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1. Introduction

Newton developed fractional calculus in 1695, although it has only lately caught the interest of many
scholars. Over the last two decades, the most intriguing developments in scientific and engineering
applications have been discovered within the framework of fractional calculus. The notion of the
fractional derivative has been established because to the challenges associated with a heterogeneity
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issue [36–38]. The important point to remember is that fractional derivatives and integrals have
different applications and consequences depending on the definitions utilized, such as Riemann-
Liouville, Hadamard, Grunwald Letnikov, Caputo, Riesz-Caputo, Chen, Weyl, Erd Iyi-Kober and so
on. Recently, Caputo and Fabrizio [12] introduced a novel non-local and non-singular kernel idea in the
non-typical Banach space H1 in 2015. This concept was first difficult to implement, but it soon gained
traction in a number of fields, including thermal science, mechanical engineering, and groundwater
research; for additional details, see [4, 6, 11], and the references therein. Later, Atangana and
Baleanu [1] presented a new concept of non-local derivatives with non-singular kernel depending on the
Mittag-Leffler function, which supported the Caputo-Fabrizio’s one based on exponential function. The
Atangana and Baleanu interpretations have improved the understanding of the relationship between
fractional calculus and the Mittag-Leffler function, as well as the important applications that they
achieve together. For further information, see [1, 3, 7].

The theory of instantaneous impulsive differential equations covers processes that undergo a
sudden change in state at certain times. Such processes occur often and spontaneously, especially
in phenomena studied in science, control systems, engineering, and biological sciences ( [10,26]). The
concept of instantaneous impulsive differential equations has emerged as an important research area in
recent decades in Banach spaces, see the references [2, 3, 14, 15, 17, 18, 35] for more information on
this idea and its applications, which contain comprehensive bibliographies as well as a wide variety of
features of their solutions. In short, differential systems with instantaneous impulses looks at situations
with abrupt and instantaneous impulses. Models with instantaneous impulses, on the other hand, are
clearly unable of explaining several elements of pharmacological evolution processes. As Hernandez
and O’Regan pointed out in [20], when we look at a simplified scenario of a person’s hemodynamic
equilibrium, the absorption of medications into the circulation and the body’s subsequent absorption
are slow and continuous processes. As a consequence, this situation may be understood as an
impulsive behaviour that starts rapidly and ends after a certain amount of time has passed. We
call this phenomenon that occurs while creating mathematical models “non-instantaneous impulses”.
According to the study, non-instantaneous impulses may describe a variety of models drawn from
real-world models as partial differential systems.

Several authors have investigated non-instantaneous impulses in recent years and come up with
some intriguing conclusions, see for instance [5,9,13,19,20,25,27,33,34]. In [25], authors studied the
trajectory approximately controllability and optimal control for non-instantaneous impulsive inclusions
without compactness in Banach spaces and finally as an application, the controllability for a differential
inclusion system governed by a heat equation is considered. Recently, Qiu et al. [33] discussed the
consistent tracking problem of non-instantaneous impulsive multi-agent systems and further authors
shows that all agents of linear systems are driven to achieve a given asymptotical consensus as the
number of iteration increases by using the standard urn:x-wiley:rnc:media:rnc5627:rnc5627-math-
0003-type learning law with the initial state learning rule. Furthermore, very few authors studied
the existence and controllability of fractional-order differential system through Atangana-Baleanu
derivative, see for instance [3, 27–29]. In particular, in [27], authors investigated the existence results
for fractional-order differential systems having non-instantaneous impulses utilizing the Atangana-
Baleanu derivative in Banach spaces through measures of non-compactness. Recently, Mallika Arjunan
et al. [28–30] studied the existence results of various fractional-order differential systems through
Atangana-Baleanu derivative under suitable fixed point theorems.
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In light of the preceding, in this manuscript, we investigate the existence results for a class of
fractional-order functional differential equations with non-instantaneous impulses of the form

Dϑ
ABC p(ς) = Ap(ς) + F (ς, pς), ∪m

`=0(s`, ς`+1], (1.1)
p(ς) = κ`(ς, pς), ς ∈ ∪m

`=1(ς`, s`], (1.2)
p(ς) = ϕ(ς) ∈ B, (1.3)

where J = [0, ξ], ξ > 0 is the operational interval, ϑ ∈ (0, 1), A : D(A) ⊂ E → E is the infinitesimal
generator of an %-resolvent family B̂ϑ(ς)ς≥0, the solution operator Bϑ(ς)ς≥0 is described on a complex
Banach space E, Dϑ

ABC is the Atangana-Baleanu-Caputo derivative, 0 < ς1 < ς2 < · · · < ςm <

ςm+1 = ξ, s0 = 0 and s` ∈ (ς`, ς`+1) for each ` = 1, 2, . . . ,m; F : ∪m
`=0(s`, ς`+1] × B → E

is a given function which satisfies certain assumptions to be specified later on. We consider the
non-instantaneous impulsive functions κ` : (ς`, s`] × B → E, ` = 1, 2, . . . ,m; we assume that
pς : (−∞, 0]→ E, pς(x) = p(ς + x), x ≤ 0, and ϕ ∈ B, where B is an abstract phase space defined in
Section 2.2.

The rest of the manuscript is organized as follows. We give some fundamental concepts on
Atangana-Baleanu fractional derivatives, phase space axioms (B), sectorial operator and mild solution
of the systems (1.1)–(1.3) in Section 2. The proof of our main results are given in Section 3. In the
final section, an example is shown.

2. Preliminaries

The essential definitions and results of the sectorial operator, piece-wise continuous functions,
measures of non-compactness, phase space axioms, and Atangana-Baleanu fractional derivative are
covered in this part, which will assist us in proving our primary points.

Let (E, ‖ · ‖E) be a complex Banach space. L(E) is the Banach space of all bounded linear operators
from X into X with ‖ · ‖L(E) as the corresponding norm.

C ([0, ξ], E) is the Banach space of all continuous functions from [0, ξ] into E with the norm

‖p‖C ([0,ξ],E) = sup{‖p(ς)‖ : ς ∈ [0, ξ]}.

The functions p : [0, ξ] → E that are integrable in the Bochner notion with regard to the Lebesgue
measure, equipped with

‖p‖L1 =

∫ ξ

0
‖p(x)||dx

is denoted by L1([0, ξ], E).
Here, we recall some fundamental definitions of Atangnan-Baleanu fractional derivative.

Definition 2.1. [1] The Atangnan-Baleanu fractional integral of order ϑ ∈ (0, 1) of a function
r : (d, ξ)→ R is described as

ABIϑd+r(ς) =
1 − ϑ
B(ϑ)

r(ς) +
ϑ

B(ϑ)Γ(ϑ)

∫ ς

d
(ς − x)ϑ−1r(x)dx,

where B(ϑ) = (1−ϑ)+ ϑ
Γ(ϑ) is the normalising function that fulfills the condition B(0) = 1 and B(1) = 1.
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Definition 2.2. [1] As r ∈ H1(d, ξ), d < ξ, the Atangnan-Baleanu fractional derivative of order
ϑ ∈ (0, 1) of a function r in Caputo sense is described by

ABCDϑ
d+r(ς) =

B(ϑ)
1 − ϑ

∫ ς

d
r′(s)Eϑ

(
−

ϑ

1 − ϑ
(ς − x)ϑ

)
dx

for each ς ∈ (d, ξ). Here Eϑ is the Mittag-Leffler function.

We recommend readers to refer the following papers to prevent repeats of several definitions used
in this manuscript: sectorial operator [23] and solution operator (see Definition 2.7 in [29]). For more
information on this topic and its applications, we recommend reading [1, 3, 27, 28, 32, 35].

2.1. Piece-wise Continuous Functions

When incorporating impulsive constraints, we must first construct the piece-wise continuous
functions.

We discuss it in detail here.

PC ([0, ξ], E) =
{
p : [0, ξ]→ E : p is continuous for ς , ς`,
left continuous at ς = ς` and p(ς+

` ) serves for ` = 1, 2, . . . ,m
}
.

The fact that PC ([0, ξ], E) is a Banach space equipped with the PC -norm

‖p‖PC = max
{

sup
ς∈[0,ξ]

‖p(ς+)‖, sup
ς∈[0,ξ]

‖p(ς−)‖
}
, p ∈PC ([0, ξ], E),

where p(ς+) and p(ς−) are the right and left limits of p(ς) at ς ∈ [0, ξ], accordingly.

2.2. Phase space axioms

To employ delay criteria, we must first establish the phase space axioms B introduced by Hale and
Kato in [21] and utilize the terminology used in [24]. As a result, (B, ‖ · ‖B) is a semi-normed linear
space of functions mapping (−∞, 0] into E and satisfying the axioms below.

If p :] − ∞, ξ] → E, ξ > 0, is such that p0 ∈ B, then for all ς ∈ [0, ξ], the subsequent assumptions
hold:

(C1) pς ∈ B,
(C2)

∥∥∥pς
∥∥∥
B
≤ Q1(ς) sup

0≤x≤ς
‖p(x)‖ + Q2(ς) ‖p0‖B ,

(C3) ‖p(ς)‖ ≤ W
∥∥∥pς

∥∥∥
B

, where W > 0 is a constant and Q1 : [0,∞) → [0,∞) is continuous,
Q2 : [0,∞) → [0,∞) is locally bounded, and Q1,Q2 are independent of p(·). Furthermore,
‖ϕ(0)‖ ≤ W‖ϕ‖B for every ϕ ∈ B.

(C4) pς is a B-valued continuous function on [0, ξ] and B is complete. For more details, see [22].

Now, we define the space

Yξ = {p : (−∞, ξ]→ E such that p0 ∈ B and the assumption p|[0,ξ] ∈PC }.

In Yξ, the function ‖ · ‖Yξ is defined as a seminorm,

‖p‖Yξ = ‖ϕ‖B + sup
x∈[0,ξ]

‖p(x)‖, x ∈ Yξ.
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We recommend that the reader go to [22, 24] for further information on phase space axioms and
examples.

Definition 2.3. A function F : [0, ξ] ×B → E is said to be Caratheodory if it satisfies the following
criteria:

(i) the function F (ς, ·) : B → E is continuous for almost every ς ∈ [0, ξ];
(ii) the function F (·, p) : [0, ξ]→ E is measurable for every p ∈ B.

2.3. Measures of Noncompactness

The idea of measure of non-compactness supports a number of our results. With this in mind,
we shall now recall some of this concept’s properties. The reader will be directed to [8, 16] for
fundamental information. Throughout this manuscript, we only employ the Kuratowski measure idea
of non-compactness.

Definition 2.4. [8, 16] (Kuratowski measure of non-compactness) Let B(E) be a family of bounded
subset of E, where E is a Banach space. Then β : B(E)→ R+ is set to

β(U) := inf{δ > 0 : U = ∪k
i=1Ui with diam(Ui) ≤ δ for i = 1, 2, . . . , k},

whereU ∈ B(E) is known as Kuratowski measure of non-compactness.

Lemma 2.1 ( [8, 16]). For any bounded setsU,U1 andU2 of a Banach space E, we obtain

(i) β(U) = 0 iffU is totally bounded;
(ii) β(U) = β(U), whereU means the closure ofU;

(iii) For eachU1 ⊂ U2 implies β(U1) ≤ β(U2);
(iv) β(U1 +U2) ≤ β(U1) + β(U2);
(v) β(U1 ∪U2) = max{β(U1), β(U2)};

(vi) β(λU) = |λ|β(U) for any λ ∈ R.
(vii) β(U) = β(co(U)).

Lemma 2.2. [8] If U ⊂ C ([τ1, τ2], E) is bounded and equi-continuous on [τ1, τ2], then β(U(ς)) is
continuous for ς ∈ [τ1, τ2] and βC (U) = sup{β(U(ς)), ς ∈ [τ1, τ2]}, whereU(ς) = {p(ς) : p ∈ U} ⊂ E.

Lemma 2.3. [8] If U is a bounded set in C ([τ1, τ2], E), then U(ς) is bounded in E and β(U(ς)) ≤
βC (U).

Lemma 2.4. [13] IfU ⊂ E is bounded for a Banach space E, then a countable subsetU0 ⊂ U exists,
for which β(U) ≤ 2β(U0) exists.

Lemma 2.5 ( [13]). Let E be a Banach space, and letU = {vn} ⊂ PC ([τ1, τ2], E) be a bounded and
countable set for constants −∞ < τ1 < τ2 < +∞. Then β(U(ς)) is Lebesgue integral on [τ1, τ2], and

β
({ ∫ τ2

τ1

vn(ς)dς : n ∈ N
})
≤ 2

∫ τ2

τ1

β(U(ς))dς.

The Kuratowski measure of non-compactness on the bounded set of E, C ([0, ξ], E), and
PC ([0, ξ], E) is denoted by β(·), βC (·), and βPC (·), respectively, in this manuscript.

We can now define the mild solution for the systems (1.1)–(1.3).
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Definition 2.5. [28] A function p ∈ Yξ is called a mild solution of the systems (1.1)–(1.3) if p0 = ϕ ∈ B
and p(ς) = κ`(ς, pς) for ς ∈ (ς`, s`], and each ` = 1, 2, . . . ,m, satisfies the following integral equation

p(ς) =



SBϑ(ς)ϕ(0) +
ST(1 − ϑ)
B(ϑ)Γ(ϑ)

∫ ς

0
(ς − s)ϑ−1F (s, ps)ds

+
ϑS2

B(ϑ)

∫ ς

0
B̂ϑ(ς − s)F (s, ps)ds, ς ∈ (0, ς1],

SBϑ(ς − s`)κ`(s`, ps`) +
ST(1 − ϑ)
B(ϑ)Γ(ϑ)

∫ ς

s`
(ς − s)ϑ−1F (s, ps)ds

+
ϑS2

B(ϑ)

∫ ς

s`
B̂ϑ(ς − s)F (s, ps)ds, ς ∈ ∪m

`=1(s`, ς`+1],

(2.1)

S = ζ(ζI − A)−1 and T = −γ̃A(ζI − A)−1 with ζ =
B(ϑ)
1−ϑ , γ̃ = ϑ

1−ϑ and

Bϑ(ς) = Eϑ(−Tςϑ) =
1

2πi

∫
Γ

exςxϑ−1(xϑI − T)−1dx, (2.2)

B̂ϑ(ς) = ςϑ−1Eϑ,ϑ(−Tςϑ) =
1

2πi

∫
Γ

exς(xϑI − T)−1dx, (2.3)

where Γ denotes the Bromwich path [7].

Remark 2.1. Before we can present and verify the primary result of the following section, we must
first construct the operator estimates specified in (2.2) and (2.3).

If ϑ ∈ (0, 1) and A ∈ A ϑ(β0, ω0), then for any p ∈ E and ς > 0, we have ‖Bϑ(ς)‖ ≤ Λ̂eως

and ‖B̂ϑ(ς)‖ ≤ Ceως(1 + ςϑ−1), for every ς > 0, ω > ω0. Hence, we get ‖Bϑ(ς)‖ ≤ M̂B and
‖B̂ϑ(ς)‖ ≤ ςϑ−1M̂B̂. Since M̂B = sup

0≤ς≤ξ
‖Bϑ(ς)‖ and M̂B̂ = sup

0≤ς≤ξ
Ceως(1 + ς1−ϑ). For additional

details, see [23, 27, 35].

At the end of this section, we mention the crucial Monch fixed point theorem [MFPT] and it is very
helpful in proving our results [9, 31].

Theorem 2.1. For any bounded, closed and convex subset of a Banach space E. Let Υ : B→ B and if
the implication

W = conv Υ(W) or W = Υ(W) ∪ 0 =⇒ β(W) = 0

holds for every subset W of B, then Υ has a fixed point.

3. Existence results

This section presents and proves the existence findings for the systems (1.1)–(1.3) under the
MFPT [31].

The following are the conditions for applying the fixed point theorem [31].

(A1) The function F : [0, ξ] × B → E is Caratheodory. There exists a non-decreasing continuous
function Ω : [0,∞)→ (0,∞) and a function γ ∈ L 1([0, ξ],R+) is such that

‖F (ς, v)‖E ≤ γ(ς)Ω(‖v‖B) for a.e. ς ∈ [0, ξ] and v ∈ B.
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(A2) For each ` = 1, 2, . . . ,m the functions κ` : (ς`, s`] × B → E are continuous and fulfills the
subsequent assumptions:

(i) There are constants Lκ` , Lκ` , ` = 1, 2, . . . ,m in ways that

‖κ`(ς, v)‖E ≤ Lκ`‖v‖B + Lκ` , for a.e. ς ∈ (ς`, s`], v ∈ B.

(ii) The constants γ` > 0 in a way that, for each boundedU1 ⊂ B,

β(κ`(ς,U1)) ≤ γ` sup
−∞<θ≤0

β(U1(θ)), for a.e. ς ∈ (ς`, s`], ` = 1, 2, . . . ,m.

(A3) The sets {ς → κ`(ς, pς) : pς ∈ U}, ` = 1, 2, . . . ,m are equi-continuous in B for any bounded set
U ⊂ B.

(A4) For each ` = 0, 1, 2, . . . ,m, there exist constants L` > 0 in ways that for any countable setU2 ⊂ B

β(F (ς,U2)) ≤ L` sup
−∞<θ≤0

β(U2(θ)) ∀ ς ∈ (s`, ς`+1].

(A5) S and T are bounded linear operators and there exist constants µ, µ such that ‖S‖ ≤ µ and ‖T‖ ≤ µ.

Theorem 3.1. Assume that (A1)–(A5) hold. If

Θ̂ =

2µM̂Bγ̂ + 4

 µµ(1 − ϑ)
B(ϑ)Γ(ϑ + 1)

+
µ2M̂B̂

B(ϑ)

 L̃

 < 1, (3.1)

where γ̂ = max
`=1,2,...,m

γ` and L̃ = max
`=0,1,2,...,m

{(ς`+1 − s`)ϑL`}. Then the systems (1.1)–(1.3) has at least one

mild solution on [0, ξ].

Proof. Now the operator Υ : Yξ → Yξ defined by

(Υp)(ς) =



ϕ(ς), ς ≤ 0,

SBϑ(ς)ϕ(0) +
ST(1 − ϑ)
B(ϑ)Γ(ϑ)

∫ ς

0
(ς − s)ϑ−1F (s, ps)ds

+
ϑS2

B(ϑ)

∫ ς

0
B̂ϑ(ς − s)F (s, ps)ds, ς ∈ (0, ς1],

κ`(ς, pς), ς ∈ ∪m
`=1(ς`, s`],

SBϑ(ς − s`)κ`(s`, ps`) +
ST(1 − ϑ)
B(ϑ)Γ(ϑ)

∫ ς

s`
(ς − s)ϑ−1F (s, ps)ds

+
ϑS2

B(ϑ)

∫ ς

s`
B̂ϑ(ς − s)F (s, ps)ds, ς ∈ ∪m

`=1(s`, ς`+1].

Let u(·) : (−∞, ξ]→ E be the function described by

u(ς) =

{
ϕ(ς), ς ∈ (−∞, 0],
SBϑ(ς)ϕ(0), ς ∈ [0, ξ],
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then u0 = ϕ. For every v ∈ C ([0, ξ],R) with v(0) = 0, we denote by v the function defined by

v(ς) =

{
0, ς ∈ (−∞, 0];
v(ς), ς ∈ [0, ξ].

Let p(·) satisfies (2.1), then we decompose p(·) as p(ς) = v(ς) + u(ς) for ς ∈ [0, ξ], which suggests
pς = vς + uς, and the function v(·) fulfills

v(ς) =



ST(1 − ϑ)
B(ϑ)Γ(ϑ)

∫ ς

0
(ς − s)ϑ−1F (s, vs + us)ds

+
ϑS2

B(ϑ)

∫ ς

0
B̂ϑ(ς − s)F (s, vs + us)ds, ς ∈ (0, ς1],

κ`(ς, vς + uς), ς ∈ ∪m
`=1(ς`, s`],

SBϑ(ς − s`)κ`(s`, vs` + us`) +
ST(1 − ϑ)
B(ϑ)Γ(ϑ)

∫ ς

s`
(ς − s)ϑ−1F (s, vs + us)ds

+
ϑS2

B(ϑ)

∫ ς

s`
B̂ϑ(ς − s)F (s, vs + us)ds, ς ∈ ∪m

`=1(s`, ς`+1].

Set Y0
ξ = {v ∈ Yξ : v0 = 0 ∈ B} and for any v ∈ Y0

ξ , we have

‖v‖Y0
ξ

= ‖v0‖B + sup{‖v(x)‖E : 0 ≤ s < +∞} = sup{‖v(x)‖E : 0 ≤ x < +∞}.

As a result, the Banach space (Y0
ξ , ‖ · ‖Y0

ξ
) exists. Consider Υ : Y0

ξ → Y0
ξ , which is defined as:

(Υv)(ς) =



ST(1 − ϑ)
B(ϑ)Γ(ϑ)

∫ ς

0
(ς − s)ϑ−1F (s, vs + us)ds

+
ϑS2

B(ϑ)

∫ ς

0
B̂ϑ(ς − s)F (s, vs + us)ds, ς ∈ (0, ς1],

κ`(ς, vς + uς), ς ∈ ∪m
`=1(ς`, s`],

SBϑ(ς − s`)κ`(s`, vs` + us`) +
ST(1 − ϑ)
B(ϑ)Γ(ϑ)

∫ ς

s`
(ς − s)ϑ−1F (s, vs + us)ds

+
ϑS2

B(ϑ)

∫ ς

s`
B̂ϑ(ς − s)F (s, vs + us)ds, ς ∈ ∪m

`=1(s`, ς`+1].

It is obvious that operator Υ has a fixed-point if and only if Υ has a fixed-point.
To prove the result, we first determine the estimate of the phase space axioms. For every ς ∈ [0, ξ],

we have from Section 2.2,

‖vς + uς‖B ≤ ‖vς‖B + ‖uς‖B
≤ Q1(ς)‖v(ς)‖E + Q2(ς)‖v0‖B + Q1(ς)‖u(ς)‖E + Q2(ς)‖u0‖B

≤ Q1(ς)‖v(ς)‖E + Q1(ς)[‖SBϑ(ς)ϕ(0)‖E] + Q2(ς)‖ϕ‖B

≤ Q∗1 sup
0≤x≤ς

‖v(x)‖E + Q∗1µM̂BW‖ϕ‖B + Q∗2‖ϕ‖B

= Q∗1 sup
0≤x≤ς

‖v(x)‖E + (Q∗1µM̂BW + Q∗2)‖ϕ‖B,
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where Q∗1 = sup
x∈[0,ξ]

Q1(x) and Q∗2 = sup
x∈[0,ξ]

Q2(x).

Then, we get

‖vς + uς‖B ≤ e + Q∗1 sup
0≤x≤ς

‖v(x)‖E, (3.2)

where e = (Q∗1µM̂BW + Q∗2)‖ϕ‖B.
To make the proof more understandable, we have separated it into phases.

Step 1: Υ is continuous.
Let vn be a sequence such that vn → v in Y0

ξ .

(Υvn)(ς) =



ST(1 − ϑ)
B(ϑ)Γ(ϑ)

∫ ς

0
(ς − s)ϑ−1F (s, vn

s + us)ds

+
ϑS2

B(ϑ)

∫ ς

0
B̂ϑ(ς − s)F (s, vn

s + us)ds, ς ∈ (0, ς1],

κ`(ς, vn
ς + uς), ς ∈ ∪m

`=1(ς`, s`],

SBϑ(ς − s`)κ`(s`, vn
s` + us`) +

ST(1 − ϑ)
B(ϑ)Γ(ϑ)

∫ ς

s`
(ς − s)ϑ−1F (s, vn

s + us)ds

+
ϑS2

B(ϑ)

∫ ς

s`
B̂ϑ(ς − s)F (s, vn

s + us)ds, ς ∈ ∪m
`=1(s`, ς`+1].

By using the dominated convergence theorem along with (A5), for ς ∈ [0, ς1], we have

‖(Υvn)(ς) − (Υv)(ς)‖E ≤

∥∥∥∥∥∥ST(1 − ϑ)
B(ϑ)Γ(ϑ)

∫ ς

0
(ς − s)ϑ−1[F (s, vn

s + us) −F (s, vs + us)]ds

+
ϑS2

B(ϑ)

∫ ς

0
Bϑ(ς − s)[F (s, vn

s + us) −F (s, vs + us)]ds

∥∥∥∥∥∥
E

≤
µµ(1 − ϑ)
B(ϑ)Γ(ϑ)

∫ ς

0
(ς − s)ϑ−1‖F (s, vn

s + us) −F (s, vs + us)‖Eds

+
ϑµ2M̂B̂

B(ϑ)

∫ ς

0
(ς − s)ϑ−1‖F (s, vn

s + us) −F (s, vs + us)‖Eds

≤

 µµ(1 − ϑ)ςϑ1
B(ϑ)Γ(ϑ + 1)

+
µ2M̂B̂ς

ϑ
1

B(ϑ)

 sup
x∈[0,ξ]

‖F (s, vn
s + us) −F (s, vs + us)‖E

→ 0 as n→ ∞.

For any ς ∈ (ς`, s`], ` = 1, 2, . . . ,m, we obtain

‖(Υvn)(ς) − (Υv)(ς)‖E ≤ ‖κ`(ς, vn
ς + uς) − κ`(ς, vς + uς)‖E

→ 0 as n→ ∞.

For ς ∈ ∪m
`=0(s`, ς`+1], we get

‖(Υvn)(ς) − (Υv)(ς)‖E ≤ ‖SBϑ(ς − s`)‖E[‖κ`(ς, vn
ς + uς) − κ`(ς, vς + uς)‖E]
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+

 µµ(1 − ϑ)
B(ϑ)Γ(ϑ + 1)

+
µ2M̂B̂

B(ϑ)

 L̂ sup
x∈[0,ξ]

‖F (s, vn
s + us) −F (s, vs + us)‖E

→ 0 as n→ ∞,

where L̂ = max
`=0,1,2,...,m

(ς`+1 − s`)ϑ.

It is easy to see that
lim
n→∞
‖(Υvn) − (Υv)‖Y0

ξ
= 0.

As a result, in Y0
ξ , the operator Υ is continuous.

Step 2: Any closed ball BR of Y0
ξ is mapped into bounded sets in Y0

ξ by Υ.
Indeed, it is enough to show that there exists N > 0 in a way that for every v ∈ BR = {v ∈ Y0

ξ :
‖v‖Y0

ξ
≤ R} one has ‖Υ(v)‖Y0

ξ
≤ N.

Let v ∈ Y0
ξ and denote γ∗ = sup

0≤x≤ξ
γ(x). If ς ∈ [0, ς1], then by (A1) and (3.2), we have

‖(Υv)(ς)‖E ≤
‖S‖‖T‖(1 − ϑ)

B(ϑ)Γ(ϑ)

∫ ς

0
(ς − s)ϑ−1‖F (s, vs + us)‖Eds

+
ϑ‖S‖2M̂B̂

B(ϑ)

∫ ς

0
(ς − s)ϑ−1‖F (s, vs + us)‖Eds

≤
µµ(1 − ϑ)
B(ϑ)Γ(ϑ)

∫ ς

0
(ς − s)ϑ−1γ(s)Ω(‖vs + us‖B)ds

+
ϑµ2M̂B̂

B(ϑ)

∫ ς

0
(ς − s)ϑ−1γ(s)Ω(‖vs + us‖B)ds

≤

 µµ(1 − ϑ)ςϑ1
B(ϑ)Γ(ϑ + 1)

+
µ2M̂B̂ς

ϑ
1

B(ϑ)

 γ∗Ω(e + Q∗1R).

For ς ∈ (ς`, s`], ` = 1, 2, . . . ,m, then by (A2) and (3.2), we get

‖(Υv)(ς)‖E = ‖κ`(ς, vς + uς)‖E
≤ Lκ`‖vς + uς‖B + Lκ`
≤ Lκ`(e + Q∗1R) + Lκ`
≤ L(1 + e + Q∗1R),

where L = max
`=1,2,...,m

{Lκ` , Lκ`}.

For ς ∈ (s`, ς`+1], ` = 1, 2, . . . ,m, then by conditions (A1) and (A2) along with (3.2), we obtain

‖(Υv)(ς)‖E ≤ ‖S‖‖Bϑ(ς − s`)‖‖κ`(s`, vs` + us`)‖E

+
‖S‖‖T‖(1 − ϑ)

B(ϑ)Γ(ϑ)

∫ ς

s`
(ς − s)ϑ−1‖F (s, vs + us)‖Eds

+
ϑ‖S‖2M̂B̂

B(ϑ)

∫ ς

s`
(ς − s)ϑ−1‖F (s, vs + us)‖Eds
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≤ µM̂BL(1 + e + Q∗1R) +

 µµ(1 − ϑ)
B(ϑ)Γ(ϑ + 1)

+
µ2M̂B̂

B(ϑ)

 (ς`+1 − sϑ` )γ∗Ω(e + Q∗1R)

≤ µM̂BL(1 + e + Q∗1R) +

 µµ(1 − ϑ)
B(ϑ)Γ(ϑ + 1)

+
µ2M̂B̂

B(ϑ)

 γ∗Ω(e + Q∗1R)L̂

≤ N,

where L̂ = max
`=0,1,2,...,m

(ς`+1 − s`)ϑ.

Step 3: Υ maps bounded sets of Y0
ξ into equi-continuous sets on Y0

ξ .
Let BR be the same as defined in Step 2. Let 0 ≤ ν1 ≤ ν2 ≤ ς1 for each ν ∈ BR, we sustain

‖(Υv)(ν2) − (Υv)(ν1)‖E ≤
4∑

i=1

‖Ii‖,

where

I1 =
ST(1 − ϑ)
B(ϑ)Γ(ϑ)

∫ ν1

0
[(ν2 − s)ϑ−1 − (ν1 − s)ϑ−1]F (s, vs + us)ds;

I2 =
ST(1 − ϑ)
B(ϑ)Γ(ϑ)

∫ ν2

ν1

(ν2 − s)ϑ−1F (s, vs + us)ds;

I3 =
ϑS2

B(ϑ)

∫ ν1

0
[B̂ϑ(ν2 − s) − B̂ϑ(ν1 − s)]F (s, vs + us)ds;

I4 =
ϑS2

B(ϑ)

∫ ν2

ν1

B̂ϑ(ν2 − s)F (s, vs + us)ds.

Therefore

‖I1‖ ≤
µµ(1 − ϑ)

B(ϑ)Γ(ϑ + 1)
γ∗Ω(e + Q∗1R)[(νϑ2 − ν

ϑ
1 ) − (ν2 − ν1)ϑ]

→ 0 as ν2 → ν1.

‖I2‖ ≤
µµ(1 − ϑ)

B(ϑ)Γ(ϑ + 1)
γ∗Ω(e + Q∗1R)[(ν2 − ν1)ϑ]

→ 0 as ν2 → ν1.

‖I3‖ ≤
µ2M̂B̂

B(ϑ)
γ∗Ω(e + Q∗1R)[(νϑ2 − ν

ϑ
1 ) − (ν2 − ν1)ϑ]

→ 0 as ν2 → ν1.

‖I4‖ ≤
µ2M̂B̂

B(ϑ)
γ∗Ω(e + Q∗1R)[(ν2 − ν1)ϑ]

→ 0 as ν2 → ν1.

Hence ‖(Υv)(ν2) − (Υv)(ν1)‖E → 0 as ν2 → ν1 by using the continuity of B̂ϑ.
For any ν1, ν2 ∈ ∪

m
`=1(ς`, s`], we get

‖(Υv)(ν2) − (Υv)(ν1)‖E = ‖κ`(ν2, vν2 + uν2) − κ`(ν1, vν1 + uν1)‖E
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→ 0 as ν2 → ν1.

In the similar manner, for any ν1, ν2 ∈ ∪
m
`=0(s`, ς`+1], s` ≤ ν1 < ν2 ≤ ς`+1, we obtain

‖(Υv)(ν2) − (Υv)(ν1)‖E ≤
9∑

i=5

‖Ii‖,

where

I5 = S[Bϑ(ν2 − s`) −Bϑ(ν1 − s`)]κ`(s`, vs` + us`)‖

I6 =
ST(1 − ϑ)
B(ϑ)Γ(ϑ)

∫ ν1

s`
[(ν2 − s)ϑ−1 − (ν1 − s)ϑ−1]F (s, vs + us)ds;

I7 =
ST(1 − ϑ)
B(ϑ)Γ(ϑ)

∫ ν2

ν1

(ν2 − s)ϑ−1F (s, vs + us)ds;

I8 =
ϑS2

B(ϑ)

∫ ν1

s`
[B̂ϑ(ν2 − s) − B̂ϑ(ν1 − s)]F (s, vs + us)ds;

I9 =
ϑS2

B(ϑ)

∫ ν2

ν1

B̂ϑ(ν2 − s)F (s, vs + us)ds.

Now

‖I5‖ ≤ µ‖[Bϑ(ν2 − s`) −Bϑ(ν1 − s`)]κ`(s`, vs` + us`)‖E
→ 0 as ν2 → ν1.

‖I6‖ ≤
µµ(1 − ϑ)

B(ϑ)Γ(ϑ + 1)
γ∗Ω(e + Q∗1R)[(ν2 − s`)ϑ − (ν2 − ν1)ϑ − (ν1 − s`)ϑ]

→ 0 as ν2 → ν1.

‖I7‖ ≤
µµ(1 − ϑ)

B(ϑ)Γ(ϑ + 1)
γ∗Ω(e + Q∗1R)[(ν2 − ν1)ϑ]

→ 0 as ν2 → ν1.

‖I8‖ ≤
µ2M̂B̂

B(ϑ)
γ∗Ω(e + Q∗1R)[(ν2 − s`)ϑ − (ν2 − ν1)ϑ − (ν1 − s`)ϑ]

→ 0 as ν2 → ν1.

‖I9‖ ≤
µ2M̂B̂

B(ϑ)
γ∗Ω(e + Q∗1R)[(ν2 − ν1)ϑ]

→ 0 as ν2 → ν1.

From the above discussion, we conclude that ‖(Υv)(ν2) − (Υv)(ν1)‖E → 0 as ν2 → ν1. On Y0
ξ , the

operator Υ is hence equi-continuous.
Now, let W be a subset of BR such that W ⊂ conv (Υ(W) ∪ {0}). Furthermore, for every

bounded set U, by Lemma 2.4, we note that there exists a countable set U0 = {wn} ⊂ U, such
that β(Υ(U)) ≤ 2β(Υ(U0)). Thus for {wn} ⊂ U, noting that the choice of W. For every ς ∈ [0, ς1], by
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utilizing Lemma 2.5, condition (A4) and properties of the measure β, we obtain

β(Υ(wn)) = β

({
ST(1 − ϑ)
B(ϑ)Γ(ϑ)

∫ ς

0
(ς − s)ϑ−1F (s,wns + us)ds

})
+ β


ϑS2M̂B̂

B(ϑ)

∫ ς

0
(ς − s)ϑ−1F (s,wns + us)ds




= β


µµ(1 − ϑ)

B(ϑ)Γ(ϑ)
+
ϑµ2M̂B̂

B(ϑ)


∫ ς

0
(ς − s)ϑ−1F (s,wns + us)ds


≤ 2

µµ(1 − ϑ)
B(ϑ)Γ(ϑ)

+
ϑµ2M̂B̂

B(ϑ)

 ∫ ς

0
(ς − s)ϑ−1L`

[
sup
−∞<θ≤0

β(wn(θ + s) + u(θ + s))
]

ds

≤ 2

µµ(1 − ϑ)
B(ϑ)Γ(ϑ)

+
ϑµ2M̂B̂

B(ϑ)

 ∫ ς

0
(ς − s)ϑ−1L` sup

0<µ≤ξ
β(wn(µ))ds

≤ 2

µµ(1 − ϑ)
B(ϑ)Γ(ϑ)

+
ϑµ2M̂B̂

B(ϑ)

 ∫ ς

0
(ς − s)ϑ−1L` sup

0<s≤ξ
β(wn(s))ds

≤ 2

µµ(1 − ϑ)
B(ϑ)Γ(ϑ)

+
ϑµ2M̂B̂

B(ϑ)

 L`β({wn})
∫ ς

0
(ς − s)ϑ−1ds

≤ 2

µµ(1 − ϑ)
B(ϑ)Γ(ϑ)

+
ϑµ2M̂B̂

B(ϑ)

 L` ·
ςϑ1
ϑ
β({wn}),

which ensures that

β(Υ(W)) ≤ 2

 µµ(1 − ϑ)
B(ϑ)Γ(ϑ + 1)

+
µ2M̂B̂

B(ϑ)

 L̂1βPC (W),

where L̂1 = max
`=0,1,2,...,m

{L`ςϑ1 }.

For any ς ∈ ∪m
`=1(ς`, s`], we obtain

β(Υ(wn)) = β({κ`(κ,wnς + uς)})
≤ 2γ` sup

−∞<θ≤0
β(wn(θ + ς) + u(θ + ς))

≤ 2γ` sup
0<µ≤ξ

β(wn(µ))

≤ 2γ` sup
0<s≤ξ

β(wn(s))

≤ 2γ`β({wn}),

which ensures that
β(Υ(W)) ≤ 2̂γβPC (W),

where γ̂ = max
`=1,2,...,m

γ`.
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Likewise, for any ς ∈ (s`, ς`+1], ` = 0, 1, 2, . . . ,m, we get

β(Υ(wn)) = β

({
SBϑ(ς − s`)κ`(s`,wns` + us`) +

ST(1 − ϑ)
B(ϑ)Γ(ϑ)

∫ ϑ

s`
(ς − s)ϑ−1F (s,wns + us)ds

+
ϑS2M̂B̂

B(ϑ)

∫ ς

s`
(ς − s)ϑ−1F (s,wns + us)ds

})
≤ 2µM̂Bβ({κ`(s`,wns` + us`)})

+ 2

µµ(1 − ϑ)
B(ϑ)Γ(ϑ)

+
ϑµ2M̂B̂

B(ϑ)

 ∫ ς

s`
(ς − s)ϑ−1L`

[
sup
−∞<θ≤0

β(wn(θ + s) + u(θ + s))
]

ds

≤ 2µM̂Bγ` sup
−∞<θ≤0

β(wn(θ + s`) + u(θ + s`))

+ 2

µµ(1 − ϑ)
B(ϑ)Γ(ϑ)

+
ϑµ2M̂B̂

B(ϑ)

 ∫ ς

s`
(ς − s)ϑ−1L` sup

s`<µ≤ξ
β(wn(µ)ds

≤ 2µM̂Bγ` sup
0<s≤ξ

β(wn(s))

+ 2

µµ(1 − ϑ)
B(ϑ)Γ(ϑ)

+
ϑµ2M̂B̂

B(ϑ)

 ∫ ς

s`
(ς − s)ϑ−1L` sup

0<s≤ξ
β(wn(s))ds,

which ensures that

β(Υ(W)) ≤

2µM̂Bγ̂ + 4

 µµ(1 − ϑ)
B(ϑ)Γ(ϑ + 1)

+
µ2M̂B̂

B(ϑ)

 L̃

 βPC (W),

where γ̂ = max
`=1,2,...,m

γ` and L̃ = max
`=0,1,2,...,m

{(ς`+1 − s`)ϑL`}.

Then
βPC (W) ≤ β(Υ(W))PC ≤ Θ̂βPC (W).

That is to say
βPC (W)(1 − Θ̂) ≤ 0.

Hence, we get β(W) = 0. The theorem of Arzela-Ascoli shows that W in Y0
ξ is relatively compact.

The Monch fixed point theorem 2.1 concludes that Υ has a fixed point v ∈ Y0
ξ .

�

4. Applications

Consider the following fractional differential equation with non-instantaneous impulsive condition
of the form

Dϑ
ABCz(ς,w) =

∂2

∂w2 z(ς,w)

+

∫ 0

−∞

eστ

49
|z(ς + τ,w)|

√
1 + |z(ς + τ,w)|(1 + |z(ς + τ,w)|)

dτ, (ς,w) ∈ ∪m
`=1(s`, ς`+1] × [0, π], (4.1)
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z(ς, 0) = z(ς, π) = 0, ς ∈ [0, 1], (4.2)
z(τ,w) = z0(τ,w), −∞ < τ ≤ 0, w ∈ [0, π], (4.3)

z(ς,w) =

∫ 0

−∞

eστ

36
|z(ς + τ,w)|

(1 + |z(ς + τ,w)|)
dτ, (ς,w) ∈ (ς`, s`] × [0, π], ` = 1, 2, . . . ,m, (4.4)

where σ > 0, Dϑ
ABC is the Atangana-Baleanu-Caputo derivative of order ϑ ∈ (0, 1), 0 = ς0 = s0 < ς1 <

ς2 < · · · < ςm < sm < ςm+1 = 1 are prefixed numbers and z0 ∈ B.
Let E = L2([0, π], E) and A : D(A) ⊆ E → E be an operator described by AΞ = Ξ′′,Ξ ∈ D(A) with

domain D(A) = {Ξ ∈ E; Ξ and Ξ′ are absolutely continuous, Ξ′′ ∈ E,Ξ(0) = Ξ(π) = 0}. Then

AΞ =

∞∑
n=1

n2〈Ξ,Ξn〉Ξn, Ξ ∈ D(A),

where Ξn(s) =

√
2
π

sin(ns), n ∈ N is the orthonormal set of eigenvectors of A and in E, A generates a
C0 semigroup {B(ς)}ς≥0 which is described by

B(ς)Ξ =

∞∑
n=1

e−n2ς〈Ξ,Ξn〉Ξn, Ξ ∈ E, ς > 0

which is uniformly bounded and also a compact semigroup and hence the operator R(λ, A) = (λI−A)−1

is compact for each λ ∈ ρ(A), i.e., A ∈ A ρ(β0,Ξ0). From [27], we have ‖Bϑ(ς)‖ ≤ M̂B for each
ς ∈ [0, 1].

For the phase space B, we choose the well-known space BUC(R−, E), the space of bounded
uniformly continuous functions and satisfies the phase space axioms (C1) and (C2). Further, it is
defined from (−∞, 0] to E endowed with the following norm:

‖ϕ‖ = sup
τ≤0
|ϕ(τ)|, for each ϕ ∈ B.

If ϕ ∈ BUC(R−, E) and w ∈ [0, π],

z(ς)(w) = z(ς,w), ς ∈ [0, ξ], w ∈ [0, π],
ϕ(τ)(w) = z0(τ,w), −∞ < τ ≤ 0, w ∈ [0, π],

F (ς, ϕ)(w) =

∫ 0

−∞

eστ

49
|ϕ(τ)(w)|√

1 + |ϕ(τ)(w)|(1 + |ϕ(τ)(w)|)
dτ, −∞ < τ ≤ 0, w ∈ [0, π], σ > 0,

κ`(ς, ϕ)(w) =

∫ 0

−∞

eστ

36
|ϕ(τ)(w)|

(1 + |ϕ(τ)(w)|)
dτ.

The systems (4.1)–(4.4) can then be written as (1.1)–(1.3) in an abstract form.
Verification of the hypotheses:

We now check that the presumptions (A1)–(A5) for the problems (4.1)–(4.4) are correct.
The function F : ∪m

`=0(s`, ς`+1] ×B → E defined by

‖F (ς, ϕ)‖(w) =

∫ 0

−∞

eστ

49
‖ϕ(τ)(w)‖√

1 + ‖ϕ(τ)(w)‖(1 + ‖ϕ(τ)(w)‖)
dτ
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≤
1√

1 + ‖ϕ(ς)(w)‖
Ω(‖ϕ(ς)(w)‖)

≤ γ(ς)Ω(‖ϕ(ς)(w)‖),

where γ(ς) =
1√

1 + ‖ϕ(ς)(w)‖
and

∫ 0

−∞

eστ

49
dτ < ∞.

Furthermore

β(F (ς,U2)) ≤
∫ 0

−∞

eστ

49
dτ sup
−∞<θ≤0

β(U2(θ))

≤ L` sup
−∞<θ≤0

β(U2(θ))

≤ sup
−∞<θ≤0

β(U2(θ)),

where L` =

∫ 0

−∞

eστ

49
dτ < ∞, ` = 1, 2, . . . ,m. Take max{L`, ` = 1, 2, . . . ,m} = 1.

From this, we can conclude that F satisfies the conditions (A1) and (A4).
Consider the non-instantaneous impulsive functions κ` : (ς`, s`]×B → E, ` = 1, 2, . . . ,m, we have

‖κ`(ς, ϕ)(w)‖ =

∫ 0

−∞

eστ

36
‖ϕ(τ)(w)‖

(1 + ‖ϕ(τ)(w)‖)
dτ

≤ Lκ`‖ϕ(τ)(w)‖ + Lκ` ,

where Lκ` =

∫ 0

−∞

eστ

36
and Lκ` = 0.

Moreover,

β(κ(ς,U1)) ≤
∫ 0

−∞

eστ

36
dτ sup
−∞<θ≤0

β(U1(θ)), ς ∈ (ς`, s`], ` = 1, 2, . . . ,m

≤ γ` sup
−∞<θ≤0

β(U1(θ)),

where γ` =

∫ 0

−∞

eστ

36
dτ < ∞. Thus, conditions (A2) and (A3) are fulfilled.

By thinking of Definition 2.5, we obtain S = ζ(ζI − A)−1 and T = −γ̃A(ζI − A)−1 with
ζ =

B(ϑ)
1−ϑ , γ̃ = ϑ

1−ϑ . We assume that ϑ = 3
4 , then B

(
3
4

)
=

(
1 − 3

4

)
+

3
4

Γ( 3
4 ) = 0.86, since Γ(0.75) = 1.2254.

Thus, we have ζ = 3.44 and γ̃ = 3.
From the above discussion, we have ‖S‖ ≤ µ and ‖T‖ ≤ µ for the bounded linear operators S and T.

Hence, the assumption (A5) is verified.
Finally, to verify the inequality (3.1), we take µ = µ = 1

20 , M̂B = M̂B̂ = L̃ = γ̂ = 1. Then, we have

Θ̂ =

2µM̂Bγ̂ + 4

 µµ(1 − ϑ)
B(ϑ)Γ(ϑ + 1)

+
µ2M̂B̂

B(ϑ)

 L̃


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= 0.1 + 4
[

(0.05)(0.05)(0.25)
(0.8620)(0.75)(1.2254)

+
0.0025
0.8620

]
= 0.11475 < 1.

From the above discussion, we can confirm that the Theorem 3.1 assumptions hold. As a
consequence, problems (4.1)–(4.4) has a mild solution from the Theorem 3.1.

5. Conclusions

There are various types of fractional derivative definitions, with the RiemannLiouville fractional
derivative (RLFD) and the Caputo fractional derivative (CFD) being two of the most prominent in
applications [32]. Under suitable regularity assumptions, the RLFD can be transformed to the Caputo
fractional derivative. The CFD are often used to determine the time-fractional derivatives in fractional
partial differential equations. The fundamental difficulty is because the RL technique requires initial
conditions including the RLFD limit values at the origin of time t = 0, which have unclear physical
interpretations. The initial conditions for time-fractional Caputo derivatives, on the other hand, are the
same as for integer-order differential equations, that is, the initial values of integer-order derivatives of
functions at the origin of time t = 0 [32]. The benefit of using the Caputo definition is that it not only
allows for the consideration of easily interpreted initial conditions, but it is also bounded, meaning that
the derivative of a constant is equal to 0.

Caputo and Fabrizio [12] have proposed a novel definition of fractional derivative without singular
kernel by substituting the function exp(− ϑ

1−ϑ (ς − s)) for the kernel (ς − s)−ϑ. The extended Mittag-
Leffler function was employed as a nonlocal and nonsingular kernel by both Atangana and Baleanu [1]
a year later. The kernel’s nonlocality allows for a more accurate representation of memory within
structures of varying scales. For these reasons, we are using Atangana-Baleanu-Caputo fractional
derivative in this manuscript. In this study, we used their [1] new result to our differential systems
(1.1)–(1.3). Theorem 3.1 is proved to investigate the existence of the addressing models (1.1)–(1.3)
by means of Monch fixed point theorem. Then, in Example 4, we check that the hypotheses (A1)–
(A5) for the problems (4.1)–(4.4) are correct individually. The effectiveness of present research to
approximate controllability with non-instantaneous impulses for diverse models may be developed
using an appropriate fixed point theorem.
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