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Abstract: In this paper, we establish a qualitative theory for implicit fractional order differential
equations (IFODEs) with nonlocal initial condition (NIC) with delay term. Because area related to
investigate existence and uniqueness of solution is important field in recent times. Also researchers are
using existence theory to derive some prior results about a dynamical problem weather it exists or not in
reality. In literature, we have different tools to study qualitative nature of a problem. On the same line
the exact solution of every problem is difficult to determined. Therefore, we use technique of numerical
analysis to approximate the solutions, where stability analysis is an important aspect. Therefore, we
use a tool from non-linear analysis known as topological degree theory to develop sufficient conditions
for existence and uniqueness of solution to the considered problem. Further, we also develop sufficient
conditions for Hyers- Ulam type stability for the considered problem. To justify our results, we also
give an illustrative example.
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1. Introduction

One of the emerging field of applied mathematics is fractional calculus, that particularly deals with
real order derivatives and integrals. The important advantage of real order models in comparison with
integer order models is that fractional integrals and derivatives are very useful in problems related
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to memory and hereditary properties of the materials. The rapid development in nano-technology,
this branch of applied mathematics has attracted more attention of many researchers. By applying
arbitrary order derivatives and integrals, one can study real world problems in more significant
and accurate ways. For details study and applications, see [1–9] and reference there in. Here
we remark that authors have investigated some interesting characteristics for dynamical systems of
fractional differential equations (FDEs) like classifications of the equilibrium points and determination
of topological properties through phase diagram in [10, 11].

The existence theory of fractional differential equations have been studied by using various methods
of functional analysis [12–16]. For example in [17], authors have studied the following problem under
Riemann-Liouville fractional derivative using Schaefer ’s fixed point theorem with non-monotone term
as Dµ

0+u(t) = Φ(t, u(t),Dµ
0+u(t)), t ∈ I = (0,T], T < ∞,

t1−µu(0) = u0,
(1.1)

whereDµ
0+ represent Riemann-Liouville fractional derivative, 0 < µ ≤ 1 and Φ ∈ C[I × R2,R].

Since Riemann-Liouville fractional derivative has many applications in pure and applied
mathematics. But it has used very less in applied sciences problems. Because FDEs involve such
type of derivative need conditions for fractional order for clarifying the physical meaning in real world
problems. For dynamical system, we need conditions in such away that it could explain the physical
behavior of the system. So in this work, we turn our attention to Caputo fractional derivative, which
uses initial or boundary conditions like ordinary differential equations.

Here we remark that delay differential equations have numerous applications in modeling real world
problems related to their past history. One of the important type of delay differential equation is known
as pantograph. These type differential equations are the special class of delay differential equations
which involve proportional type delay factor. For the first time, such type of differential equations had
been studied to improve the speed of electric train or buses. An important construction had been made
by Ockendon and Taylor [18]. In recent times these type differential equations are increasingly used to
model various real world problems. For instance the phenomenon related to lifting and pressing goods
and materials by machine use this kind of model. Existence theory is important subject of differential
equations. In last many years pantograph type differential equations have been considered for the
existence and uniqueness of solution using different methods (see [19–22]).

Motivated from aforementioned work and literature about the importance of pantograph equations,
in this research work we have considered problem (1.1) under delay differential equations involving
Caputo fractional derivative and under nonlocal initial condition with non-monotone term ascD

µ
0+

u(t) = Φ(t, u(t), cD
µ
0+u(αt)), t ∈ I,

t1−µu(0) = u0 + Ψ(t, u),
(1.2)

where cD
µ
0+

represent Caputo fractional derivative, 0 < µ ≤ 1, 0 < α < 1 and Φ ∈ C[I × R2,R],
Ψ ∈ C[I × R,R].

To develop qualitative theory for the considered problem, we use prior estimate method or
topological degree method of nonlinear analysis. The suggested method reduces strong compact
conditions of the operator to weaker one. Further new assumptions on the nonlocal condition are
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provided to guarantee the equivalency between the solution of the considered nonlocal problem and its
corresponding operator equation [23]. The said conditions are vary rarely considered in literature. We
have also investigated various kinds of Hyers-Ulam stability including Ulam-Hyers (U-H), generalized
Ulam-Hyers (g-U-H), Ulam-Hyers-Rassias (U-H-R) and generalized Ulam-Hyers-Rassias (g-U-H-R)
stabilities. In recent past such type of stability have been studied very well for the aforementioned
area, for example see some papers as [24–26]. The novelty of this work is the extension of topological
degree theory for delay type problems involving non-monotone term as well as nonlocal condition.
The proposed method has the ability to use measure of non-compactness to relax the strong compact
condition to some weaker one. Here when the proposed problem is converted to operator form, we
split the transformed problem into two parts. For which we prove one part just to satisfies Lipschtiz
conditions to obtain contraction result, while for the second part we prove relatively compact condition.
This procedure makes degree theory a powerful tool in recent times to investigate FDEs. Further
the mentioned degree method has numerous applications in investigation of solutions to variety of
boundary value problems (see [27–29]).

We have organized our paper as: Section one is devoted to introduction and literature overview. In
the Section two, we have recollected basic definitions results that we need. In the Section 3, we give
our main results. Section four is related to stability analysis. Section five is devoted to an illustrative
example. Last section is concluded with brief remark.

2. Preliminaries

Here we recall some fundamental results from [30].

Definition 2.1. Fractional integral of any real order µ of a function u(t) ∈ L1([x1, x2],R) where
x1, x2 ∈ R, is define by

Iµx1+u(t) =
1

Γ(µ)

∫ t

x1

(t − η)µ−1u(η) dη. (2.1)

Definition 2.2. Caputo fractional order derivative of any real order µ of a function u(t) on [x1, x2]
where x1, x2 ∈ R is given by

cD
µ
x1+u(t) =

1
Γ(j − µ)

∫ t

x1

(t − η)j−µ−1u(j)(η) dη, j − 1 < µ ≤ j.

Lemma 2.2.1. The unique solution of FDEs of the form

cD
µ
0+

u(t) = 0, j − 1 < µ ≤ j (2.2)

is given by:
u(t) = c0 + c1t + c2t2 + ... + cj−1tj−1,

for ci ∈ R, i = 0, 1, 2, ..., j − 1.

Lemma 2.2.2. The unique solution of FDEs of the form

cD
µ
0+

u(t) = f(t) (2.3)
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is given by:

u(t) = Iµ
+0[f(t)] +

j−1∑
i=0

citi,

for arbitrary ci ∈ R, i = 0, 1, 2, ..., j − 1.

Onward, the set X will represent Banach space on C[I,R]. The norm on X is define as ‖u‖ =

sup{|u(t)|, t ∈ I} and Σ ⊂ P(X) represent family of all bounded sub sets of X.

Definition 2.3. [30] The Kuratowski measure of non-compactness ξ : Σ→ R+ is defined as

ξ(σ) = in f {ε > 0},

where σ ∈ Σ admits a finite cover by sets of diameter ≤ ε.

For further properties and definitions of Kuratowski measure, one may see [30].

Definition 2.4. Let T : G → X be a continuous function, where G ⊂ X. We say T is ξ-Lipschitz (
ξ-contraction for Q < 1) if constant Q ≥ 0 exist such that

ξ(T(G′)) ≤ Q ξ(G′),∀ G′ ⊂ G.

Definition 2.5. T is ξ-condensing if

ξ(T(G′)) < ξ(G′),∀ G′ ⊂ G with ξ(G′) > 0.

or, ξ(T(G′)) ≥ ξ(G′) implies ξ(G′) = 0,

Definition 2.6. The map T : G → X be Lipschitz (contraction for Q′ < 1) if there exist Q′ > 0, such
that

‖T(u) − T(v)‖ ≤ Q′‖u − v‖, ∀ u, v ∈ G. (2.4)

Proposition 2.1. If T,T′ : G → X are ξ-Lipschitz maps with constants Q and Q
′

respectively, then
T + T′ : G→ X are ξ-Lipschitz with constants Q + Q

′

.

Proposition 2.2. If T : G→ X is compact, then T is ξ-Lipschitz with constant Q = 0.

Proposition 2.3. If T : G → X is Lipschitz with constant Q, then T is ξ-Lipschitz with the same
constant Q.

Theorem 2.7. [30] Let Λ : X→ X be a ξ-condensing map and the set

Θ = {x ∈ X : there exist ϑ ∈ [0, 1] such that x = ϑΛx}.

If Θ is a bounded set in X, so there exist r > 0 such that Θ ⊂ Gr(0), then the degree

deg(I − ϑΛx,Gr(0), 0) = 1, for all ϑ ∈ [0, 1].

Consequently, Λ ha at least one fixed point and the set of the fixed points of Λ lies in Gr(0).
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3. Main results

In the current section, we apply our proposed method to derive conditions for the existence of at
least one solution to IFODEs (1.2) subject to nonlocal initial condition, letcD

µ
0+

u(t) = Φ(t, u(t), cD
µ
0+u(αt)), 0 < µ ≤ 1, t ∈ I,

t1−µu(0) = u0 + Ψ(t, u),
(3.1)

where 0 < α < 1 and Ψ ∈ C[I × R,R], Φ ∈ C[I × R2,R].
Using Lemma 2.2.2, we have

u(t) = tµ−1 (u0 + Ψ(t, u)) +

∫ t

0

(t − η)µ−1

Γ(µ)
Φ(η, u(η),cDµ

0+u(αη))dη, (3.2)

where t ∈ I, Ψ ∈ C[I × R,R] and Φ ∈ C[I×R2,R].
Let

h(t) = Φ(t, u(t), h(αt)), (3.3)

then Eq (3.2), becomes

u(t) = tµ−1 (u0 + Ψ(t, u)) +

∫ t

0

(t − η)µ−1

Γ(µ)
h(η)dη, t ∈ I, (3.4)

where h : (0,T]→ R is continuous. Next, assume the following conditions:

(A1) There exist a, b ≥ 0, and q1 ∈ [0, 1), such that

‖Ψ(t, u)‖ ≤ a‖u‖q1 + b,

for every (t, u) ∈ I × R.
(A2) There exist Q1 ∈ [0, 1), such that

‖Ψ(t, u1) − Ψ(t, u2)‖ ≤ Q1‖u1 − u2‖,

for every (t, u1), (t, u2) ∈ I × R.
(A3) There exist c, d ≥ 0 and q2 ∈ [0, 1), such that

‖h(t)‖ ≤ c‖u‖q2 + d,

for every t ∈ I.
(A4) There exist a constant LΦ > 0, such that

‖Φ(t, ū, u) − Φ(t, v̄, v)‖ ≤ LΦ [‖ū − v̄‖ + ‖u − v‖] ,

for each t ∈ I, and ∀ ū, u, v̄, v ∈ R.
Set p(t) = Φ(t, ū(t), p(αt)) and q(t) = Φ(t, u(t), q(αt)), then

‖p(t) − q(t)‖ = ‖Φ(t, ū(t), p(αt)) − Φ(t, u(t), q(αt))‖,
≤ LΦ

[
‖ū − u‖ + ‖p(αt) − q(αt)‖

]
,

≤ LΦ‖ū − u‖ + LΦ‖p(t) − q(t)‖,

≤
LΦ

1 − LΦ

‖ū − u‖.
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The above assumptions are key to our main results.
Let, Ω = C(I), define the operators:

f : Ω→ Ω, (fu)(t) = tµ−1 (u0 + Ψ(t, u)) ,

g : Ω→ Ω, (gu)(t) =

∫ t

0

(t − η)µ−1

Γ(µ)
h(η)dη,

and
F : Ω→ Ω, Fu = fu + gu.

From the above relations, Eq (3.4), can be written as:

u = Fu. (3.5)

The relation (3.5) is actually a fixed point problem, so the fixed point of F is actually the solution of
our proposed model (3.1).

Lemma 3.0.1. The map f : Ω→ Ω is Lipschitz.

Proof. Let, u, ū ∈ Ω, then

‖fū − fu‖ = sup
t∈I
{|(fū)(t) − (fu)(t)|} ,

≤ sup
t∈I

{∣∣∣tµ−1
∣∣∣ |Ψ(t, ū) − Ψ(t, u)|

}
,

= L ‖ū − u‖ , where L = Q1Tµ−1, for every u, ū ∈ Ω.

Proposition 2.3 implies that, f is ξ-Lipschitz.
Using assumption (A1), f, satisfies the following growth condition:

‖fu‖ ≤ a′‖u‖q1 + b′, where a′ = aTµ−1 and b′ = (|u0| + b)Tµ−1, for every u ∈ Ω. (3.6)

�

Lemma 3.0.2. The operator g : Ω→ Ω is compact.

Proof. For continuity of g, let {uj} ⊂ Ω, u ∈ Ω be such that ‖uj − u‖ → 0 as j→ ∞. We have to show
that ‖guj − gu‖ → 0 as j→ ∞. For any ε > 0, there exist Q ≥ 0, such that

‖uj‖ ≤ Q, ∀ n ∈ N,
‖u‖ ≤ Q.

As h∈ C[I,R], so hj → h as j→ ∞, where hj = Φ(t, uj(t), hj(αt)) and h = Φ(t, u(t), h(αt)).
Consider

‖guj − gu‖ = sup
t∈I

∣∣∣∣∣ ∫ t

0

(t − η)µ−1

Γ(µ)
Φ(t, uj(t), hj(αt))(η)dη −

∫ t

0

(t − η)µ−1

Γ(µ)
Φ(t, u(t), h(αt))dη

∣∣∣∣∣,
≤ sup

t∈I

∫ t

0

∣∣∣∣∣∣ (t − η)µ−1

Γ(µ)

∣∣∣∣∣∣ ∣∣∣Φ(t, uj(t), hj(αt)) − Φ(t, u(t), h(αt))
∣∣∣ dη→ 0 as j→ ∞.
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Thus g is continuous.
The operator g is compact, for this take S ⊂ Ω, where S is a bounded subset of Ω.
For Q ≥ 0, be such that

‖u‖ ≤ Q, ∀ u ∈ S.

The operator g satisfy the following growth condition

‖gu‖ ≤ c′‖u‖ + d′, where c′ =
cTµ

Γ(µ + 1)
and d′ =

dTµ

Γ(µ + 1)
, for all u ∈ S. (3.7)

The above relation (3.7) implies that

‖gu‖ ≤ c′Qq2 + d′.

So g(S) is bounded in Ω.
Let t1, t2 ∈ [0,T] such that t1 ≥ t2, then

|(gu)(t1) − (gu)(t2)| ≤
∫ t1

0

∣∣∣ (t1 − η)µ−1

Γ(µ)
−

∫ t2

0

∣∣∣ (t2 − η)µ−1

Γ(µ)

∣∣∣|h(η)|dη,

≤
[cQq2 + d]
Γ(µ + 1)

(tµ1 − tµ2)→ 0 as t1 → t2, for every u ∈ S.

The set g(S), satisfies the hypothesis of Arzelá-Ascoli theorem, so g(S) is relatively compact in Ω. As
a result, g is ξ-Lipschitz with zero constant. �

Here we present main theorem of existence.

Theorem 3.1. The problem (3.1) has at least one solution if Φ and Ψ satisfies conditions (A1) and (A3).

Proof. Take
∇ = {u ∈ Ω : there exist ϑ ∈ [0, 1) such that u = ϑFu}.

The set ∇ in Ω is a bounded set. For this let, u ∈ ∇ and ϑ ∈ [0, 1), such that u = ϑFu, we have

‖u‖ = ϑ‖Fu‖ ≤ ϑ (‖fu‖ + ‖gu‖) ,
≤ ϑ

[
a′‖u‖q1 + b′ + c′‖u‖q2 + d′

]
,

which means ∇ in Ω is bonded.
Hence, Theorem 2.7 guaranty that the operator F possess at least one fixed point and the set of fixed
points is bounded in Ω. �

Remark 1. In assumption (A1) if q1 = 1, then Theorem 3.1 steal hold if a′ < 1.

Remark 2. In assumption (A2) if q2 = 1, then Theorem 3.1 hold if c′ < 1.

Remark 3. In assumptions (A1) and (A2) if q1 = q2 = 1, then Theorem 3.1 hold if a′ < 1 and c′ < 1.

Theorem 3.2. Under assumptions (A1) − (A4), if a real constant ` > 0, exists such that

` =

(
Q1Tµ−1 +

LΦTµ

(1 − LΦ)Γ(µ + 1)

)
< 1, (3.8)

then the solution of Eq (3.1) is unique.
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Proof. Thank to Banach contraction principle, let ū, u ∈ Ω, then

‖Fū − Fu‖ ≤ ‖fū − fu‖ + ‖gū − gu‖

≤

(
Q1Tµ−1 +

LΦTµ

(1 − LΦ)Γ(µ + 1)

)
‖ū − u‖

= `‖ū − u‖

�

Hence, the solution of problem (3.1) is unique.

4. Stability analysis

In this section, we will study U-H type stability, which was introduced by Ulam [31] in 1940 and
further generalized by Hyers [32] and Rassias [33]. Following are some important definitions, which
are recall from [34].

Consider the operator Y : Ω→ Ω satisfying:

Y(u) = u, for u ∈ Ω. (4.1)

Definition 4.1. The Eq (4.1) is U-H type stable if for every ε > 0 and let u ∈ Ω, be any solution of
inequality

‖u − Yu‖ ≤ ε, for t ∈ I, (4.2)

there exist a unique solution ū of Eq (4.1) with constant Cq > 0, satisfying the following inequality

‖ū − u‖ ≤ Cqε, t ∈ I. (4.3)

Definition 4.2. Further, if there exist function ψ ∈ C(R,R) with ψ(0) = 0, for any solution u of
inequality (4.2) and a unique solution ū of Eq (4.1), such that

‖ū − u‖ ≤ ψ(ε), (4.4)

then Eq (4.1) is g-U-H type stable.

Remark 4. If there exist a function α(t) ∈ C(I;R), then ū ∈ Ω will be the solution of inequality (4.2) if
(i) |α(t)| ≤ ε, ∀ t ∈ I,
(ii) Yū(t) = ū(t) + α(t), ∀ t ∈ I.

Consider the corresponding perturb problem of Eq (3.1) as follow:cD
µ
0+

u(t) = Φ(t, u(t),cDµ
0+u(αt)) + α(t), t ∈ I, 0 < µ ≤ 1,

t1−µu(0) = u0 + Ψ(t, u).
(4.5)

Lemma 4.2.1. The following inequality hold for perturb problem (4.5).

|u(t) − Fu| ≤
Tµε

Γ(µ + 1)
, t ∈ I.
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Proof. Using Lemma 2.2.2, we get the solution of Eq (4.5), as follow

u(t) = Fu +

∫ t

0

(t − η)µ−1

Γ(µ)
α(η)dη.

By Remark 4, we have ∣∣∣∣∣u(t) − Fu
∣∣∣∣∣ ≤ ∫ t

0

∣∣∣∣∣ (t − η)µ−1

Γ(µ)

∣∣∣∣∣|α(η)|dη ≤
Tµε

Γ(µ + 1)
.

�

Theorem 4.3. Under assumption (iv) and Lemma 4.2.1, problem (3.1), is U-H and g-U-H stable if
(1 − LΦ)Γ(µ + 1) ,

(
Q1(1 − LΦ)Γ(µ + 1)Tµ−1 + LΦTµ

)
hold.

Proof. For unique solution u of problem (3.1), let ū is any other solution of problem (3.1), then

‖ū − u‖ = ‖ū − Fu‖ ≤ ‖ū − Fū‖ + ‖Fū − Fu‖ ,

≤
Tµε

Γ(µ + 1)
+

(
Q1Tµ−1 +

LΦTµ

(1 − LΦ)Γ(µ + 1)

)
‖ū − u‖,

= Cqε, where Cq =
Tµ(1 − LΦ)

(1 − LΦ)Γ(µ + 1) −
(
Q1(1 − LΦ)Γ(µ + 1)Tµ−1 + LΦTµ

) .
Hence, the consider problem (3.1), is U-H stable.

Let ψ : (0, 1)→ (0,∞) be a non-decreasing function, such that ψ(ε) = ε with ψ(0) = 0, then

‖ū − u‖ ≤ Cqψ(ε),

this show that the problem (3.1) is g-U-H stable. �

Definition 4.4. The Eq (4.1) is U-H-R type stable for a function φ ∈ C[I,R], if for any ε > 0 and let
u ∈ Ω be any other solution of inequality:

‖u − Yu‖ ≤ φ(t)ε, for t ∈ I, (4.6)

there exist a unique solution ū of Eq (4.1) with a constant Cq > 0, satisfying

‖ū − u‖ ≤ Cqφ(t)ε, ∀ t ∈ I. (4.7)

Definition 4.5. For a function χ ∈ C[I,R], if there exists a constant Cq,χ and for any ε > 0, let u be any
solution of inequality (4.6) and ū be a unique solution of Eq (4.1), such that

‖ū − u‖ ≤ Cq,χχ(t), ∀ t ∈ I, (4.8)

then Eq (4.1) is g-U-H-R stable.

Remark 5. If there exist a function α(t) ∈ C(I;R), then ū ∈ Ω is the solution of inequality (4.6) if:
(i) |α(t)| ≤ εχ(t), ∀ t ∈ I,
(ii) Yū(t) = ū + α(t), ∀ t ∈ I.
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Lemma 4.5.1. The following inequality hold for the perturb Eq (4.5).

‖u − Fu‖ ≤
Tµχε

Γ(µ + 1)
, t ∈ I.

Proof. The proof is similar to Lemma 4.2.1, so we left for the reader. �

Theorem 4.6. Under condition (iv) and Lemma 4.5.1, problem (3.1) is U-H-R and g-U-H-R stable if,

(1 − LΦ)Γ(µ + 1) ,
(
Q1(1 − LΦ)Γ(µ + 1)Tµ−1 + LΦTµ

)
, hold.

Proof. For a unique solution u of Eq (3.1), let ū be any other solution of Eq (3.1), then

‖ū − u‖ = ‖ū − Fu‖ ≤ ‖ū − Fū‖ + ‖Fū − Fu‖

≤
Tµχε

Γ(µ + 1)
+

(
Q1Tµ−1 +

LΦTµ

(1 − LΦ)Γ(µ + 1)

)
‖ū − u‖

= Cq,χχ(t)ε,

where Cq,χ =
Tµ(1−LΦ)

(1−LΦ)Γ(µ+1)−(Q1(1−LΦ)Γ(µ+1)Tµ−1+LΦTµ) . Which implies that the proposed problem (3.1), is U-
H-R stable.
Put Cq,χ =

Tµ(1−LΦ)ε
(1−LΦ)Γ(µ+1)−(Q1(1−LΦ)Γ(µ+1)Tµ−1+LΦTµ) then, we have

‖ū − u‖ ≤ Cq,χχ(t).

Which shows that the considered problem (3.1), is g-U-H-R stable. �

5. Illustrative example

Example 1. Consider the following pantograph equation under nonlocal condition with monotone
term as 

cD
999

1000
0+ u(t) =

1
(t + 9)2

 |u(t)|

1 + |u(t)|
1
2 + |cD

999
1000
0+ u(αt)|

 ,
t1−µu(0) = 1 +

1
et

sin(|u(t)|)
5

, t ∈ I = (0, 1].

(5.1)

Here

h(t) = Φ(t, u(t), h(αt)) = Φ(t, u(t),cDµ
0+u(αt)) =

1
(t + 9)2

 |u(t)|

1 + |u(t)|
1
2 + |cD

999
1000
0+ u(αt)|


and

Ψ(t, u) =
1
et

sin(|u(t)|)
5

.

Now

‖h(t)‖ = sup
t∈I

{∣∣∣∣∣ 1
(t + 9)2

 |u(t)|

1 + |u(t)|
1
2 + |cD

999
1000
0+ u(αt)|

 ∣∣∣∣∣} ≤ 1
81
‖u‖

1
2
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and

‖Ψ‖ ≤
1
5e
‖u‖1.

Thus, Φ and Ψ satisfies conditions (A1) and (A3) for

µ =
999

1000
, q1 =

1
2
, q2 = 1, I = (0, 1], a =

1
81
, c =

1
5e
,d = b = 0.

Consider the set
∇ = {u ∈ Ω : there exist ϑ ∈ [0, 1] such that u = ϑFu}. (5.2)

Let, u ∈ ∇ and µ ∈ [0, 1], such that u = µFu. By using the growth condition given in relations (3.6)
and (3.7), one can easily shows that the set ∇ in Ω is bounded, as a result of Theorem 3.1, the problem
(5.1) has at least one solution. For uniqueness, we have

‖Φ(t, x̄(t), h̄(αt)) − Φ(t, u(t), h(αt))‖ ≤
1
81
‖ū − u‖

and

‖Ψ(ū) − Ψ(u)‖ ≤
1
5e
‖ū − u‖.

Thus Φ and Ψ satisfies condition (A2) and (A4) with LΦ = 1
81 and Q1 = 1

5e , then

` ≈ 0.0859164 < 1. (5.3)

Hence, Theorem 3.2 guaranty that the solution of problem (5.1) is unique.
The problem (5.1) is U-H and g-U-H stable, since

(1 − LΦ)Γ(µ + 1) ,
(
Q1(1 − LΦ)Γ(µ + 1)Tµ−1 + LΦTµ

)
,

for the given constants. Further, the problem (5.1) is U-H-R and g-U-H-R stable with χ(t) = t for
t ∈ (0, 1).

6. Conclusions

Some useful results for IFODEs devoted to existence and uniqueness by means of the topological
degree theory under nonlocal condition of nonlinear type with non-monotone term have been
established. We have used measure of non compactness for the construction of our results. Further,
different kinds of Ulam type stability for the considered problem has been investigated. The analysis
has been verified by providing an example at the end. From the whole analysis we have concluded that
topological degree theory as more powerful and relax tool than traditional fixed point theory to study
qualitative theory of FDEs. For future, we invite the young researchers to apply the same analysis to
system of IFODEs and to some non-local problems involving fractal-fractional differential operators
which have numerous applications in fractal geometry.
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