅� is the complement of 𝐴 if 

∀𝑒 ∈ ℰ, ∀𝑥 ∈ 𝑋, {

𝑇�̅�𝑒(𝑥) = 𝐹𝐴𝑒(𝑥)

𝐼�̅�𝑒(𝑥) = 1 − 𝐼𝐴𝑒(𝑥)

𝐹�̅�𝑒(𝑥) = 𝑇𝐴𝑒(𝑥)

.      (10) 

Example 1. Let two NS-sets 𝑀 and 𝑁 be represented in Table 1 as follows:  
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Table 1. NS-sets 𝑀 and 𝑁. 

𝑀 𝑒1 𝑒2 𝑁 𝑒1 𝑒2 

𝑥1 〈.2,.3,.4〉 〈.3,.5,.5〉 𝑥1 〈.3,.6,.1〉 〈.4,.5,.4〉 

𝑥2 〈.3,.4,.3〉 〈.6,.2,.4〉 𝑥2 〈.6,.5,.2〉 〈.7,.3,.2〉 

𝑥3 〈.3,.5,.2〉 〈.4,.4,.3〉 𝑥3 〈.4,.5,.3〉 〈.6,.3,.3〉 

𝑥4 〈.2,.7,.6〉 〈.3,.4,.3〉 𝑥4 〈.9,1,.4〉 〈.4,.5,.1〉 

Based on Eq (9) of Definition 3, 𝑀 ⊆ 𝑁. 

Example 2. The NS-set 𝑃 and its complement �̅� are represented according to Eq (10) in Table 2 as 

follows: 

Table 2. NS-sets 𝑃 and �̅�. 

𝑃 𝑒1 𝑒2 𝑒3 �̅� 𝑒1 𝑒2 𝑒3 

𝑥1 〈.9,.8,.2〉 〈.3,.7,.2〉 〈.4,.6,.3〉 𝑥1 〈.2,.2,.9〉 〈.2,.3,.3〉 〈.3,.4,.4〉 

𝑥2 〈.7,.6,.2〉 〈.3,.4,.6〉 〈.4,.3,.2〉 𝑥2 〈.2,.4,.7〉 〈.6,.6,.3〉 〈.2,.7,.4〉 

𝑥3 〈.3,.3,.5〉 〈.1,.2,.3〉 〈.9,.5,.8〉 𝑥3 〈.5,.7,.3〉 〈.3,.8,.1〉 〈.8,.5,.9〉 

Theorem 1. If 𝐴 ∈ 𝒩𝒮(𝑋), 

(1) �̅̅� = 𝐴, 

(2) ∅ℰ̅̅̅̅ = 𝑋ℰ, 

(3) ∅ℰ̃̅̅̅̅ = 𝑋ℰ̃, 

(4) 𝑋ℰ̅̅ ̅ = ∅ℰ, 

(5) 𝑋ℰ̃̅̅̅̅ = ∅ℰ̃. 

Proof. These properties are directly inferred from the definitions of the null, semi-null, absolute, semi-

absolute NS-sets and the complement operation. 

3. Another novel approach for operations on NS-sets 

In this section, we focus on defining two novel norms, called 𝑚𝑖𝑛−𝑛𝑜𝑟𝑚 and 𝑚𝑎𝑥−𝑛𝑜𝑟𝑚, 

as the foundations for determining operations on NS-sets in general. Each operation is well-defined 

along with its well-proven properties. 

3.1. 𝑚𝑖𝑛−𝑛𝑜𝑟𝑚 and 𝑚𝑎𝑥−𝑛𝑜𝑟𝑚 

Definition 4. A min−norm  is the binary operation •: [0; 1] × [0; 1] → [0,1]  that obeys the 

conditions as follows: 

(a) • has the commutative and associative properties, 

(b) ∀𝑥 ∈ [0,1], 𝑥•1 = 1•𝑥 = 𝑥, 

(c) ∀𝑥 ∈ [0,1], 𝑥•0 = 0•𝑥 = 0, 

(d) ∀𝑥, 𝑦 ∈ [0,1], 𝑥 ≥ 𝑥•𝑦. 

Definition 5. A max−norm  is the binary operation ∘: [0; 1] × [0; 1] → [0,1]  that obeys the 

following conditions: 
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(a) ∘ has the commutative and associative properties, 

(b) ∀𝑥 ∈ [0,1], 𝑥 ∘ 1 = 1 ∘ 𝑥 = 1, 

(c) ∀𝑥 ∈ [0,1], 𝑦 ∘ 0 = 0 ∘ 𝑥 = 𝑥, 

(d) ∀𝑥, 𝑦 ∈ [0,1], 𝑥 ≤ 𝑥 ∘ 𝑦. 

Definition 6. The min−norm  •  and max−norm  ∘  satisfy De Morgan’s law if they obey the 

following conditions: 

∀𝑥, 𝑦 ∈ [0,1], (1 − 𝑥) ∘ (1 − 𝑦) = 1 − 𝑥•𝑦,     (11) 

∀𝑥, 𝑦 ∈ [0,1], (1 − 𝑥)•(1 − 𝑦) = 1 − 𝑥 ∘ 𝑦.     (12) 

Some commonly used min−norm and max−norm are shown in Table 3. On the other hand, 

all of these norms satisfy De Morgan’s law in pairs. 

Table 3. Some commonly used min−norm • and max−norm ∘ satisfying the De Morgan’s law. 

 min−norms max−norms 

1 ∀𝑥, 𝑦 ∈ [0,1], 𝑥•𝑦 = 𝑥𝑦 ∀𝑥, 𝑦 ∈ [0,1], 𝑥 ∘ 𝑦 = 𝑥 + 𝑦 − 𝑥𝑦 

2 ∀𝑥, 𝑦 ∈ [0,1], 𝑥•𝑦 = min{𝑥, 𝑦} ∀𝑥, 𝑦 ∈ [0,1], 𝑥 ∘ 𝑦 = max{𝑥, 𝑦} 

3 ∀𝑥, 𝑦 ∈ [0,1], 𝑥•𝑦 = max{𝑥 + 𝑦 − 1,0} ∀𝑥, 𝑦 ∈ [0,1], 𝑥 ∘ 𝑦 = min{𝑥 + 𝑦, 1} 

3.2. Operations on NS-sets 

3.2.1. Intersection 

Definition 7. The intersection of the two NS-sets 𝐴 and 𝐵, written as 𝐴 ∩ 𝐵, is determined by 

∀𝑒 ∈ ℰ, ∀𝑥 ∈ 𝑋, {

𝑇𝐴∩𝐵𝑒(𝑥) = 𝑇𝐴𝑒(𝑥)•𝑇𝐵𝑒(𝑥)

𝐼𝐴∩𝐵𝑒(𝑥) = 𝐼𝐴𝑒(𝑥)•𝐼𝐵𝑒(𝑥)

𝐹𝐴∩𝐵𝑒(𝑥) = 𝐹𝐴𝑒(𝑥) ∘ 𝐹𝐵𝑒(𝑥)

.     (13) 

Example 3. Let two NS-sets 𝐴 and 𝐵 be represented in Table 4 as follows: 

Table 4. NS-sets 𝐴 and 𝐵. 

𝐴 𝑒1 𝑒2 𝐵 𝑒1 𝑒2 

𝑥1 〈.2,.4,.5〉 〈.5,.2,.8〉 𝑥1 〈.7,.2,.7〉 〈.6,0,.5〉 

𝑥2 〈.1,.4,.3〉 〈. 8, .9, .4〉 𝑥2 〈.3,.9,.1〉 〈.7,.7,.9〉 

𝑥3 〈.1,.2,.7〉 〈. 8, .9, .4〉 𝑥3 〈.6,.4,.7〉 〈.8,.1,0〉 

If using min−norms  𝑥•𝑦 = max{𝑥 + 𝑦 − 1,0}  and max−norms  𝑥 ∘ 𝑦 = min{𝑥 + 𝑦, 1} , 

the intersection 𝐴 ∩ 𝐵  of the two above NS-sets is described according to Eq (13) in Table 5 as 

follows:  
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Table 5. NS-sets 𝐴 ∩ 𝐵. 

𝐴 ∩ 𝐵 𝑒1 𝑒2 

𝑥1 〈0,0,1〉 〈. 1,0,1〉 

𝑥2 〈0, .3, .4〉 〈. 5, .6,1〉 

𝑥3 〈0,0,1〉 〈. 6,0, .4〉 

Theorem 2. If 𝐴, 𝐵, 𝐶 ∈ 𝒩𝒮(𝑋), 

(1) 𝐴 ∩ 𝐴 = 𝐴, 

(2) 𝐴 ∩ ∅ℰ = ∅ℰ, 

(3) 𝐴 ∩ ∅ℰ̃ = ∅ℰ̃, 

(4) 𝐴 ∩ 𝑋ℰ = 𝐴, 

(5) 𝐴 ∩ 𝑋ℰ̃ = 𝐴, 

(6) 𝐴 ∩ (𝐵 ∩ 𝐶) = (𝐴 ∩ 𝐵) ∩ 𝐶, 

(7) 𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐴. 

Proof. These properties are directly inferred from the definitions of norms and intersection operation. 

Definition 8. Let (𝐴𝑖)𝑖∈𝐼 be a collection of NS-sets on 𝑋. The intersection of the collection of NS-

sets (𝐴𝑖)𝑖∈𝐼 , written as ⋂ 𝐴𝑖𝑖∈𝐼 , is determined by 

∀𝑒 ∈ ℰ, ∀𝑥 ∈ 𝑋,

{
 
 

 
 𝑇⋂ 𝐴𝑖𝑖∈𝐼 𝑒

(𝑥) = •
𝑖∈𝐼
{𝑇𝐴𝑖𝑒

(𝑥)}

𝐼⋂ 𝐴𝑖𝑖∈𝐼 𝑒
(𝑥) = •

𝑖∈𝐼
{𝐼𝐴𝑖𝑒

(𝑥)}

𝐹⋂ 𝐴𝑖𝑖∈𝐼 𝑒
(𝑥) = ∘

𝑖∈𝐼
{𝐹𝐴𝑖𝑒

(𝑥)}

.     (14) 

3.2.2. Union 

Definition 9. The union of the two NS-sets 𝐴 and 𝐵,written as 𝐴 ∪ 𝐵, is determined by 

∀𝑒 ∈ ℰ, ∀𝑥 ∈ 𝑋, {

𝑇𝐴∪𝐵𝑒(𝑥) = 𝑇𝐴𝑒(𝑥) ∘ 𝑇𝐵𝑒(𝑥)

𝐼𝐴∪𝐵𝑒(𝑥) = 𝐼𝐴𝑒(𝑥) ∘ 𝐼𝐵𝑒(𝑥)

𝐹𝐴∪𝐵𝑒(𝑥) = 𝐹𝐴𝑒(𝑥)•𝐹𝐵𝑒(𝑥)

.     (15) 

Example 4. If using min−norms  𝑥•𝑦 = max{𝑥 + 𝑦 − 1,0}  and max−norms  𝑥 ∘ 𝑦 = min{𝑥 +

𝑦, 1}, the union 𝐴 ∪ 𝐵 of the two above NS-sets 𝐴 and 𝐵 in Example 3 is described according to 

Eq (14) in Table 6 as follows: 

Table 6. NS-sets 𝐴 ∪ 𝐵. 

𝐴 ∪ 𝐵 𝑒1 𝑒2 

𝑥1 〈.9,.6,.2〉 〈1,.2,.3〉 

𝑥2 〈.4,1,1〉 〈1,1,.3〉 

𝑥3 〈.7,.6,.4〉 〈1,1,0〉 

Theorem 3. If 𝐴, 𝐵, 𝐶 ∈ 𝒩𝒮(𝑋), 

(1) 𝐴 ∪ 𝐴 = 𝐴, 
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(2) 𝐴 ∪ ∅ℰ = 𝐴, 

(3) 𝐴 ∪ ∅ℰ̃ = 𝐴, 

(4) 𝐴 ∪ 𝑋ℰ = 𝑋ℰ, 

(5) 𝐴 ∪ 𝑋ℰ̃ = 𝑋ℰ̃, 

(6) 𝐴 ∪ (𝐵 ∪ 𝐶) = (𝐴 ∪ 𝐵) ∪ 𝐶, 

(7) 𝐴 ∪ 𝐵 = 𝐵 ∪ 𝐴. 

Proof. These properties are directly inferred from the definitions of norms and union operation. 

Theorem 4. If the min−𝑛𝑜𝑟𝑚 and max−𝑛𝑜𝑟𝑚 satisfy De Morgan’s law, for all 𝐴, 𝐵 ∈ 𝒩𝒮(𝑋), 

(1) 𝐴 ∩ 𝐵̅̅ ̅̅ ̅̅ ̅ = �̅� ∪ �̅�, 

(2) 𝐴 ∪ 𝐵̅̅ ̅̅ ̅̅ ̅ = �̅� ∩ �̅�. 

Proof. 

(1) ∀𝑒 ∈ ℰ, ∀𝑥 ∈ 𝑋, 

{

𝑇𝐴∩𝐵̅̅ ̅̅ ̅̅ 𝑒
(𝑥) = 𝐹𝐴∩𝐵𝑒 = 𝐹𝐴𝑒(𝑥) ∘ 𝐹𝐵𝑒(𝑥)

𝐼𝐴∩𝐵̅̅ ̅̅ ̅̅ 𝑒
(𝑥) = 1 − 𝐼𝐴∩𝐵𝑒 = 1 − 𝐼𝐴𝑒(𝑥)•𝐼𝐵𝑒(𝑥)

𝐹𝐴∩𝐵̅̅ ̅̅ ̅̅ 𝑒
(𝑥) = 𝑇𝐴∩𝐵𝑒 = 𝑇𝐴𝑒(𝑥)•𝑇𝐵𝑒(𝑥)

,      (16) 

and 

{

𝑇�̅�∪�̅�𝑒 (𝑥) = 𝑇�̅�𝑒(𝑥) ∘ 𝑇�̅�𝑒(𝑥) = 𝐹𝐴𝑒(𝑥) ∘ 𝐹𝐵𝑒(𝑥)

𝐼�̅�∪�̅�𝑒(𝑥) = 𝐼�̅�𝑒(𝑥) ∘ 𝐼�̅�𝑒(𝑥) = (1 − 𝐼𝐴𝑒(𝑥)) ∘ (1 − 𝐼𝐵𝑒(𝑥))

𝐹�̅�∪�̅�𝑒(𝑥) = 𝐹�̅�𝑒(𝑥)•𝐹�̅�𝑒(𝑥) = 𝑇𝐴𝑒(𝑥)•𝑇𝐵𝑒(𝑥)

.  (17) 

Moreover, 

(1 − 𝐼𝐴𝑒(𝑥)) ∘ (1 − 𝐼𝐵𝑒(𝑥)) = 1 − 𝐼𝐴𝑒(𝑥)•𝐼𝐵𝑒(𝑥),     (18) 

due to De Morgan’s law of the min−norm and max−norm. Therefore, 

∀𝑒 ∈ ℰ, ∀𝑥 ∈ 𝑋, {

𝑇𝐴∩𝐵̅̅ ̅̅ ̅̅ 𝑒
(𝑥) = 𝑇�̅�∪�̅�𝑒(𝑥)

𝐼𝐴∩𝐵̅̅ ̅̅ ̅̅ 𝑒
(𝑥) = 𝐼�̅�∪�̅�𝑒(𝑥)

𝐹𝐴∩𝐵̅̅ ̅̅ ̅̅ 𝑒
(𝑥) = 𝐹�̅�∪�̅�𝑒(𝑥)

.       (19) 

(2) ∀𝑒 ∈ ℰ, ∀𝑥 ∈ 𝑋, 

{

𝑇𝐴∪𝐵̅̅ ̅̅ ̅̅ 𝑒
(𝑥) = 𝐹𝐴∪𝐵𝑒 = 𝐹𝐴𝑒(𝑥)•𝐹𝐵𝑒(𝑥)

𝐼𝐴∪𝐵̅̅ ̅̅ ̅̅ 𝑒
(𝑥) = 1 − 𝐼𝐴∪𝐵𝑒 = 1 − 𝐼𝐴𝑒(𝑥) ∘ 𝐼𝐵𝑒(𝑥)

𝐹𝐴∪𝐵̅̅ ̅̅ ̅̅ 𝑒
(𝑥) = 𝑇𝐴∪𝐵𝑒 = 𝑇𝐴𝑒(𝑥) ∘ 𝑇𝐵𝑒(𝑥)

,      (20) 

and 

{

𝑇�̅�∩�̅�𝑒(𝑥) = 𝑇�̅�𝑒(𝑥)•𝑇�̅�𝑒(𝑥) = 𝐹𝐴𝑒(𝑥)•𝐹𝐵𝑒(𝑥)

𝐼�̅�∩�̅�𝑒(𝑥) = 𝐼�̅�𝑒(𝑥)•𝐼�̅�𝑒(𝑥) = (1 − 𝐼𝐴𝑒(𝑥)) • (1 − 𝐼𝐵𝑒(𝑥))

𝐹�̅�∩�̅�𝑒(𝑥) = 𝐹�̅�𝑒(𝑥) ∘ 𝐹�̅�𝑒(𝑥) = 𝑇𝐴𝑒(𝑥) ∘ 𝑇𝐵𝑒(𝑥)

.   (21) 
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Moreover, 

(1 − 𝐼𝐴𝑒(𝑥)) • (1 − 𝐼𝐵𝑒(𝑥)) = 1 − 𝐼𝐴𝑒(𝑥) ∘ 𝐼𝐵𝑒(𝑥),    (22) 

due to De Morgan’s law of the min−norm and max−norm. Therefore, 

∀𝑒 ∈ ℰ, ∀𝑥 ∈ 𝑋, {

𝑇𝐴∪𝐵̅̅ ̅̅ ̅̅ 𝑒
(𝑥) = 𝑇�̅�∩�̅�𝑒(𝑥)

𝐼𝐴∪𝐵̅̅ ̅̅ ̅̅ 𝑒
(𝑥) = 𝐼�̅�∩�̅�𝑒(𝑥)

𝐹𝐴∪𝐵̅̅ ̅̅ ̅̅ 𝑒
(𝑥) = 𝐹�̅�∩�̅�𝑒(𝑥)

.      (23) 

The distributive properties between intersection and union operations are not satisfied in the case 

of these general operations. Counterexamples are shown in Example 5. 

Example 5. Let the NS-set 𝐶 be represented in Table 7 as follows: 

Table 7. NS-sets 𝐶. 

𝐶 𝑒1 𝑒2 

𝑥1 〈.2,.1,.9〉 〈.3,.2,.6〉 

𝑥2 〈.3,.7,.6〉 〈.8,.2,.5〉 

𝑥3 〈.2,.1,.4〉 〈.3,.2,.5〉 

If using min−norm 𝑥•𝑦 = max{𝑥 + 𝑦 − 1,0} and max−norm 𝑥 ∘ 𝑦 = min{𝑥 + 𝑦, 1} with 

the two above NS-sets 𝐴  and 𝐵  in Example 3, the two NS-sets 𝐴 ∩ (𝐵 ∪ 𝐶)  and (𝐴 ∩ 𝐵) ∪

(𝐴 ∩ 𝐶) can be described in Table 8 as follows: 

Table 8. NS-sets 𝐴 ∩ (𝐵 ∪ 𝐶) and (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶). 

𝐴 ∩ (𝐵 ∪ 𝐶) 𝑒1 𝑒2 (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶) 𝑒1 𝑒2 

𝑥1 〈.1,0,1〉 〈.4,0,.9〉 𝑥1 〈0,0,1〉 〈.1,0,1〉 

𝑥2 〈0,1,.3〉 〈.8,.8,.8〉 𝑥2 〈0,.4,.3〉 〈.6,.1,.9〉 

𝑥3 〈0,0,.8〉 〈.8,.2,.4〉 𝑥3 〈0,0,1〉 〈.1,.1,.9〉 

Therefore, 𝐴 ∩ (𝐵 ∪ 𝐶) ≠ (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶). Similarly, see Table 9: 

Table 9. NS-sets 𝐴 ∩ (𝐵 ∪ 𝐶) ≠ (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶). 

𝐴 ∪ (𝐵 ∩ 𝐶) 𝑒1 𝑒2 (𝐴 ∪  𝐵) ∩ (𝐴 ∪ 𝐶) 𝑒1 𝑒2 

𝑥1 〈.2,.4,.5〉 〈.5,.2,.8〉 𝑥1 〈.3,.1,.6〉 〈.8,0,.7〉 

𝑥2 〈.1,1,0〉 〈1,.9,.4〉 𝑥2 〈0,1,1〉 〈1,1,.3〉 

𝑥3 〈.1,.2,.7〉 〈.9,.9,0〉 𝑥3 〈0,0,.5〉 〈1,1,0〉 

Therefore, 𝐴 ∪ (𝐵 ∩ 𝐶) ≠ (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶). 

Definition 10. Let (𝐴𝑖)𝑖∈𝐼 be a collection of NS-sets on 𝑋. The union of the collection of NS-sets 

(𝐴𝑖)𝑖∈𝐼 , written as ⋃ 𝐴𝑖𝑖∈𝐼 , is determined by 



9612 

AIMS Mathematics  Volume 7, Issue 6, 9603–9626. 

∀𝑒 ∈ ℰ, ∀𝑥 ∈ 𝑋,

{
 
 

 
 𝑇⋃ 𝐴𝑖𝑖∈𝐼 𝑒

(𝑥) = ∘
𝑖∈𝐼
{𝑇𝐴𝑖𝑒

(𝑥)}

𝐼⋃ 𝐴𝑖𝑖∈𝐼 𝑒
(𝑥) = ∘

𝑖∈𝐼
{𝐼𝐴𝑖𝑒

(𝑥)}

𝐹⋃ 𝐴𝑖𝑖∈𝐼 𝑒
(𝑥) = •

𝑖∈𝐼
{𝐹𝐴𝑖𝑒

(𝑥)}

.     (24) 

3.2.3. Difference 

Definition 11. The difference of the two NS-sets 𝐴 and 𝐵,written as 𝐴\𝐵, is determined by 𝐴\𝐵 =

𝐴 ∩ �̅�, i.e., 

∀𝑒 ∈ ℰ, ∀𝑥 ∈ 𝑋, {

𝑇𝐴\𝐵𝑒(𝑥) = 𝑇𝐴𝑒(𝑥)•𝐹𝐵𝑒(𝑥)

𝐼𝐴\𝐵𝑒(𝑥) = 𝐼𝐴𝑒(𝑥)• (1 − 𝐼𝐵𝑒(𝑥))

𝐹𝐴\𝐵𝑒(𝑥) = 𝐹𝐴𝑒(𝑥) ∘ 𝑇𝐵𝑒(𝑥)

.    (25) 

Example 6. If using min−norm  𝑥•𝑦 = max{𝑥 + 𝑦 − 1,0}  and max−norm  𝑥 ∘ 𝑦 = min{𝑥 +

𝑦, 1}, the difference 𝐴\𝐵 of the two above NS-sets 𝐴 and 𝐵 in Example 3 is described according 

to Eq (25), see Table 10: 

Table 10. NS-sets 𝐴\𝐵. 

𝐴\𝐵 𝑒1 𝑒2 

𝑥1 〈0,.2,1〉 〈0,.2,1〉 

𝑥2 〈0,0,.6〉 〈.7,.2,1〉 

𝑥3 〈0,0,1〉 〈0,.8,1〉 

Theorem 5. If the min−𝑛𝑜𝑟𝑚 and max−𝑛𝑜𝑟𝑚 satisfy De Morgan’s law, for all 𝐴, 𝐵, 𝐶 ∈ 𝒩𝒮(𝑋), 

(1) 𝐴\𝐵 ⊆ 𝐴, 

(2) 𝐴\𝐵̅̅ ̅̅ ̅̅ = �̅� ∪ 𝐵, 

(3) �̅�\�̅� = 𝐵\𝐴, 

(4) 𝐴\(𝐵 ∪ 𝐶) = (𝐴\𝐵) ∩ (𝐴\𝐶), 

(5) (𝐴 ∩ 𝐵)\𝐶 = (𝐴\𝐶) ∩ (𝐵\𝐶), 

(6) (𝐴\𝐵) ∩ (𝐶\𝐷) = (𝐶\𝐵) ∩ (𝐴\𝐷) = (𝐴 ∩ 𝐶)\(𝐵 ∪ 𝐷). 

Proof. 

(1) ∀𝑒 ∈ ℰ, ∀𝑥 ∈ 𝑋, {

𝑇𝐴\𝐵𝑒(𝑥) = 𝑇𝐴𝑒(𝑥)•𝑇𝐵𝑒(𝑥) ≤ 𝑇𝐴𝑒(𝑥)

𝐼𝐴\𝐵𝑒(𝑥) = 𝐼𝐴𝑒(𝑥)• (1 − 𝐼𝐵𝑒(𝑥)) ≤ 𝐼𝐴𝑒(𝑥)

𝐹𝐴\𝐵𝑒(𝑥) = 𝐹𝐴𝑒(𝑥) ∘ 𝐹𝐵𝑒(𝑥) ≥ 𝐹𝐴𝑒(𝑥)

. This implies that 𝐴\𝐵 ⊆ 𝐴. 

(2) 𝐴\𝐵̅̅ ̅̅ ̅̅ = 𝐴 ∩ �̅�̅̅ ̅̅ ̅̅ ̅ = �̅� ∪ �̿� = �̅� ∪ 𝐵 due to Theorem 1. 

(3) �̅�\�̅� = �̅� ∩ �̿� = �̅� ∩ 𝐵 = 𝐵 ∩ �̅� = 𝐵\𝐴. 

(4) 𝐴\(𝐵 ∪ 𝐶) = 𝐴 ∩ 𝐵 ∪ 𝐶̅̅ ̅̅ ̅̅ ̅ = 𝐴 ∩ (�̅� ∩ 𝐶̅) = (𝐴 ∩ �̅�) ∩ (𝐴 ∩ 𝐶̅) = (𝐴\𝐵) ∩ (𝐴\𝐶)  due to 

Theorems 3 and 4. 

(5) (𝐴 ∩ 𝐵)\𝐶 = (𝐴 ∩ 𝐵) ∩ 𝐶̅ = (𝐴 ∩ 𝐶̅) ∩ (𝐵 ∩ 𝐶̅) = (𝐴\𝐶) ∩ (𝐵\𝐶) due to Theorem 3. 

(6) (𝐴\𝐵) ∩ (𝐶\𝐷) = (𝐴 ∩ �̅�) ∩ (𝐶 ∩ �̅�) = (𝐶 ∩ �̅�) ∩ (𝐴 ∩ �̅�) = (𝐶\𝐵) ∩ (𝐴\𝐷)  due to 

Theorem 3. 
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(7) (𝐴\𝐵) ∩ (𝐶\𝐷) = (𝐴 ∩ �̅�) ∩ (𝐶 ∩ �̅�) = (𝐴 ∩ 𝐶) ∩ (�̅� ∩ �̅�) = (𝐴 ∩ 𝐶) ∩ 𝐵 ∪ 𝐷̅̅ ̅̅ ̅̅ ̅̅ = (𝐴 ∩

𝐶)\(𝐵 ∪ 𝐷) due to Theorems 3 and 4. 

3.2.4. AND and OR 

Definition 12. The AND operation of the two NS-sets 𝐴 and B with the same parameter set ℰ, written 

as 𝐴 ∧ 𝐵, is determined over the same parameter set ℰ × ℰ by 

∀(𝑒1, 𝑒2) ∈ ℰ × ℰ, ∀𝑥 ∈ 𝑋, {

𝑇𝐴∧𝐵(𝑒1,𝑒2)
(𝑥) = 𝑇𝐴𝑒1

(𝑥)•𝑇𝐵𝑒2
(𝑥)

𝐼𝐴∧𝐵(𝑒1,𝑒2)
(𝑥) = 𝐼𝐴𝑒1

(𝑥)•𝐼𝐵𝑒2
(𝑥)

𝐹𝐴∧𝐵(𝑒1,𝑒2)
(𝑥) = 𝐹𝐴𝑒1

(𝑥) ∘ 𝐹𝐵𝑒2
(𝑥)

.   (26) 

Definition 13. The OR operation of the two NS-sets 𝐴 and B with the same parameter set ℰ, written 

as 𝐴 ∧ 𝐵, is determined over the same parameter set ℰ × ℰ by 

∀(𝑒1, 𝑒2) ∈ ℰ × ℰ, ∀𝑥 ∈ 𝑋, {

𝑇𝐴∨𝐵(𝑒1,𝑒2)
(𝑥) = 𝑇𝐴𝑒1

(𝑥) ∘ 𝑇𝐵𝑒2
(𝑥)

𝐼𝐴∨𝐵(𝑒1,𝑒2)
(𝑥) = 𝐼𝐴𝑒1

(𝑥) ∘ 𝐼𝐵𝑒2
(𝑥)

𝐹𝐴∨𝐵(𝑒1,𝑒2)
(𝑥) = 𝐹𝐴𝑒1

(𝑥)•𝐹𝐵𝑒2
(𝑥)

.   (27) 

Example 7. If using min−norm  𝑥•𝑦 = max{𝑥 + 𝑦 − 1,0}  and max−norm  𝑥 ∘ 𝑦 = min{𝑥 +

𝑦, 1}, the AND 𝐴 ∧ 𝐵 and OR 𝐴 ∨ 𝐵 operations of the two above NS-sets 𝐴 and 𝐵 in Example 3 

is described according to Eqs (26) and (27) in Table 11 as follows: 

Table 11. NS-sets 𝐴 ∧ 𝐵 and 𝐴 ∨ 𝐵. 

𝐴 ∧ 𝐵 (𝑒1, 𝑒1) (𝑒1, 𝑒2) (𝑒2, 𝑒1) (𝑒2, 𝑒2) 𝐴 ∨ 𝐵 (𝑒1, 𝑒1) (𝑒1, 𝑒2) (𝑒2, 𝑒1) (𝑒2, 𝑒2) 

𝑥1 〈0,0,1〉 〈0,0,1〉 〈.2,0,1〉 〈.1,0,1〉 𝑥1 〈.9,.6,.2〉 〈.8,.4,1〉 〈1,.4,.5〉 〈1,.2,.3〉 

𝑥2 〈0,.3,.4〉 〈0,.1,1〉 〈.1,.8,.5〉 〈.5,.6,1〉 𝑥2 〈.4,1,1〉 〈.8,1,.2〉 〈1,1,0〉 〈1,1,.3〉 

𝑥3 〈0,0,1〉 〈0,0,.7〉 〈.4,.3,.1〉 〈.6,0,.4〉 𝑥3 〈.7,.6,.4〉 〈.9,.3,0〉 〈1,1,.1〉 〈1,1,0〉 

Theorem 6. If the min−𝑛𝑜𝑟𝑚 and max−𝑛𝑜𝑟𝑚 satisfy De Morgan’s law, for all 𝐴, 𝐵 ∈ 𝒩𝒮(𝑋), 

(1) 𝐴 ∧ 𝐵̅̅ ̅̅ ̅̅ ̅ = �̅� ∨ �̅�, 

(2) 𝐴 ∨ 𝐵̅̅ ̅̅ ̅̅ ̅ = �̅� ∧ �̅�. 

Proof. 

(1) ∀(𝑒1, 𝑒2) ∈ ℰ × ℰ, ∀𝑥 ∈ 𝑋, 

{

𝑇𝐴∧𝐵̅̅ ̅̅ ̅̅ (𝑒1,𝑒2)
(𝑥) = 𝐹𝐴∧𝐵(𝑒1,𝑒2)

= 𝐹𝐴𝑒1
(𝑥) ∘ 𝐹𝐵𝑒2

(𝑥)

𝐼𝐴∧𝐵̅̅ ̅̅ ̅̅ (𝑒1,𝑒2)
(𝑥) = 1 − 𝐼𝐴∧𝐵(𝑒1,𝑒2)

= 1 − 𝐼𝐴𝑒1
(𝑥)•𝐼𝐵𝑒2

(𝑥)

𝐹𝐴∧𝐵̅̅ ̅̅ ̅̅ (𝑒1,𝑒2)
(𝑥) = 𝑇𝐴∧𝐵(𝑒1,𝑒2)

= 𝑇𝐴𝑒1
(𝑥)•𝑇𝐵𝑒2

(𝑥)

,     (28) 

and 
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{
 
 

 
 𝑇�̅�∨�̅�(𝑒1,𝑒2)

(𝑥) = 𝑇�̅�𝑒1
(𝑥) ∘ 𝑇�̅�𝑒2

(𝑥) = 𝐹𝐴𝑒1
(𝑥) ∘ 𝐹𝐵𝑒2

(𝑥)

𝐼�̅�∨�̅�(𝑒1,𝑒2)
(𝑥) = 𝐼�̅�𝑒1(𝑥) ∘ 𝐼�̅�𝑒2

(𝑥) = (1 − 𝐼𝐴𝑒1
(𝑥)) ∘ (1 − 𝐼𝐵𝑒2(𝑥))

𝐹�̅�∨�̅�(𝑒1,𝑒2)
(𝑥) = 𝐹�̅�𝑒1

(𝑥)•𝐹�̅�𝑒2
(𝑥) = 𝑇𝐴𝑒1

(𝑥)•𝑇𝐵𝑒2
(𝑥)

.  (29) 

Moreover, 

(1 − 𝐼𝐴𝑒1
(𝑥)) ∘ (1 − 𝐼𝐵𝑒2(𝑥)) = 1 − 𝐼𝐴𝑒(𝑥)•𝐼𝐵𝑒(𝑥),    (30) 

due to De Morgan’s law of the min−norm and max−norm. Therefore, 

∀(𝑒1, 𝑒2) ∈ ℰ × ℰ, ∀𝑥 ∈ 𝑋, {

𝑇𝐴∧𝐵̅̅ ̅̅ ̅̅ (𝑒1,𝑒2)
(𝑥) = 𝑇�̅�∨�̅�(𝑒1,𝑒2)

(𝑥)

𝐼𝐴∧𝐵̅̅ ̅̅ ̅̅ (𝑒1,𝑒2)
(𝑥) = 𝐼�̅�∨�̅�(𝑒1,𝑒2)

(𝑥)

𝐹𝐴∧𝐵̅̅ ̅̅ ̅̅ (𝑒1,𝑒2)
(𝑥) = 𝐹�̅�∨�̅�(𝑒1,𝑒2)

(𝑥)

.    (31) 

(2) ∀(𝑒1, 𝑒2) ∈ ℰ × ℰ, ∀𝑥 ∈ 𝑋, 

{

𝑇𝐴∨𝐵̅̅ ̅̅ ̅̅ (𝑒1,𝑒2)
(𝑥) = 𝐹𝐴∨𝐵(𝑒1,𝑒2)

= 𝐹𝐴𝑒1
(𝑥)•𝐹𝐵𝑒2

(𝑥)

𝐼𝐴∨𝐵̅̅ ̅̅ ̅̅ (𝑒1,𝑒2)
(𝑥) = 1 − 𝐼𝐴∨𝐵(𝑒1,𝑒2)

= 1 − 𝐼𝐴𝑒1
(𝑥) ∘ 𝐼𝐵𝑒2

(𝑥)

𝐹𝐴∨𝐵̅̅ ̅̅ ̅̅ (𝑒1,𝑒2)
(𝑥) = 𝑇𝐴∨𝐵(𝑒1,𝑒2)

= 𝑇𝐴𝑒1
(𝑥) ∘ 𝑇𝐵𝑒2

(𝑥)

,     (32) 

and 

{
 
 

 
 𝑇�̅�∧�̅�(𝑒1,𝑒2)

(𝑥) = 𝑇�̅�𝑒1
(𝑥)•𝑇�̅�𝑒2

(𝑥) = 𝐹𝐴𝑒1
(𝑥)•𝐹𝐵𝑒2

(𝑥)

𝐼�̅�∧�̅�(𝑒1,𝑒2)
(𝑥) = 𝐼�̅�𝑒1(𝑥)•𝐼�̅�𝑒2

(𝑥) = (1 − 𝐼𝐴𝑒1
(𝑥)) • (1 − 𝐼𝐵𝑒2(𝑥))

𝐹�̅�∧�̅�(𝑒1,𝑒2)
(𝑥) = 𝐹�̅�𝑒1

(𝑥) ∘ 𝐹�̅�𝑒2
(𝑥) = 𝑇𝐴𝑒1

(𝑥) ∘ 𝑇𝐵𝑒2
(𝑥)

.  (33) 

Moreover, 

(1 − 𝐼𝐴𝑒1
(𝑥)) • (1 − 𝐼𝐵𝑒2(𝑥)) = 1 − 𝐼𝐴𝑒1

(𝑥) ∘ 𝐼𝐵𝑒2
(𝑥),    (34) 

due to De Morgan’s law of the min−norm and max−norm. Therefore, 

∀(𝑒1, 𝑒2) ∈ ℰ × ℰ, ∀𝑥 ∈ 𝑋, {

𝑇𝐴∨𝐵̅̅ ̅̅ ̅̅ (𝑒1,𝑒2)
(𝑥) = 𝑇�̅�∧�̅�(𝑒1,𝑒2)

(𝑥)

𝐼𝐴∨𝐵̅̅ ̅̅ ̅̅ (𝑒1,𝑒2)
(𝑥) = 𝐼�̅�∧�̅�(𝑒1,𝑒2)

(𝑥)

𝐹𝐴∨𝐵̅̅ ̅̅ ̅̅ (𝑒1,𝑒2)
(𝑥) = 𝐹�̅�∧�̅�(𝑒1,𝑒2)

(𝑥)

.    (35) 

4. Topology on NS-sets 

This section uses the operations just constructed above as the core to build the topology and 

related concepts on NS-sets. It is important to note that the norms used must satisfy De Morgan’s law. 
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4.1. NS-topological space 

Definition 14. A collection 𝜏 ⊆ 𝒩𝒮(𝑋) is NS-topology on 𝑋 if it obeys the following properties: 

(a) ∅ℰ and 𝑋ℰ belongs to 𝜏, 

(b) The intersection of any finite collection of 𝜏’s elements belongs to 𝜏, 

(c) The union of any collection of 𝜏’s elements belongs to 𝜏. 

Then, the pair (𝑋, 𝜏) is a NS-topological space and each element of 𝜏 is a NS-open set. 

Example 8. Let three NS-sets 𝐾1, 𝐾2, 𝐾3 be represented in Table 12 as follows: 

Table 12. NS-sets 𝐾1, 𝐾2, 𝐾3. 

𝐾1 𝑒1 𝑒2 𝐾2 𝑒1 𝑒2 𝐾3 𝑒1 𝑒2 

𝑥1 〈.2,.2,1〉 〈.5,.5,.7〉 𝑥1 〈.3,.3,.9〉 〈.6,.6,.6〉 𝑥1 〈.4,.4,.8〉 〈.7,.7,.5〉 

𝑥2 〈.3,.3,.9〉 〈.6,.6,.6〉 𝑥2 〈.4,.4,.8〉 〈.7,.7,.5〉 𝑥2 〈.5,.5,.7〉 〈.8,.8,.4〉 

𝑥3 〈.4,.4,.8〉 〈0,.9,1〉 𝑥3 〈.5,.5,.7〉 〈.8,.8,.4〉 𝑥3 〈.6,.6,.6〉 〈.9,.9,.3〉 

If using the min−norm  𝑥•𝑦 = min{𝑥, 𝑦} , max−norm  𝑥 ∘ 𝑦 = max{𝑥, 𝑦} , the collection 

𝜏 = {∅ℰ , 𝑋ℰ , 𝐾1, 𝐾2, 𝐾3} is a NS-topology. 

Theorem 7. 

(1) 𝜏0 = {∅ℰ , 𝑋ℰ} is a NS-topology (anti-discrete). 

(2) 𝜏∞ = 𝒩𝒮(𝑋) is a NS-topology (discrete). 

(3) If 𝜏1 and 𝜏2 are two NS-topologies, 𝜏1 ∩ 𝜏2 is a NS-topology. 

Proof. This proof focuses on the proof of Property 3 because Properties 1 and 2 are directly inferred. 

• ∅ℰ , 𝑋ℰ ∈ 𝜏1; ∅ℰ , 𝑋ℰ ∈ 𝜏2 ⇒ ∅ℰ , 𝑋ℰ ∈ 𝜏1 ∩ 𝜏2. 

• If {𝐾𝑗}1
𝑛

 is a finite family of NS-sets in 𝜏1 ∩ 𝜏2, 𝐾𝑖 ∈ 𝜏1 and 𝐾𝑖 ∈ 𝜏2 for all 𝑖. So ∩ {𝐾𝑗}1
𝑛
∈

𝜏1 and {𝐾𝑗}1
𝑛
∈ 𝜏2. Thus ∩ {𝐾𝑗}1

𝑛
∈ 𝜏1 ∩ 𝜏2. 

• If letting {𝐾𝑖|𝑖 ∈ 𝐼} be a family of NS-sets in 𝜏1 ∩ 𝜏2, 𝐾𝑖 ∈ 𝜏1 and 𝐾𝑖 ∈ 𝜏2 for all 𝑖 ∈ 𝐼. So 

∪𝑖∈𝐼 𝐾𝑖 ∈ 𝜏1 and ∪𝑖∈𝐼 𝐾𝑖 ∈ 𝜏2. Therefore, ∪𝑖∈𝐼 𝐾𝑖 ∈ 𝜏1 ∩ 𝜏2. 

It should be noted that if 𝜏1 and 𝜏2 are two NS-topologies, 𝜏1 ∪ 𝜏2 cannot be a NS-topology. 

Counterexamples are shown in Example 9. 

Example 9. Let three NS-sets 𝐻1, 𝐻2, 𝐻3 be represented in Table 13 as follows: 

Table 13. NS-sets 𝐾1, 𝐾2, 𝐾3. 

𝐻1 𝑒1 𝑒2 𝐻2 𝑒1 𝑒2 𝐻3 𝑒1 𝑒2 

𝑥1 〈1,0,1〉 〈0,1,0〉 𝑥1 〈0,1,0〉 〈1,0,1〉 𝑥1 〈1,0,1〉 〈1,0,1〉 

𝑥2 〈1,0,1〉 〈0,1,0〉 𝑥2 〈0,1,0〉 〈1,0,1〉 𝑥2 〈1,0,1〉 〈1,0,1〉 

If using the min−norm  𝑥•𝑦 = 𝑥𝑦 , max−norm  𝑥 ∘ 𝑦 = 𝑥 + 𝑦 − 𝑥𝑦  and letting 𝜏1 =

{∅ℰ , 𝑋ℰ , 𝐻1, 𝐻2}  and 𝜏2 = {∅ℰ , 𝑋ℰ , 𝐻3}  be two NS-topologies, the collection 𝜏1 ∪ 𝜏2 =

{∅ℰ , 𝑋ℰ , 𝐻1, 𝐻2, 𝐻3} is not a NS-topology due to 𝐻1 ∪ 𝐻2 ∉ 𝜏1 ∪ 𝜏2, see Table 14. 
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Table 14. NS-sets 𝐻1 ∪ 𝐻2. 

𝐻1 ∪ 𝐻2 𝑒1 𝑒2 

𝑥1 〈1,0,1〉 〈1,1,0〉 

𝑥2 〈1,0,1〉 〈1,1,0〉 

Definition 15. A NS-set 𝐴 ∈ 𝒩𝒮(𝑋) is NS-closed set if it has the complement �̅� is a NS-open set. 

The symbol 𝜏̅ is denoted as the collection of all NS-closed sets. 

Theorem 8. 

(1) ∅ℰ and 𝑋ℰ belongs to 𝜏̅. 

(2) The union of any finite collection of 𝜏̅’s elements belongs to 𝜏̅. 

(3) The intersection of any collection of 𝜏̅’s elements belongs to 𝜏̅. 

Proof. These properties are directly inferred from the definitions of a NS-closed set and De Morgan’s 

law for intersection and union. 

4.2. NS-interior 

Definition 16. The NS-interior of a NS-set 𝐴,written as int(𝐴), is the union of all NS-open subsets 

of 𝐴. It is considered the biggest NS-open set which is contained by 𝐴. 

Example 10. Let three NS-sets 𝐿1, 𝐿2, 𝐾 be represented as follows: 

Table 15. NS-sets 𝐿1, 𝐿2, 𝐾. 

𝐿1 𝑒1 𝑒2 𝐿2 𝑒1 𝑒2 𝐾 𝑒1 𝑒2 

𝑥1 〈.7,.8,.3〉 〈.4,.5,.8〉 𝑥1 〈.3,.2,.7〉 〈.6,.5,.2〉 𝑥1 〈.8,.8,.3〉 〈.8,.8,.3〉 

𝑥2 〈.5,.2,.6〉 〈.3,.4,.2〉 𝑥2 〈.5,.8,.4〉 〈.7,.6,.8〉 𝑥2 〈.4,.6,.5〉 〈.4,.6,.5〉 

If using the min−norm  𝑥•𝑦 = max{𝑥 + 𝑦 − 1,0} , max−norm =min{𝑥 + 𝑦, 1} , the 

collection 𝜏 = {∅ℰ , 𝑋ℰ , 𝐿1, 𝐿2} is the NS-topology. It is easy to see that ∅ℰ , 𝐿1 ⊆ 𝐾 and ∅ℰ ∪ 𝐿1 =

𝐿1 ⊆ 𝐾. Therefore, int(𝐾) = 𝐴. 

Theorem 9. A NS-set 𝐴 is a NS-open set if and only if 𝐴 = int(𝐴). 

Proof. If 𝐴 ∈ 𝜏 then 𝐴 is the biggest NS-open set that is contained by 𝐴. So 𝐴 = int(𝐴). Conversely, 

𝐴 = int(𝐴) ∈ 𝜏. 

Theorem 10. If 𝐴, 𝐵 ∈ 𝒩𝒮(𝑋), 

(1) int(int(𝐴)) = int(𝐴), 

(2) int(∅ℰ) = ∅ℰ and int(𝑋ℰ) = 𝑋ℰ, 

(3) 𝐴 ⊆ 𝐵 ⇒ int(𝐴) ⊆ int(𝐵), 
(4) int(𝐴 ∩ 𝐵) = int(𝐴) ∩ int(𝐵), 
(5) int(𝐴) ∪ int(𝐵) ⊆ int(𝐴 ∪ 𝐵). 

Proof. 

(1) Due to int(𝐴) ∈ 𝜏, int(int(𝐴)) = int(𝐴). 

(2) ∅ℰ ∈ 𝜏 ⟹ int(∅ℰ) = ∅ℰ and 𝑋ℰ ∈ 𝜏 ⟹ int(𝑋ℰ) = 𝑋ℰ . 
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(3) Due to 𝐴 ⊆ 𝐵 , int(𝐴) ⊆ 𝐴 ⊆ 𝐵  and int(𝐵) ⊆ 𝐵 . Because int(𝐵)  is the biggest NS-

open set contained in 𝐵, int(𝐴) ⊆ int(𝐵). 

(4) Since int(𝐴) ∈ 𝜏 and int(𝐵) ∈ 𝜏, then int(𝐴) ∪ int(𝐵) ∈ 𝜏. It is known that int(𝐴) ⊆ 𝐴 

and int(𝐵) ⊆ 𝐵, so int(𝐴) ∪ int(𝐵) ⊆ 𝐴 ∪ 𝐵. Moreover, int(𝐴 ∪ 𝐵) is the biggest NS-

open set contained in 𝐴 ∪ 𝐵. Therefore, int(𝐴) ∪ int(𝐵) ⊆ int(𝐴 ∪ 𝐵). 

(5) Since int(𝐴 ∩ 𝐵) ⊆ 𝐴 ∩ 𝐵 , so int(𝐴 ∩ 𝐵) ⊆ 𝐴  and int(𝐴 ∩ 𝐵) ⊆ 𝐵.  Therefore, 

int(𝐴 ∩ 𝐵) ⊆ int(𝐴) and int(𝐴 ∩ 𝐵) ⊆ int(𝐵) or int(𝐴 ∩ 𝐵) ⊆ int(𝐴) ∩ int(𝐵). 

Moreover, 

{
int(𝐴) ∩ int(𝐵) ⊆ int(𝐴) ⊆ 𝐴
int(𝐴) ∩ int(𝐵) ⊆ int(𝐵) ⊆ 𝐵

⟹ int(𝐴) ∩ int(𝐵) ⊆ 𝐴 ∩ 𝐵 

and int(𝐴 ∩ 𝐵) is the biggest NS-open set contained in 𝐴 ∩ 𝐵, so 

int(𝐴) ∩ int(𝐵) ⊆ int(𝐴 ∩ 𝐵). 

Thus, int(𝐴 ∩ 𝐵) = int(𝐴) ∩ int(𝐵). 

4.3. NS-closure 

Definition 17. The NS-closure of a NS-set 𝐴,written as cl(𝐴), is the intersection of all NS-closed 

supersets of 𝐴. The cl(𝐴) is the smallest NS-closed set which contains 𝐴. 

Example 11. For the NS-topology 𝜏 given in Example 10, let NS-set 𝐻 be represented in Table 16 as 

follows: 

Table 16. NS-sets 𝐻. 

𝐻 𝑒1 𝑒2 𝐿1̅̅ ̅ 𝑒1 𝑒2 𝑒1 𝑒2 

𝑥1 〈.2,.2,.8〉 〈.2,.2,.8〉 𝑥1 〈.3,.2,.7〉 〈.8,.5,.4〉 〈.7,.8,.3〉 〈.2,.5,.6〉 

𝑥2 〈.3,.4,.8〉 〈.3,.4,.8〉 𝑥2 〈.6,.8,.5〉 〈.2,.6,.3〉 〈.4,.2,.5〉 〈.8,.4,.7〉 

It is easy to see that ∅ℰ̅̅̅̅ = 𝑋ℰ, 𝑋ℰ̅̅ ̅ = ∅ℰ. So ∅ℰ, 𝑋ℰ, 𝐿1̅̅ ̅̅ , 𝐿2̅̅ ̅ are all NS-closed sets. Since 𝐻 ⊆

𝑋ℰ, cl(𝐻) = 𝐿2. 

Theorem 11. A NS-set 𝐴 is a NS-closed set if and only if 𝐴 = cl(𝐴). 

Proof. Let 𝐴  be a NS-closed set. Because 𝐴 ⊆ 𝐴  and cl(𝐴)  is the smallest NS-closed set that 

contains 𝐴, cl(𝐴) ⊆ 𝐴. Therefore, 𝐴 = cl(𝐴). Conversely, if 𝐴 = cl(𝐴) then 𝐴 is a NS-closed set. 

Theorem 12. If 𝐴, 𝐵 ∈ 𝒩𝒮(𝑋), 

(1) cl(cl(𝐴)) = cl(𝐴), 

(2) cl(∅ℰ) = ∅ℰ and cl(𝑋ℰ) = 𝑋ℰ, 

(3) 𝐴 ⊆ 𝐵 ⇒ cl(𝐴) ⊆ cl(𝐵), 

(4) cl(𝐴 ∩ 𝐵) ⊆ cl(𝐴) ∩ cl(𝐵), 

(5) cl(𝐴 ∪ 𝐵) = cl(𝐴) ∪ cl(𝐵). 

Proof. 

(1) Directly inferring from Theorem 9. 

(2) Directly inferring from Definition 14 and Theorem 9. 
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(3) Since 𝐴 ⊆ 𝐵 ⊆ cl(𝐵) and cl(𝐴) is the smallest NS-closed set containing 𝐴, cl(𝐴) ⊆ cl(𝐵). 

(4) Since 𝐴 ∩ 𝐵 ⊆ 𝐴 ⊆ cl(𝐴)  and 𝐴 ∩ 𝐵 ⊆ 𝐵 ⊆ cl(𝐵) , 𝐴 ∩ 𝐵 ⊆ cl(𝐴) ∩ cl(𝐵).  Therefore, 

cl(𝐴 ∩ 𝐵) ⊆ cl(𝐴) ∩ cl(𝐵). 

(5) It is easy to see that 𝐴 ⊆ 𝐴 ∪ 𝐵 ⊆ cl(𝐴 ∪ 𝐵), 𝐵 ⊆ 𝐴 ∪ 𝐵 ⊆ cl(𝐴 ∪ 𝐵), cl(𝐴) is the smallest 

NS-closed set that contains A, and cl(𝐵) is the smallest NS-closed set that containing 𝐵. So 

cl(𝐴) ⊆ cl(𝐴 ∪ 𝐵) and cl(𝐵) ⊆ cl(𝐴 ∪ 𝐵). Therefore, cl(𝐴) ∪ cl(𝐵) ⊆ cl(𝐴 ∪ 𝐵). 

Moreover, since 𝐴 ⊆ cl(𝐴)  and 𝐵 ⊆ cl(𝐵) , 𝐴 ∪ 𝐵 ⊆ cl(𝐴) ∪ cl(𝐵) . Therefore, cl(𝐴 ∪ 𝐵) ⊆

cl(𝐴) ∪ cl(𝐵). 

Thus, cl(𝐴 ∪ 𝐵) = cl(𝐴) ∪ cl(𝐵). 

Theorem 13. If 𝐴, 𝐵 ∈ 𝒩𝒮(𝑋), 

(1) int(𝐴)̅̅ ̅̅ ̅̅ ̅̅ = cl(�̅�), 

(2) cl(𝐴)̅̅ ̅̅ ̅̅ ̅ = int(�̅�). 

Proof. 

(1) Because 

int(𝐴) =∪𝑖∈𝐼 {𝐻𝑖 ∈ 𝜏:𝐻𝑖 ⊆ 𝐴}, 

int(𝐴)̅̅ ̅̅ ̅̅ ̅̅ =∪𝑖∈𝐼 {𝐻𝑖 ∈ 𝜏:𝐻𝑖 ⊆ 𝐴}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =∩𝑖∈𝐼 {𝐻𝑖̅̅ ̅ ∈ 𝜏̅: 𝐻𝑖̅̅ ̅ ⊇  �̅�} = cl(�̅�).  (36) 

(2) Because 

cl(𝐴) =∪𝑖∈𝐼 {𝐻𝑖 ∈ 𝜏̅: 𝐻𝑖 ⊇ 𝐴}, 

cl(𝐴)̅̅ ̅̅ ̅̅ ̅ = [∩𝑖∈𝐼 {𝐻𝑖 ∈ 𝜏̅: 𝐻𝑖 ⊇  𝐴}]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =∪𝑖∈𝐼 {𝐻𝑖̅̅ ̅ ∈ 𝜏: 𝐻𝑖̅̅ ̅ ⊆ �̅�} = int(�̅�). (37) 

4.4. NS-boundary 

Definition 18. The NS-boundary of a NS-set 𝐴,written as 𝜕𝐴, is the intersection of the NS-closure 

of 𝐴 and the NS-closure of �̅�. 

Example 12. For the NS-topology 𝜏 given in Example 10 and the NS-set 𝐻 given in Example 11, the 

complement of 𝐻 is represented in Table 17 as follows: 

Table 17. NS-sets �̅�. 

�̅� 𝑒1 𝑒2 

𝑥1 〈.8,.8,.2〉 〈.8,.8,.2〉 

𝑥2 〈.8,.6,.3〉 〈.8,.6,.3〉 

It is easy to see that cl(𝐻) = 𝑋ℰ and cl(�̅�) = 𝑋ℰ. So 𝜕𝐻 = 𝑋ℰ ∩ 𝑋ℰ = 𝑋ℰ. 

Theorem 14. If 𝐴 ∈ 𝒩𝒮(𝑋), 

(1) 𝜕𝐴 = cl(𝐴) ∩ int(𝐴)̅̅ ̅̅ ̅̅ ̅̅ , 

(2) int(𝐴) ∩ 𝜕𝐴 = ∅ℰ, 

(3) 𝜕𝐴 = ∅ℰ if and only if 𝐴 is a NS-open and NS-closed set. 

Proof. 

(1) ∂𝐴 = cl(𝐴) ∩ cl(�̅�)=cl(𝐴) ∩ int(𝐴)̅̅ ̅̅ ̅̅ ̅̅  due to Theorem 13. 
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(2) It is easy to see that 

int(𝐴) ∩ ∂(𝐴) = int(𝐴) ∩ cl(𝐴) ∩ cl(�̅�) = int(𝐴) ∩ cl(𝐴) ∩ int(𝐴)̅̅ ̅̅ ̅̅ ̅̅  

= int(𝐴) ∩ int(𝐴)̅̅ ̅̅ ̅̅ ̅̅ ∩ cl(𝐴) = ∅ℰ  

due to Theorem 13. 

(3) Since 

∂(𝐴) = cl(𝐴) ∩ cl(�̅�) = cl(𝐴) ∩ int(𝐴)̅̅ ̅̅ ̅̅ ̅̅ = ∅ℰ , 

cl(𝐴) ∩ int(𝐴) ≠ ∅ℰ. So 𝐴 ⊆ cl(𝐴) ⊆ int(𝐴) ⊆ 𝐴. Therefore, 𝐴 = cl(𝐴) = int(𝐴) or 𝐴 is 

a NS-open and NS-closed set. 

Conversely, if 𝐴 is a NS-open and NS-closed set, 𝐴 = int(𝐴) and 𝐴 = cl(𝐴). Therefore, 

∂(𝐴) = cl(𝐴) ∩ cl(�̅�)=cl(𝐴) ∩ int(𝐴)̅̅ ̅̅ ̅̅ ̅̅ = cl(𝐴) ∩ cl(𝐴)̅̅ ̅̅ ̅̅ ̅ = ∅ℰ. 

4.5. Regular property 

Definition 19. 

a. The NS-open set 𝑀 is regular if 𝑀 = int(cl(𝑀)). 

b. The NS-closed set 𝑀 is regular if 𝑀 = cl(int(𝑀)). 

Theorem 15. If 𝑀,𝑁 ∈ 𝒩𝒮(𝑋), 

(1) If 𝑀 is a NS-closed set, int(𝑀) is a regular NS-open set. 

(2) If 𝑀 is a NS-open set, cl(𝑀) is a regular NS-closed set. 

(3) If 𝑀 and 𝑁 are two regular NS-open sets, 𝑀 ⊆ 𝑁 ⇔ cl(𝑀) ⊆ cl(𝑁). 

(4) If 𝑀 and 𝑁 are two regular NS-closed sets, 𝑀 ⊆ 𝑁 ⇔ int(𝑀) ⊆ int(𝑁). 

(5) If 𝑀 is a regular NS-closed set, �̅� is a regular NS-open set. 

(6) If 𝑀 is a regular NS-open set, �̅� is a regular NS-closed set. 

Proof. 

(1) If 𝑀 is a NS-closed set, 

int(𝑀) ⊆ 𝑀 ⟹ cl[int(𝑀)] ⊆ cl(𝑀) = 𝑀 ⟹ int[cl(int(𝑀))] ⊆ int(𝑀).  (38) 

int(𝑀) ⊆ cl(int(𝑀)) ⟹ int(int(𝑀)) = int(𝑀) ⊆ int[cl(int(𝑀))].  (39) 

Therefore, int(𝑀) = int[cl(int(𝑀))] or int(𝑀) is regular. 

(2) If 𝑀 is a NS-open set, 

int(cl(𝑀)) ⊆ cl(𝑀) ⟹ cl (int(cl(𝑀))) ⊆ cl(cl(𝑀)) = cl(𝑀).   (40) 

Because int(𝑀) = 𝑀, 

𝑀 ⊆ cl(𝑀) ⟹ int(𝑀) = 𝑀 ⊆ int(cl(𝑀)) ⟹ cl(𝑀) ⊆ cl (int(cl(𝑀))).  (41) 

Therefore, cl(𝑀) = cl (int(cl(𝑀))) or cl(𝑀) is regular. 

(3) Clearly, 𝑀 ⊆ 𝑁 ⟹ cl(𝑀)  ⊆ cl(𝑁)  and int(cl(𝑀)) = 𝑀 , int(cl(𝑁)) = 𝑁  due to 𝑀,𝑁 

are regular. Conversely, 
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cl(𝑀) ⊆ cl(𝑁) ⟹ int(cl(𝑀)) = 𝑀 ⊆ int(cl(𝑁)) = 𝑁 ⟹ 𝑀 ⊆ 𝑁. 

(4) Clearly, 𝑀 ⊆ 𝑁 ⟹ int(𝑀)  ⊆ int(𝑁)  and 𝑀 = cl(int(𝑀)) , 𝑁 = cl(int(𝑁))  due to 

𝑀,𝑁 are regular. Conversely, 

int(𝑀) ⊆ int(𝑁) ⟹ cl(int(𝑀)) = 𝑀 ⊆ cl(int(𝑁)) = 𝑁 ⟹ 𝑀 ⊆ 𝑁. 

(5) If 𝑀 is a regular NS-open set, 𝑀 = int(cl(𝑀)). So 

cl(int(�̅�)) = cl(cl(𝑀)̅̅ ̅̅ ̅̅ ̅) = int(cl(𝑀))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = �̅�. 

Therefore, �̅� is a regular NS-closed set. 

(6) Similarly, if 𝑀 is a regular NS-closed set, int(cl(�̅�)) = �̅�. So �̅� is a regular NS-open 

set. 

5. The relationship between NS-topology and fuzzy soft topology 

Theorem 16. Let 𝜏 = {𝐾𝑖: 𝑖 ∈ 𝐼} be NS-topology on 𝑋 where 

𝐾𝑖 = {(𝑒,
𝑥

𝑇
𝐾𝑒
𝑖 (𝑥),𝐼𝐾𝑒

𝑖 (𝑥),𝐹𝐾𝑒
𝑖 (𝑥)

) : 𝑒 ∈ ℰ, 𝑥 ∈ 𝑋}.     (42) 

Three collections 

𝒯 = (𝒯𝑖)𝑖∈𝐼 = {(𝑒, 〈𝑥, 𝑇𝐾𝑒𝑖
(𝑥)〉) : 𝑒 ∈ ℰ, 𝑥 ∈ 𝑋},     (43) 

ℐ = (ℐ𝑖)𝑖∈𝐼 = {(𝑒, 〈𝑥, 𝐼𝐾𝑒𝑖
(𝑥)〉) : 𝑒 ∈ ℰ, 𝑥 ∈ 𝑋},     (44) 

ℱ = (ℱ𝑖)𝑖∈𝐼 = {(𝑒, 〈𝑥, 1 − 𝐹𝐾𝑒𝑖
(𝑥)〉) : 𝑒 ∈ ℰ, 𝑥 ∈ 𝑋},   (45) 

are the fuzzy soft topologies on 𝑋. 

Proof. 

• ∅ℰ ∈ 𝜏 ⇒ ∅̃ ∈ 𝒯, ∅̃ ∈ ℐ, ∅̃ ∈ ℱ. 

• 𝑋ℰ ∈ 𝜏 ⇒ �̃� ∈ 𝒯; �̃� ∈ ℐ; �̃� ∈ ℱ. 

• Let (𝒯𝑖)𝑖∈𝐼 be a family of fuzzy soft sets in 𝒯, (ℐ𝑖)𝑖∈𝐼 be a family of fuzzy soft sets in ℐ, 

and (ℱ𝑖)𝑖∈𝐼 be a family of fuzzy soft sets in ℱ. They make a family of NS-sets {𝐾𝑖: 𝑖 ∈ 𝐼} 

where 

𝐾𝑖 = {(𝑒,
𝑥

𝑇
𝐾𝑒
𝑖 (𝑥),𝐼𝐾𝑒

𝑖 (𝑥),𝐹𝐾𝑒
𝑖 (𝑥)

) : 𝑒 ∈ ℰ, 𝑥 ∈ 𝑋} ∈ 𝜏.     (46) 

So ∪𝑖∈𝐼 𝐾𝑖 ∈ 𝜏 or 

∪𝑖∈𝐼 𝐾𝑖 = {(𝑒,
𝑥

∘
𝑖∈𝐼
{𝑇𝐾𝑖𝑒

(𝑥)}, ∘
𝑖∈𝐼
{𝐼𝐾𝑖𝑒

(𝑥)}, •
𝑖∈𝐼
{𝐹𝐾𝑖𝑒

(𝑥)}
) : 𝑒 ∈ ℰ, 𝑥 ∈ 𝑋} ∈ 𝜏.  (47) 

Therefore, 
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{[〈 ∘
𝑖∈𝐼
{𝑇𝐾𝑖𝑒

(𝑥)}〉 : 𝑥 ∈ 𝑋]
𝑒∈ℰ
} =∪

𝑖∈𝐼
̃ {𝑇𝐾𝑖𝑒

(𝑋): 𝑒 ∈ ℰ} ∈ 𝒯,      (48) 

{[〈 ∘
𝑖∈𝐼
{𝑇𝐾𝑖𝑒

(𝑥)}〉 : 𝑥 ∈ 𝑋]
𝑒∈ℰ
} =∪

𝑖∈𝐼
̃ {𝐼𝐾𝑖𝑒

(𝑋): 𝑒 ∈ ℰ} ∈ ℐ,      (49) 

{[〈 •
𝑖∈𝐼
{𝐹𝐾𝑖𝑒

(𝑥)}〉 : 𝑥 ∈ 𝑋]
𝑒∈ℰ
}
𝐶

 

= {[〈1 − •
𝑖∈𝐼
{𝐹𝐾𝑖𝑒

(𝑥)}〉 : 𝑥 ∈ 𝑋]
𝑒∈ℰ
} 

        = {[〈 ∘
𝑖∈𝐼
{(1 − 𝐹𝐾𝑖(𝑒)(𝑎))}〉 : 𝑎 ∈ 𝑋]

𝑒∈𝐸
} 

  =∪
𝑖∈𝐼
̃ {(𝐼𝐾𝑖(𝑒)(𝑋))𝑒∈ℰ

𝐶

} ∈ ℱ.         (50) 

• Let {𝒯𝑗 ∈ 𝒯}1
𝑛

, {ℐ𝑗 ∈ ℐ}1
𝑛
,  {ℱ𝑗 ∈ ℱ}1

𝑛
 be finite families of fuzzy soft sets on 𝑋 and satisfy 

𝐾𝑗 = {(𝑒,
𝑥

𝑇
𝐾𝑒
𝑗 (𝑥),𝐼

𝐾𝑒
𝑗 (𝑥),𝐹

𝐾𝑒
𝑗 (𝑥)

) : 𝑒 ∈ ℰ, 𝑥 ∈ 𝑋} ∈ 𝜏.    (51) 

So, we have ∩1
𝑛 𝐾𝑗 ∈ 𝜏, i.e., 

∩1
𝑛 𝐾𝑗 = {(𝑒,

𝑥

{•𝑇𝐾𝑖𝑒
(𝑥)}

1

𝑛
,{•𝐼𝐾𝑖𝑒

(𝑥)}
1

𝑛
,{∘𝐹𝐾𝑖𝑒

(𝑥)}
1

𝑛) : 𝑒 ∈ ℰ, 𝑥 ∈ 𝑋}.   (52) 

Hence, 

[{{•𝑇𝐾𝑖𝑒
(𝑥)}

1

𝑛

: 𝑥 ∈ 𝑋}
𝑒∈ℰ
] =∩̃1

𝑛 {[𝑇𝐾𝑖𝑒
(𝑋)]

𝑒∈ℰ
} ∈ 𝒯,    (53) 

[{{•𝐼𝐾𝑖𝑒
(𝑥)}

1

𝑛

: 𝑥 ∈ 𝑋}
𝑒∈ℰ
] =∩̃1

𝑛 {[𝐼𝐾𝑖𝑒
(𝑋)]

𝑒∈ℰ
} ∈ ℐ,     (54) 

{[{∘ 𝐹𝐾𝑖𝑒
(𝑥)}

1

𝑛

: 𝑥 ∈ 𝑋]
𝑒∈ℰ
}
𝐶

 

= {[1 − {∘ 𝐹𝐾𝑖𝑒
(𝑥)}

1

𝑛

: 𝑥 ∈ 𝑋]
𝑒∈ℰ
} 

= {[• {1 − 𝐹𝐾𝑖𝑒
(𝑥)}

1

𝑛

: 𝑥 ∈ 𝑋]
𝑒∈ℰ
} 

           =∩̃1
𝑛 {[𝐼𝐾𝑖𝑒

(𝑋)]
𝑒∈ℰ
} ∈ ℱ.         (55) 

In the general case, the opposite of Theorem 16 is not true. This is demonstrated through a 

counterexample, as shown in Example 13. 

Example 13. Let four NS-sets 𝐻1, 𝐻2, and 𝐻3 be represented in Table 18 as follows:  
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Table 18. NS-sets 𝐻1, 𝐻2, and 𝐻3. 

  𝑒1 𝑒2 

𝐻1 

𝑥1 〈. 25, .25, .75〉 〈. 25, .25, .75〉 

𝑥2 〈
1

3
,
1

3
,
1

3
〉 〈

1

3
,
1

3
,
1

3
〉 

𝐻2 𝑥1 〈. 5, .75, .5〉 〈. 5, .75, .5〉 

𝑥2 〈
1

3
,
2

3
,
2

3
〉 〈

1

3
,
2

3
,
2

3
〉 

𝐻3 𝑥1 〈. 75, .5, .25〉 〈. 75, .5, .25〉 

𝑥2 〈
2

3
,
1

3
,
1

3
〉 〈

2

3
,
1

3
,
1

3
〉 

𝐻1 ∪ 𝐻2 𝑥1 〈. 75,1, .25〉 〈. 75,1, .25〉 

𝑥2 〈
2

3
, 1,0〉 〈

2

3
, 1,0〉 

If using the min−norm  𝑥•𝑦 = max{𝑥 + 𝑦 − 1,0} , max−norm =min{𝑥 + 𝑦, 1} , three 

collections defined in Table 19 as follows are the fuzzy soft topologies on 𝑋. 

Table 19. NS-sets 𝒯, ℐ, and ℱ. 

  𝑒1 𝑒2 

𝒯 

∅̃ 〈0,0〉 〈0,0〉 

�̃� 〈1,1〉 〈1,1〉 

𝒯1 〈. 25,
1

3
〉 〈. 25,

1

3
〉 

𝒯2 〈. 5,
1

3
〉 〈. 5,

1

3
〉 

𝒯3 〈. 75,
2

3
〉 〈. 75,

2

3
〉 

ℐ 

∅̃ 〈0,0〉 〈0,0〉 

�̃� 〈1,1〉 〈1,1〉 

ℐ1 〈. 25,
1

3
〉 〈. 25,

1

3
〉 

ℐ2 〈. 75,
2

3
〉 〈. 75,

2

3
〉 

ℐ3 〈. 5,
1

3
〉 〈. 5,

1

3
〉 

ℱ 

∅̃ 〈0,0〉 〈0,0〉 

�̃� 〈1,1〉 〈1,1〉 

ℱ1 〈. 25,
1

3
〉 〈. 25,

1

3
〉 

ℱ2 〈. 5,
1

3
〉 〈. 5,

1

3
〉 

ℱ3 〈. 75,
2

3
〉 〈. 75,

2

3
〉 

The 𝒯, ℐ, ℱ are fuzzy soft topologies on 𝑋, but 𝜏 = {∅ℰ , 𝑋ℰ , 𝐻1, 𝐻2, 𝐻3 } is not a NS- topology on 𝑋 
because 𝐻1 ∪ 𝐻2 ∉ 𝜏. 
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Theorem 17. Let three collections 

𝒯 = (𝒯𝑖)𝑖∈𝐼 = {(𝑒, 〈𝑥, 𝑇𝐾𝑒𝑖
(𝑥)〉) : 𝑒 ∈ ℰ, 𝑥 ∈ 𝑋},     (56) 

ℐ = (𝐼𝑖)𝑖∈𝐼 = {(𝑒, 〈𝑥, 𝐼𝐾𝑒𝑖
(𝑥)〉) : 𝑒 ∈ ℰ, 𝑥 ∈ 𝑋},     (57) 

ℱ = (ℱ𝑖)𝑖∈𝐼 = {(𝑒, 〈𝑥, 1 − 𝐹𝐾𝑒𝑖
(𝑥)〉) : 𝑒 ∈ ℰ, 𝑥 ∈ 𝑋},   (58) 

be the fuzzy soft topologies on 𝑋. Let 𝜏 = {𝐾𝑖: 𝑖 ∈ 𝐼} where 

𝐾𝑖 = {(𝑒,
𝑥

𝑇
𝐾𝑒
𝑖 (𝑥),𝐼𝐾𝑒

𝑖 (𝑥),𝐹𝐾𝑒
𝑖 (𝑥)

) : 𝑒 ∈ ℰ, 𝑥 ∈ 𝑋}.     (59) 

If for all 𝑙, 𝑚, 𝑛, we have 

𝒯𝑙 ∩ 𝒯𝑚 = 𝒯𝑛 ⟹ {
ℐ𝑙 ∩ ℐ𝑚 = ℐ𝑛
ℱ𝑙 ∩ ℱ𝑚 = ℱ𝑛

,        (60) 

𝒯𝑙 ∪ 𝒯𝑚 = 𝒯𝑛 ⟹ {
ℐ𝑙 ∩ ℐ𝑚 = ℐ𝑛
ℱ𝑙 ∩ ℱ𝑚 = ℱ𝑛

.        (61) 

Then 𝜏 is the NS-topology on 𝑋. 

Proof. 

• Obviously, ∅ℰ , 𝑋ℰ ∈ 𝜏. 

• Let {𝐾𝑖: 𝑖 ∈ 𝐼} ⊂ 𝜏 be a family of NS-sets on 𝑋. We have {𝒯𝑖}, {ℐ𝑖}, {ℱ𝑖} are families of 

fuzzy soft sets on 𝑋. So, 

∃𝑛0 ∈ 𝐼, 𝒯𝑛0 = ⋃ 𝒯𝑖𝑖∈𝐼 ∈ 𝒯, ℐ𝑛0 = ⋃ ℐ𝑖𝑖∈𝐼 ∈ ℐ, ℱ𝑛0 = ⋃ ℱ𝑖𝑖∈𝐼 ∈ ℱ.  (62) 

Thus, ⋃ 𝐾𝑖𝑖∈𝐼 = 𝒯𝑛0 ∈ 𝜏. 

• Let {𝐾𝑗 ∈ 𝜏}1
𝑛

  be a finite family of NS-sets on 𝑋.  We have {𝒯𝑗}1
𝑛

 , {ℐ𝑗}1
𝑛
, {ℱ𝑗}1

𝑛
  as finite 

families of fuzzy soft sets on 𝑋. So, 

∃𝑚0 ∈ 𝐼, 𝒯𝑚0
=∩1

𝑛 𝒯𝑗 ∈ 𝒯, ℐ𝑚0
=∩1

𝑛 ℐ𝑗 ∈ ℐ, ℱ𝑚0
=∩1

𝑛 ℱ𝑗 ∈ ℱ,  (63) 

Thus, ∩1
𝑛 𝐾𝑗 ∈ 𝜏. 

Theorem 18. Let 𝜏 = {𝐾𝑖: 𝑖 ∈ 𝐼} be the NS-topology on 𝑋 where 

𝐾𝑖 = {(𝑒,
𝑥

𝑇
𝐾𝑒
𝑖 (𝑥),𝐼𝐾𝑒

𝑖 (𝑥),𝐹𝐾𝑒
𝑖 (𝑥)

) : 𝑒 ∈ ℰ, 𝑥 ∈ 𝑋}.     (64) 

For each 𝑒 ∈ 𝐸, three collections 

𝒯𝑒 = (𝒯𝑒𝑖)𝑖∈𝐼
= {〈𝑥, 𝑇𝐾𝑒𝑖

(𝑥)〉 : 𝑥 ∈ 𝑋},       (65) 

ℐ𝑒 = (𝐼𝑒𝑖)𝑖∈𝐼
= {〈𝑥, 𝐼𝐾𝑒𝑖

(𝑥)〉 : 𝑥 ∈ 𝑋},       (66) 

ℱ𝑒 = (ℱ𝑒𝑖)𝑖∈𝐼
= {〈𝑥, 1 − 𝐹𝐾𝑒𝑖

(𝑥)〉 , 𝑥 ∈ 𝑋},      (67) 
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are the fuzzy topologies on 𝑋. 

Proof. It can be implied from Theorem 17. 

In the general case, the opposite of Theorem 18 is not true. This is demonstrated through the 

counterexample shown in Example 14. 

Example 14. We return to Example 12 with the same hypothesis. Then, 

𝒯𝑒1 = {(0,0), (1,1), (. 25,
1

3
) , (. 5,

1

3
) , (. 75,

2

3
)},     (68) 

ℐ𝑒1 = {(0,0), (1,1), (. 25,
1

3
) , (. 75,

2

3
) , (. 5,

1

3
)},     (69) 

ℱ𝑒1 = {(0,0), (1,1), (. 25,
1

3
) , (. 5,

1

3
) , (. 75,

2

3
)},     (70) 

are fuzzy topologies on 𝑋. Similarly, 

𝒯𝑒2 = {(0,0), (1,1), (. 25,
1

3
) , (. 5,

1

3
) , (. 75,

2

3
)},     (71) 

ℐ𝑒2 = {(0,0), (1,1), (. 25,
1

3
) , (. 5,

1

3
) , (. 75,

2

3
)},     (72) 

ℱ𝑒2 = {(0,0), (1,1), (. 25,
1

3
) , (. 5,

1

3
) , (. 75,

2

3
)},     (73) 

are also fuzzy topologies, but 𝜏 = {∅ℰ , 𝑋ℰ , 𝐻1, 𝐻2, 𝐻3} is not a NS-topology on 𝑋 because 𝐾1 ∪ 𝐾2 ∉ 𝜏. 

6. Conclusions 

In this paper, two novel norms are proposed to serve as the core for determining operations on 

NS-sets. These operations are used to construct the topology and related concepts such as open set, 

closed set, interior, closure, and regularity. Another highlight of this work is demonstrating the 

relationship between the topologies on NS-sets and fuzzy soft sets. The topology on NS-sets can 

parameterize the topologies on fuzzy soft sets, but the reverse is not guaranteed. This work’s advantage 

is the structure’s logic is presented with well-defined concepts and convincingly proven theorems. 

Determining these concepts in a novel way enables a variety of methods for studying NS-sets, 

and offers a unique opportunity for future research and development in this field. Such research could 

focus on separation axioms, continuity, compactness, and paracompactness on NS-sets. Moreover, the 

relationship between topology on hybrid structure, NS-sets, and component structures, neutrosophic 

sets and soft sets, is also of research interest. In addition, applications of neutrosophic soft topological 

spaces can be investigated to handle decision-making problems. 

Furthermore, we are also turning our interests to building topology on a new type of set, 

neutrosophic fuzzy sets. We believe these results will be helpful for future studies on neutrosophic 

fuzzy topology to develop a general framework for practical applications. These issues present 

opportunities but also challenges for researchers interested in the field of fuzzy theory. 
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