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1. Introduction

In this paper, we propose shifted-Legendre orthogonal function method for high-dimensional heat
conduction equation [1]:

∂u
∂t

= k(
∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2 ), t ∈ [0, 1], x ∈ [0, a], y ∈ [0, b], z ∈ [0, c],

u(0, x, y, z) = φ(x, y, z),
u(t, 0, y, z) = u(t, a, y, z) = 0,
u(t, x, 0, z) = u(t, x, b, z) = 0,
u(t, x, y, 0) = u(t, x, y, c) = 0.

(1.1)

Where u(t, x, y, z) is the temperature field, φ(x, y, z) is a known function, k is the thermal diffusion
efficiency, and a, b, c are constants that determine the size of the space.
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Heat conduction system is a very common and important system in engineering problems, such
as the heat transfer process of objects, the cooling system of electronic components and so on [1–
4]. Generally, heat conduction is a complicated process, so we can’t get the analytical solution of
heat conduction equation. Therefore, many scholars proposed various numerical algorithms for heat
conduction equation [5–8]. Reproducing kernel method is also an effective numerical algorithm for
solving boundary value problems including heat conduction equation [9–14]. Galerkin schemes and
Green’s function are also used to construct numerical algorithms for solving one-dimensional and
two-dimensional heat conduction equations [15–19]. Alternating direction implicit (ADI) method can
be very effective in solving high-dimensional heat conduction equations [20, 21]. In addition, the
novel local knot method and localized space time method are also used to solve convection-diffusion
problems [22–25]. These methods play an important reference role in constructing new algorithms in
this paper.

Legendre orthogonal function system is an important function sequence in the field of numerical
analysis. Because its general term is polynomial, Legendre orthogonal function system has many
advantages in the calculation process. Scholars use Legendre orthogonal function system to construct
numerical algorithm of differential equations [26–28].

Based on the orthogonality of Legendre polynomials, we delicately construct a numerical algorithm
that can be extended to high-dimensional heat conduction equation. The proposed algorithm has α-
Order convergence, and our algorithm can achieve higher accuracy compared with other algorithms.

The content of the paper is arranged like this: The properties of shifted Legendre polynomials,
homogenization and spatial correlation are introduced in Section 2. In Section 3, we theoretically
deduce the numerical algorithm methods of high-dimensional heat conduction equations. The
convergence of the algorithm is proved in Section 4. Finally, three numerical examples and a brief
summary are given at the end of this paper.

2. Preliminaries

In this section, the concept of shifted-Legendre polynomials and the space to solve Eq (1.1) are
introduced. These knowledge will pave the way for describing the algorithm in this paper.

2.1. Shifted-Legendre polynomial

The traditional Legendre polynomial is the orthogonal function system on [−1, 1]. Since the
variables t, x, y, z to be analyzed for Eq (1.1) defined in different intervals, it is necessary to transform
the Legendre polynomial on [c1, c2], c1, c2 ∈ R, and the shifted-Legendre polynomials after translation
transformation and expansion transformation by Eq (2.1).

p0(x) = 1, p1(x) =
2(x − c1)
c2 − c1

− 1,

pi+1(x) =
2i + 1
i + 1

[
2(x − c1)
c2 − c1

− 1]pi(x) −
i

i + 1
pi−1(x), i = 1, 2, · · · .

(2.1)

Obviously, {pi(x)}∞i=0 is a system of orthogonal functions on L2[c1, c2], and∫ c2

c1

pi(x)p j(x)dx =


c2 − c1

2i + 1
, i = j,

0, i , j.

AIMS Mathematics Volume 7, Issue 5, 9463–9478.



9465

Let Li(x) =
√

2i+1
c2−c1

pi(x). Based on the knowledge of ref. [29], we begin to discuss the algorithm in
this paper.

Lemma 2.1. [29] {Li(x)}∞i=0 is a orthonormal basis in L2[c1, c2].

2.2. Homogenization of boundary value conditions

Considering that the problem studied in this paper has a nonhomogeneous boundary value condition,
the problem (1.1) can be homogenized by making a transformation as follows.

v(t, x, y, z) = u(t, x, y, z) − φ(x, y, z).

Here, homogenization is necessary because we can easily construct functional spaces that meet the
homogenization boundary value conditions. This makes us only need to pay attention to the operator
equation itself in the next research, without considering the interference caused by boundary value
conditions.

In this paper, in order to avoid the disadvantages of too many symbols, the homogeneous heat
conduction system is still represented by u, the thermal diffusion efficiency k = 1, and the homogeneous
system of heat conduction equation is simplified as follows:

∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2 −

∂u
∂t

= f (x, y, z), t ∈ [0, 1], x ∈ [0, a], y ∈ [0, b], z ∈ [0, c],

u(0, x, y, z) = 0,
u(t, 0, y, z) = u(t, a, y, z) = 0,
u(t, x, 0, z) = u(t, x, b, z) = 0,
u(t, x, y, 0) = u(t, x, y, c) = 0.

(2.2)

2.3. Introduction of the space

The solution space of Eq (2.2) is a high-dimensional space, which can be generated by some one-
dimensional spaces. Therefore, this section first defines the following one-dimensional space.

Remember AC represents the space of absolutely continuous functions.

Definition 2.1. W1[0, 1] = {u(t)|u ∈ AC, u(0) = 0, u′ ∈ L2[0, 1]}, and

〈u, v〉W1 =

∫ 1

0
u′v′dt, u, v ∈ W1.

Let c1 = 0, c2 = 1, so {Ti(t)}∞i=0 is the orthonormal basis in L2[0, 1], where Ti(t) = Li(t), note

Tn(t) =
n∑

i=0
citi. And {JTn(t)}∞n=0 is the orthonormal basis of W1[0, 1], where

JTn(t) =

n∑
i=0

ci
ti+1

i + 1
.

Definition 2.2. W2[0, a] = {u(x)|u′ ∈ AC, u(0) = u(a) = 0, u′′ ∈ L2[0, a]}, and

〈u, v〉W2 =

∫ a

0
u′′v′′dx, u, v ∈ W2.
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Similarly, {Pn(x)}∞n=0 is the orthonormal basis in L2[0, a], and denote Pn(x) =
n∑

j=0
d jx j, where d j ∈ R.

Let

JPn(x) =

n∑
j=0

d j
x j+2 − a j+1x

( j + 1)( j + 2)
,

obviously, {JPn(x)}∞n=0 is the orthonormal basis of W2[0, a].

3. Numerical method and analysis

We start with solving one-dimensional heat conduction equation, and then extend the algorithm to
high-dimensional heat conduction equations.

3.1. The scheme of one-dimensional model


∂2u
∂x2 −

∂u
∂t

= f (x), t ∈ [0, 1], x ∈ [0, a],

u(0, x) = 0,
u(t, 0) = u(t, a) = 0.

(3.1)

Let D = [0, 1] × [0, a], CC represents the space of completely continuous functions, and Nn

represents a set of natural numbers not exceeding n.

Definition 3.1. W(D) = {u(t, x)|∂u
∂x ∈ CC, (t, x) ∈ D, u(0, x) = 0, u(t, 0) = u(t, a) = 0, ∂3u

∂t∂x2 ∈ L2(D)},
and

〈u, v〉W(D) =

"
D

∂3u
∂t∂x2

∂3v
∂t∂x2 dσ.

Theorem 3.1. W(D) is an inner product space.

Proof. ∀u(t, x) ∈ W(D), if 〈u, u〉W(D) = 0, means"
D

[
∂3u(t, x)
∂t∂x2 ]2dσ = 0,

and it implies
∂3u(t, x)
∂t∂x2 =

∂

∂t
(
∂2u(t, x)
∂x2 ) = 0.

Combined with the conditions of W(D), we can get u = 0.
Obviously, W(D) satisfies other conditions of inner product space. �

Theorem 3.2. ∀u ∈ W(D), v1(t)v2(x) ∈ W(D), then

〈u(t, x), v1(t)v2(x)〉W(D) = 〈〈u(t, x), v1(t)〉W1 , v2(x)〉W2 .
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Proof. 〈u(t, x), v1(t)v2(x)〉W(D) =

"
D

∂3u(t, x)
∂t∂x2

∂3[v1(t)v2(x)]
∂t∂x2 dσ

=

"
D

∂2

∂x2 [
∂u(t, x)
∂t

]
∂v1(t)
∂t

∂2v2(x)
∂x2 dσ

=

∫ a

0

∂2

∂x2 〈u(t, x), v1(t)〉W1

∂2v2(x)
∂x2 dx

= 〈〈u(t, x), v1(t)〉W1 , v2(x)〉W2 . �

Corollary 3.1. ∀u1(t)u2(x) ∈ W(D), v1(t)v2(x) ∈ W(D), then

〈u1(t)u2(x), v1(t)v2(x)〉W(D) = 〈u1(t), v1(t)〉W1〈u2(x), v2(x)〉W2 .

Let
ρi j(t, x) = JTi(t)JP j(x), i, j ∈ N.

Theorem 3.3. {ρi j(t, x)}∞i, j=0is an orthonormal basis in W(D).

Proof. ∀ρi j(t, x), ρlm(t, x) ∈ W(D), i, j, l,m ∈ N,
〈ρi j(t, x), ρlm(t, x)〉W(D) = 〈JTi(t)JP j(x), JTl(t)JPm(x)〉W(D)

= 〈JTi(t), JTl(t)〉W1〈JP j(x), JPm(x)〉W2 .
So

〈ρi j(t, x), ρlm(t, x)〉W(D) =

1, i = l, j = m,

0, others.

In addition, ∀u ∈ W(D), if 〈u, ρi j〉W(D) = 0, means

〈u(t, x), JTi(t)JP j(x)〉W(D) = 〈〈u(t, x), JTi(t)〉W1 , JP j(x)〉W2 = 0.

Note that {JP j(x)}∞j=0 is the complete system of W2, so 〈u(t, x), JTi(t)〉W1 = 0.
Similarly, we can get u(t, x) = 0. �

Let L : W(D)→ L2(D),

Lu =
∂2u
∂x2 −

∂u
∂t
.

So, Eq (3.1) can be simplified as
Lu = f . (3.2)

Definition 3.2. ∀ε > 0, if u ∈ W(D) and

||Lu − f ||2L(D) < ε, (3.3)

then u is called the ε−best approximate solution for Lu = f .

Theorem 3.4. Any ε > 0, there is N ∈ N, when n > N, then

un(t, x) =

n∑
i=0

n∑
j=0

η∗i jρi j(t, x) (3.4)
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is the ε−best approximate solution for Lu = f , where η∗i j satisfies

||

n∑
i=0

n∑
j=0

η∗i jLρi j − f ||2L2(D) = min
di j
||

n∑
i=0

n∑
j=0

di jLρi j − f ||2L2(D), di j ∈ R, i, j ∈ Nn.

Proof. According to the Theorem 3.3, if u satisfies Eq (3.2), then u(t, x) =
∞∑

i=0

∞∑
j=0
ηi jρi j(t, x), where ηi j

is the Fourier coefficient of u.
Note that L is a bounded operator [30], hence, any ε > 0, there is N ∈ N, when n > N, then

||

∞∑
i=n+1

∞∑
j=n+1

ηi jρi j||
2
W(D) <

ε

||L||2
.

So,
||

n∑
i=0

n∑
j=0
η∗i jLρi j − f ||2L2(D) = min

di j
||

n∑
i=0

n∑
j=0

di jLρi j − f ||2L2(D)

≤ ||
n∑

i=0

n∑
j=0
ηi jLρi j − f ||2L2(D)

= ||
n∑

i=0

n∑
j=0
ηi jLρi j − Lu||2L2(D)

= ||
∞∑

i=n+1

∞∑
j=n+1

ηi jLρi j||
2
L2(D)

≤ ||L||2||
∞∑

i=n+1

∞∑
j=n+1

ηi jρi j||
2
W(D)

< ε.

�

For obtain un(t, x), we need to find the coefficients η∗i j by solving Eq (3.5).

min
{ηi j}

n
i, j=0

J = ‖Lun − f ‖2L2(D) (3.5)

In addition,

J = ‖Lun − f ‖2L2(D)
= 〈Lun − f ,Lun − f 〉L2(D)

= 〈Lun,Lun〉L2(D) − 2〈Lun, f 〉L2(D) + 〈 f , f 〉L2(D)

=
n∑

i=0

n∑
j=0

n∑
l=0

n∑
m=0

ηi jηlm〈Lρi j,Lρlm〉L2(D) − 2
n∑

i=0

n∑
j=0
ηi j〈Lρi j, f 〉L2(D) + 〈 f , f 〉L2(D).

So,
∂J
∂ηi j

= 2
n∑

l=0

n∑
m=0

ηlm〈Lρi j,Lρlm〉L2(D) − 2ηi j〈Lρi j, f 〉L2(D), i, j ∈ Nn

and the equations ∂J
∂ηi j

= 0, i, j ∈ Nn can be simplified to

Aη = B, (3.6)

where
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A = (〈Lρi j,Lρlm〉L2(D))N×N , N = (n + 1)2,

η = (ηi j)N×1, B = (〈Lρi j, f 〉L2(D))N×1.

Theorem 3.5. Aη = B has a unique solution.

Proof. It can be proved that A is nonsingular. Let η satisfy Aη = 0, that is,
n∑

i=0

n∑
j=0

〈Lρi j,Lρlm〉L2(D)ηi j = 0, l,m ∈ Nn.

So, we can get the following equations:
n∑

i=0

n∑
j=0

〈ηi jLρi j, ηlmLρlm〉L2(D) = 0, l,m ∈ Nn.

By adding the above (n + 1)2 equations, we can get

〈

n∑
i=0

n∑
j=0

ηi jLρi j,

n∑
l=0

n∑
m=0

ηlmLρlm〉L2(D) = ‖

n∑
i=0

n∑
j=0

ηi jLρi j‖
2
L2(D) = 0.

So,
n∑

i=0

n∑
j=0

ηi jLρi j = 0.

Note that L is reversible. Therefore, ηi j = 0, i, j ∈ Nn. �

According to Theorem 3.5, un(t, x) can be obtained by substituting η = A−1B into un =
n∑

i=0

n∑
j=0
ηi jρi j(t, x).

3.2. Two-dimensional heat conduction equation



∂2u
∂x2 +

∂2u
∂y2 −

∂u
∂t

= f (x, y), t ∈ [0, 1], x ∈ [0, a], y ∈ [0, b],

u(0, x, y) = 0,
u(t, 0, y) = u(t, a, y) = 0,
u(t, x, 0) = u(t, x, b) = 0.

(3.7)

Similar to definition 2.2, we can give the definition of linear space W3[0, b] as follows:

W3[0, b] = {u(y)|u′ ∈ AC, y ∈ [0, b], u(0) = u(b) = 0, u′′ ∈ L2[0, b]}.

Similarly, let {Qn(y)}∞n=0 is the orthonormal basis in L2[0, b], and denote Qn(y) =
n∑

k=0
qkyk.

Let

JQn(y) =

n∑
k=0

qk
yk+2 − bk+1y

(k + 1)(k + 2)
,

it is easy to prove that {JQn(y)}∞n=0 is the orthonormal basis of W3[0, b].
Let Ω = [0, 1] × [0, a] × [0, b]. Now we define a three-dimensional space.
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Definition 3.3. W(Ω) = {u(t, x, y)| ∂
2u

∂x∂y ∈ CC, (t, x, y) ∈ Ω, u(0, x, y) = 0, u(t, 0, y) = u(t, a, y) =

0, u(t, x, 0) = u(t, x, b) = 0, ∂5u
∂t∂x2∂y2 ∈ L2(Ω)}, and

〈u, v〉W(Ω) =

$
Ω

∂5u
∂t∂x2∂y2

∂5v
∂t∂x2∂y2 dΩ, u, v ∈ W(Ω).

Similarly, we give the following theorem without proof.

Theorem 3.6. {ρi jk(t, x, y)}∞i, j,k=0is an orthonormal basis of W(Ω), where

ρi jk(t, x, y) = JTi(t)JP j(x)JQk(y), i, j, k ∈ Nn.

Therefore, we can get un as

un(t, x, y) =

n∑
i=0

n∑
j=0

n∑
k=0

ηi jkρi jk(t, x, y), (3.8)

according to the theory in Section 3.1, we can find all ηi jk, i, j, k ∈ Nn.

3.3. Three-dimensional heat conduction equation



∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2 −

∂u
∂t

= f (x, y, z), t ∈ [0, 1], x ∈ [0, a], y ∈ [0, b], z ∈ [0, c],

u(0, x, y, z) = 0,
u(t, 0, y, z) = u(t, a, y, z) = 0,
u(t, x, 0, z) = u(t, x, b, z) = 0,
u(t, x, y, 0) = u(t, x, y, c) = 0.

(3.9)

By Lemma 2.1, note that the orthonormal basis of L2[0, c] is {Rn(z)}∞n=0, and denote Rn(z) =
n∑

m=0
rmzm,

where rm is the coefficient of polynomial Rn(z).

We can further obtain the orthonormal basis JRn(z) =
n∑

m=0
rm

zm+2−cm+1z
(m+1)(m+2) of W4[0, c], where

JRn(z) =

n∑
m=0

rm
zm+2 − cm+1z

(m + 1)(m + 2)
,

and
W4[0, c] = {u(z)|u′ ∈ AC, z ∈ [0, c], u(0) = u(c) = 0, u′′ ∈ L2[0, c]}.

Let G = [0, 1] × [0, a] × [0, b] × [0, c]. Now we define a four-dimensional space.

Definition 3.4. W(G) = {u(t, x, y, z)| ∂3u
∂x∂y∂z ∈ CC, (t, x, y, z) ∈ G, u(0, x, y, z) = 0, u(t, 0, y, z) =

u(t, a, y, z) = 0, u(t, x, 0, z) = u(t, x, b, z) = 0, u(t, x, y, 0) = u(t, x, y, c) = 0, ∂7u
∂t∂x2∂y2∂z2 ∈ L2(G)}, and

〈u, v〉W(G) =

&
G

∂7u
∂t∂x2∂y2∂z2

∂7v
∂t∂x2∂y2∂z2 dG, u, v ∈ W(G),

where dG=dtdxdydz.
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Similarly, we give the following theorem without proof.

Theorem 3.7. {ρi jk(t, x, y, z)}∞i, j,k,m=0is an orthonormal basis of W(G), where

ρi jkm(t, x, y, z) = JTi(t)JP j(x)JQk(y)JRm(z), i, j, k,m ∈ N.

Therefore, we can get un as

un(t, x, y, z) =

n∑
i=0

n∑
j=0

n∑
k=0

n∑
m=0

ηi jkmρi jkm(t, x, y, z), (3.10)

according to the theory in Section 3.1, we can find all ηi jkm, i, j, k,m ∈ Nn.

4. Convergence analysis

Suppose u(t, x) =
∞∑

i=0

∞∑
j=0
ηi jρi j(t, x) is the exact solution of Eq (3.5). Let PN1,N2u(t, x) =

N1∑
i=0

N2∑
j=0
ηi jTi(t)P j(x) is the projection of u in L(D).

Theorem 4.1. Suppose
∂r+lu(t, x)
∂tr∂xl ∈ L2(D), and N1 > r,N2 > l, then, the error estimate of PN1,N2u(t, x)

is
||u − PN1,N2u||

2
L2(D) ≤ CN−α,

where C is a constant, N = min{N1,N2}, α = min{r, l}.

Proof. According to the lemma in ref. [29], it follows that

||u − uN1 ||
2
L2

t [0,1] = ||u − Pt,N1u||
2
L2

t [0,1] ≤ C1N−r
1 ||

∂r

∂tr u(t, x)||2L2
t [0,1],

where uN1 = Pt,N1u represents the projection of u on variable t in L2[0, 1], and || · ||L2
t [0,1] represents the

norm of (·) with respect to variable t in L2[0, 1].
By integrating both sides of the above formula with respect to x, we can get

||u − uN1 ||
2
L2(D) ≤ C1N−r

1

∫ a

0
||
∂r

∂tr u||2L2
t [0,1]dx

= C1N−r
1 ||

∂r

∂tr u||2L2(D).

Moreover,

u(t, x) − uN1(t, x) =
∞∑

i=N1+1
〈u,Ti〉L2

t [0,1]Ti(t)

=
∞∑

i=N1+1

∞∑
j=0
〈〈u,Ti〉L2

t [0,1], P j〉L2
x[0,a]P j(x)Ti(t).

According to the knowledge in Section 3,

||u − uN1 ||
2
L2(D) =

∞∑
i=N1+1

∞∑
j=0

c2
i j,
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where ci j = 〈〈u,Ti〉L2
t [0,1], P j〉L2

x[0,a].
Therefore,

∞∑
i=N1+1

∞∑
j=0

c2
i j ≤ C1N−r

1 ||
∂r

∂tr u||2L2(D).

Similarly,
∞∑

i=0

∞∑
j=N2+1

c2
i j ≤ C2N−l

2 ||
∂l

∂xl u||
2
L2(D).

In conclusion,

||u − PN1,N2u||
2
L2(D) = ||(

∞∑
i=0

∞∑
j=0
−

N1∑
i=0

N2∑
j=0

)c2
i jTi(t)P j(x)||2L2(D)

≤
∞∑

i=N1+1

N2∑
j=0

c2
i j +

∞∑
i=0

∞∑
j=N2+1

c2
i j

≤
∞∑

i=N1+1

∞∑
j=0

c2
i j +

∞∑
i=0

∞∑
j=N2+1

c2
i j

≤ C1N−r
1 ||

∂r

∂tr u||2L2(D) + C2N−l
2 ||

∂l

∂xl u||
2
L2(D)

≤ CN−α.

�

Theorem 4.2. Suppose
∂r+lu(t, x)
∂tr∂xl ∈ L2(D), un(t, x) is the ε−best approximate solution of Eq (3.2), and

n > max{r, l}, then,
||u − un||

2
W(D) ≤ Cn−α.

where C is a constant, α = min{r, l}.

Proof. According to Theorem 3.4 and Theorem 4.1, the following formula holds.

||u − un||
2
W(D) ≤ ||u − PN1,N2u||

2
L2(D) ≤ Cn−α.

�

So, the ε−approximate solution has α convergence order, and the convergence rate is related to n,
where represents the number of bases, and the convergence order can calculate as follows.

C.R. = log n2
n1

max|en1 |

max|en2 |
. (4.1)

Where ni, i = 1, 2 represents the number of orthonormal base elements.

5. Numerical examples

Here, three examples are compared with other algorithms. N represents the number of orthonormal
base elements. For example, N = 10×10, which means that we use the orthonormal system {ρi j}

10
i, j=0 of

W(D) for approximate calculation, that is, we take the orthonormal system {JTi(t)}10
i=0 and {JP j(x)}10

j=0
to construct the ε−best approximate solution.
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Example 5.1. Consider the following one-demensional heat conduction system [7, 20]
ut = uxx, (t, x) ∈ [0, 1] × [0, 2π],
u(0, x) = sin(x),
u(t, 0) = u(t, 2π) = 0.

The exact solution of Ex. 5.1 is e−t sin x.
In Table 1, C.R. is calculated according to Eq (4.2). The errors in Tables 1 and 2 show that the

proposed algorithm is very effective. In Figures 1 and 2, the blue surface represents the surface of the
real solution, and the yellow surface represents the surface of un. With the increase of N, the errors
between the two surfaces will be smaller.

Table 1. max |u − un| for Ex. 5.1.

N HOC-ADI Method [20] FVM [7] Present method C.R.
4×4 6.12E-3 4.92E-2 9.892E-3 –
6×6 1.68E-3 2.05E-2 4.319E-4 3.8613
8×8 7.69E-4 1.27E-2 9.758E-6 6.5873
10×10 4.40E-4 9.20E-3 1.577E-7 9.2432

Table 2. |u − un| for Ex. 5.1 (n = 9).

|u − un| t = 0.1 t = 0.3 t = 0.5 t = 0.7 t = 0.9
x = π

5 1.195E-8 3.269E-8 5.009E-8 6.473E-8 8.127E-8
x = 3π

5 2.583E-8 7.130E-8 1.088E-7 1.390E-7 1.577E-7
x = 7π

5 2.583E-8 7.130E-8 1.088E-7 1.390E-7 1.577E-7
x = 9π

5 1.195E-8 3.269E-8 5.009E-8 6.473E-8 8.127E-8

Figure 1. u and un in Example 5.1(n = 9).
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Figure 2. |u(1, x) − un(1, x)| in Example 5.1(n = 9).

Example 5.2. Consider the following two-demensional heat conduction system [20, 21]
ut = uxx + uyy, (t, x, y) ∈ [0, 1] × [0, 1] × [0, 1],
u(0, x, y) = sin(πx) sin(πy),
u(t, 0, y) = u(t, 1, y) = u(t, x, 0) = u(t, x, 1) = 0.

The exact solution of Ex. 5.2 is u = e−2π2t sin(πx) sin(πy).
Example 5.2 is a two-dimensional heat conduction equation. Table 3 shows the errors comparison

with other algorithms. Table 4 lists the errors variation law in the x−axis direction. Figures 3 and 4
show the convergence effect of the scheme more vividly.

Table 3. The absolute errors max |u − un| for Ex. 5.2 (t = 1, (x, y) ∈ [0, 1] × [0, 1]).

N CCD-ADI Method [21] RHOC-ADI Method [20] Present method C.R.
4×4×4 8.820E-3 3.225E-2 5.986E-3 –
8×8×8 6.787E-5 1.969E-3 3.126E-5 2.52704

Table 4. The absolute errors |u − un| for Ex. 5.2 (t = 1, n = 7).

|u − un| y = 0.1 y = 0.3 y = 0.5 y = 0.7 y = 0.9
x = 0.1 7.414E-6 1.963E-5 2.421E-5 1.963E-5 7.414E-6
x = 0.3 1.963E-5 5.130E-5 6.347E-5 5.130E-5 1.963E-5
x = 0.5 2.421E-5 6.347E-5 7.839E-5 6.347E-5 2.421E-5
x = 0.7 1.963E-5 5.130E-5 6.347E-5 5.130E-5 1.963E-5
x = 0.9 7.414E-6 1.963E-5 2.421E-5 1.963E-5 7.414E-6
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Figure 3. u and un in Example 5.2(n = 7).

Figure 4. u − un in Example 5.2(n = 7).

Example 5.3. Consider the three-demensional problem as following:
(

1
a2 +

1
b2 +

1
c2 )ut = uxx + uyy + uzz, (t, x, y, z) ∈ [0, 1] × [0, a] × [0, b] × [0, c],

u(0, x, y) = sin(
πx
a

) sin(
πy
b

) sin(
πz
c

),

u(t, 0, y) = u(t, 1, y) = u(t, x, 0) = u(t, x, 1) = 0.
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The exact solution of Ex. 5.3 is u = e−π
2t sin(

πx
a

) sin(
πy
b

) sin(
πz
c

).
Example 5.3 is a three-dimensional heat conduction equation, this kind of heat conduction system

is also the most common case in the industrial field. Table 5 lists the approximation degree between
the ε−best approximate solution and the real solution when the boundary time t = 1.

Table 5. The absolute errors |u − un| for Ex. 5.3 (t = 1, z = 0.1, n = 2).

|u − un| y = 0.2 y = 0.6 y = 1.0 y = 1.4 y = 1.8
x = 0.1 1.130E-3 2.873E-3 3.451E-3 2.873E-3 1.130E-3
x = 0.3 2.893E-3 7.350E-3 8.820E-3 7.350E-3 2.893E-3
x = 0.5 3.482E-3 8.838E-3 1.059E-2 8.838E-3 3.482E-3
x = 0.7 2.893E-3 7.350E-3 8.820E-3 7.735E-3 2.893E-3
x = 0.9 1.130E-3 2.873E-3 3.451E-3 2.873E-3 1.130E-3

6. Conclusions

The Shifted-Legendre orthonormal scheme is applied to high-dimensional heat conduction
equations. The algorithm proposed in this paper has some advantages. On the one hand, the algorithm
is evolved from the algorithm for solving one-dimensional heat conduction equation, which is easy to
be understood and expanded. On the other hand, the standard orthogonal basis proposed in this paper
is a polynomial structure, which has the characteristics of convergence order.
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7. S. Clain, G. J. Machado, J. M. Nóbrega, R. M. S. Pereira, A sixth-order finite volume method
for multidomain convection-diffusion problems with discontinuous coefficients, Comput. Method.
Appl. Mech. Eng., 267 (2013), 43–64. https://doi.org/10.1016/j.cma.2013.08.003

8. G. Manzini, A. Russo, A finite volume method for advection-diffusion problems in
convection-dominated regimes, Comput. Method. Appl. Mech. Eng., 197 (2008), 1242–1261.
https://doi.org/10.1016/j.cma.2007.11.014

9. L. Mei, H. Sun, Y. Lin, Numerical method and convergence order for second-order impulsive
differential equations, Adv. Differ Equ., 2019 (2019), 260. https://doi.org/10.1186/s13662-019-
2177-2

10. L. Mei, A novel method for nonlinear impulsive differential equations in broken reproducing Kernel
space, Acta Math. Sci., 40 (2020), 723–733. https://doi.org/10.1007/s10473-020-0310-7

11. L. Mei, Y. Jia, Y. Lin, Simplified reproducing kernel method for impulsive delay differential
equations, Appl. Math. Lett., 83 (2018), 123–129. https://doi.org/10.1016/j.aml.2018.03.024

12. M. Xu, E. Tohidi, A Legendre reproducing kernel method with higher convergence order for a
class of singular two-point boundary value problems, J. Appl. Math. Comput., 67 (2021), 405–421.
https://doi.org/10.1007/s12190-020-01494-6

13. M. Xu, L. Zhang, E. Tohidi, A fourth-order least-squares based reproducing kernel method
for one-dimensional elliptic interface problems, Appl. Numer. Math., 162 (2021), 124–136.
https://doi.org/10.1016/j.apnum.2020.12.015

14. M. Xu, J. Niu, E. Tohidi, J. Hou, D. Jiang, A new least-squares-based reproducing
kernel method for solving regular and weakly singular Volterra-Fredholm integral equations
with smooth and nonsmooth solutions, Math. Method. Appl. Sci., 44 (2021), 10772–10784.
https://doi.org/10.1002/mma.7444

15. X. H. Wu, S. P. Shen, W. Q. Tao, Meshless local Petrov-Galerkin collocation method for two-
dimensional heat conduction problems, CMES, 22 (2007), 65–76.

16. Y. Zhang, X. Zhang , C. W. Shu, Maximum-principle-satisfying second order discontinuous
Galerkin schemes for convection-diffusion equations on triangular meshes, J. Comput. Phys., 234
(2013), 295–316. https://doi.org/10.1016/j.jcp.2012.09.032

17. Y. Cheng, C. W. Shu, Superconvergence of local discontinuous Galerkin methods for
one-dimensional convection-diffusion equations, Comput. Struct., 87 (2009), 630–641.
https://doi.org/10.1016/j.compstruc.2008.11.012

AIMS Mathematics Volume 7, Issue 5, 9463–9478.

http://dx.doi.org/https://doi.org/10.1016/j.camwa.2019.03.032
http://dx.doi.org/https://doi.org/10.1006/jcph.1998.6032
http://dx.doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.019
http://dx.doi.org/https://doi.org/10.1016/j.cma.2013.08.003
http://dx.doi.org/https://doi.org/10.1016/j.cma.2007.11.014
http://dx.doi.org/https://doi.org/10.1186/s13662-019-2177-2
http://dx.doi.org/https://doi.org/10.1186/s13662-019-2177-2
http://dx.doi.org/https://doi.org/10.1007/s10473-020-0310-7
http://dx.doi.org/https://doi.org/10.1016/j.aml.2018.03.024
http://dx.doi.org/https://doi.org/10.1007/s12190-020-01494-6
http://dx.doi.org/https://doi.org/10.1016/j.apnum.2020.12.015
http://dx.doi.org/https://doi.org/10.1002/mma.7444
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2012.09.032
http://dx.doi.org/https://doi.org/10.1016/j.compstruc.2008.11.012


9478

18. S. Jun, D. W. Kim, Axial Green’s function method for steady Stokes flow in geometrically complex
domains, J. Comput. Phys., 230 (2011), 2095–2124. https://doi.org/10.1016/j.jcp.2010.12.007

19. W. Lee, D. W. Kim, Localized axial Green’s function method for the convection-
diffusion equations in arbitrary domains, J. Comput. Phys., 275 (2014), 390–414.
https://doi.org/10.1016/j.jcp.2014.06.050

20. M. Xu, A high order scheme for unsteady heat conduction equations, Appl. Math. Comput., 384
(2019), 565–574. https://doi.org/10.1016/j.amc.2018.12.024

21. H. W. Sun, L. Z. Li, A CCD-ADI method for unsteady convection-diffusion equations, Comput.
Phys. Commun., 185 (2014), 790–797. https://doi.org/10.1016/j.cpc.2013.11.009

22. C. Wang, F. Wang, Y. Gong, Analysis of 2D heat conduction in nonlinear functionally graded
materials using a local semi-analytical meshless method, AIMS Mathematics, 6 (2021), 12599–
12618. https://doi.org/10.3934/math.2021726

23. F. Wang, C. Wang, Z. Chen, Local knot method for 2D and 3D convection-diffusion-
reaction equations in arbitrary domains, Appl. Math. Lett., 105 (2020), 106308.
https://doi.org/10.1016/j.aml.2020.106308

24. X. Yue, F. Wang, Q. Hua, X. Qiu, A novel space-time meshless method for nonhomogeneous
convection-diffusion equations with variable coefficients, Appl. Math. Lett., 92 (2019), 144–150.
https://doi.org/10.1016/j.aml.2019.01.018

25. F. Wang, C. Fan, C. Zhang, J. Lin, A localized space-time method of fundamental solutions
for diffusion and convection-diffusion problems, Adv. Appl. Math. Mech., 12 (2020), 940–958.
https://doi.org/10.4208/aamm.OA-2019-0269

26. H. Sun, L. Mei, Y. Lin, A new algorithm based on improved Legendre orthonormal
basis for solving second-order BVPs, Appl. Math. Lett., 112 (2021), 106732.
https://doi.org/10.1016/j.aml.2020.106732

27. M. U. Rehman, R. A. Khan, The Legendre wavelet method for solving
fractional differential equations, Commun. Nonlinear Sci., 16 (2011), 4163–4173.
https://doi.org/10.1016/j.cnsns.2011.01.014

28. S. Sheikhi, M. Matinfar, M. A. Firoozjaee, Numerical solution of variable-order differential
equations via the Ritz-approximation Method by shifted Legendre polynomials, Int. J. Appl.
Comput. Math., 7 (2021), 22. https://doi.org/10.1007/s40819-021-00962-2

29. C. G. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral methods: fundamentals in single
domains, Berlin: Springer, 2006. https://doi.org/10.1007/978-3-540-30726-6

30. B. Wu, Y. Lin, Application oriented the reproducing Kernel space, Beijing: Beijing Science Press,
2012.

c© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 7, Issue 5, 9463–9478.

http://dx.doi.org/https://doi.org/10.1016/j.jcp.2010.12.007
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2014.06.050
http://dx.doi.org/https://doi.org/10.1016/j.amc.2018.12.024
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2013.11.009
http://dx.doi.org/https://doi.org/10.3934/math.2021726
http://dx.doi.org/https://doi.org/10.1016/j.aml.2020.106308
http://dx.doi.org/https://doi.org/10.1016/j.aml.2019.01.018
http://dx.doi.org/https://doi.org/10.4208/aamm.OA-2019-0269
http://dx.doi.org/https://doi.org/10.1016/j.aml.2020.106732
http://dx.doi.org/https://doi.org/10.1016/j.cnsns.2011.01.014
http://dx.doi.org/https://doi.org/10.1007/s40819-021-00962-2
http://dx.doi.org/https://doi.org/10.1007/978-3-540-30726-6
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Shifted-Legendre polynomial
	Homogenization of boundary value conditions
	Introduction of the space

	Numerical method and analysis
	The scheme of one-dimensional model
	Two-dimensional heat conduction equation
	Three-dimensional heat conduction equation

	Convergence analysis
	Numerical examples
	Conclusions

