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1. Introduction

Weighted distributions are used when sampling procedures occur with unequal sampling
probabilities proportional to a given weight function. The introduction of weighted distributions dates
back to [12]. The formal definition and several statistical applications can be found in [41]. In 1977
and 1978, Patil and Rao developed further applications of weighted distributions in [39] and [40]
respectively. In recent decades, stochastic comparisons of weighted distributions have been studied
in the literature in the context of reliability and life testing. To name a few, in 2006 Bartoszewicz
and Skolimowska in [4] and in 2008 Misra et al. in [35] obtained results for the preservation of
some stochastic orders and aging classes under weighted distributions. Subsequently, the same study
using different approaches to prove the preservation results has been done in [15, 18, 19]. Recently, a
typical family of univariate weighted distributions with a parameter-indexed weight function imposing
on a base distribution that does not depend on the parameter (on which the weight function depends)
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has been considered by Albabtain et al. in [2]. They have obtained some conservation properties
of stochastic orderings under the typical class of weighted distributions. They have also developed
their results under mixture weighted distributions. The study of size-biased distribution, as an
important weighted distribution, and its mixture has been conducted in [26]. The parametric family of
distributions considered in [2] includes many well-known statistical survival models and the extended
mixture model also comprises some reputable frailty models where the parameter is an unobservable
factor [14]. In particular, a typical family of semiparametric distributions can be viewed as a weighted
distribution, which may have further advantages and applications [2].

The present study aims to analyse the concept of dependence in the mixture weighted distribution
through various partial dependence structures and also introduce methods for deriving the copula
function. Since in a general mixture model the overall population random variable is usually related to
the mixing random variable thus the study of the dependence structure between these random variables
in the model is worth considering. In the context of some frailty models, some researchers have
investigated this kind of dependence problem. For example, in the context of the mixture proportional
hazards model, it was demonstrated in [47] that the output random variable and the mixed (frailty)
random variable exhibit a negative dependency. The proportional odds model, as found by [32],
induces a positive dependence between the overall population random variable and the mixing random
variable (random tipping parameter). However, there is a lack of further general and comprehensive
methods in the literature to present a a commonly used technique to get the copula functions arisen
from mixture models.

The rest of the paper is organized as follows. In Section 2, we present some preliminary concepts
including a parametric weighted distribution and its mixture, a semiparametric model and its mixture,
several stochastic orders and also a number of partial dependence structures. In Section 3, in the
first part we give some necessary and sufficient conditions for the partial dependence structures in
the mixture weighted distribution with many examples which are moved to Appendix to enhance
the readability. In the second part in Section 3, the copula function associated with the mixture
semiparametric model is extracted with some example of well-known frailty models which are
transmitted to Appendix. In Section 4, the paper concludes with a brief summary of the results and
future studies of the current work.

2. Preliminaries

In this section, some useful notions in distribution theory that will be used throughout the paper
which are well-known in the previous literature are presented.

2.1. A parametric weighted distribution

Let X be an absolutely continuous random variable with cumulative distribution function (cdf) FX

and probability density function (pdf) fX. Denote by FX = 1 − FX the survival function (sf) of X. For
some θ ∈ χ, let w : x → w(x; θ) be a non-negative function such that η(θ) = E(w(X; θ)) < ∞. The
random variable Xw, which is the weighted version of X with weight function w(·; θ), has cdf

F(x; θ) =
1
η(θ)

∫ x

0
w(x′; θ)dFX(x′), (2.1)
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and the pdf associated with (2.1) is

f (x; θ) =
w(x; θ) fX(x)

η(θ)
. (2.2)

To develop the mixture model of (2.1) when θ is a realization of a mixing random variable Θ, we
consider random variable X∗ with cdf

F∗(x) =

∫
θ∈χ

F(x; θ)dΛ(θ) = E[v(X) | X ≤ x]FX(x), (2.3)

where v(x) = E
[

w(x,Θ)
η(Θ)

]
, Λ is the cdf of Θ with corresponding pdf λ. The pdf of X∗ is obtained as

f ∗(x) =

∫
θ∈χ

f (x, θ)dΛ(θ) = fX(x)v(x). (2.4)

The mixture model (2.3) is pervasive to be used in different situations since it encompasses many
other models depending on variety of choices of the weight function w(x, θ).

2.2. A semiparametric model: a special weighted distribution

Here, we consider a semiparametric class of distributions that is characterised by having a parameter
that is itself a distribution function. If the underlying distribution is FX then a semiparametric family
is said to provide a way to add a new parameter θ, extending the family from which FX originates.
There are many families of distributions that can be assumed to come from the standard distributions
over semiparametric families that add a second parameter. Therefore, the study of semiparametric
families is useful for two purposes: it provides a new understanding of standard distribution families
and it shows methods for extending families to add flexibility in fitting data. A typical family of
semiparametric distributions that encompasses several well-known models in reliability and survival
analysis is considered. Suppose that X is a random variable with distribution function FX and that θ is a
parameter with values in χ ⊆ R. The semiparametric family with underlying distribution FX is defined
as

Fθ(x) = d(FX(x), θ), x ≥ 0, θ ∈ χ, (2.5)

in which
d : [0, 1] → [0, 1]

u → d(u, θ)

is a non-negative function requiring the following conditions:

(i) 0 ≤ d(u, θ) ≤ 1, for all u ∈ [0, 1] and θ ∈ χ.
(ii) d(0, θ) = 0, for all θ ∈ χ.

(iii) d(1, θ) = 1, for all θ ∈ χ.
(iv) d is non-decreasing and right continuous for all θ ∈ χ.

The function d may be referred to as the generator of the underlying semiparametric family of
distribution. Provided that (i)–(iv) hold, F(·|θ) in (2.1) is a distribution function for any θ ∈ χ. By
considering

ξ : [0, 1] → [0,∞)
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x → ξ(x, θ)

a general family of functions d in (2.1) is constructed as follows:

d(u, θ) =

∫ u

0
ξ(x, θ)dx∫ 1

0
ξ(x, θ)dx

. (2.6)

Specific choices of the function ξ in (2.6) by which several reputable models are built includes:

(i) Proportional hazard rates model. ξ(x, θ) = 1 − (1 − x)θ, where θ > 0.
(ii) Proportional reversed hazard rates model. ξ(x, θ) = xθ, where θ > 0.

(iii) Proportional odds model. ξ(x, θ) = 1
(1−θ̄(1−x))2 , where θ > 0.

(iv) Upper tail distribution ξ(x, θ) = I(x ≥ θ) with θ ∈ [0, 1).
(v) Lower tail distribution ξ(x, θ) = I(x < θ) with θ ∈ (0, 1].

In the cases where the underlying distribution function is absolutely continuous, the density function
associated with (2.5) is given in terms of (2.6) by

fθ(x) =
ξ(FX(x), θ)

η(θ)
fX(x), (2.7)

with η(θ) = E[ξ(FX(X), θ)] =
∫ 1

0
ξ(x, θ)dx, being the normalizing constant. The mixture model of (2.5)

with cdf
F∗(x) =

∫
θ∈χ

d(FX(x), θ)dΛ(θ), (2.8)

and pdf

f ∗(x) = fX(x)
∫
θ∈χ

ξ(FX(x), θ)
η(θ)

dΛ(θ), (2.9)

will also be considered. It is assumed that X∗ has pdf and cdf f ∗ and F∗, respectively, in this case.
It can be seen that the family (2.7) is indeed a weighted distribution of F with the corresponding
weight function w(x, θ) = ξ(F(x), θ), which depends on the underlying distribution function. In spite
of that, the problem of studying the proposed family of semiparametric distributions in (2.5) lies in the
framework of weighted distributions with a parameter-indexed weight function.

2.3. Stochastic orders

The theory of stochastic orders has been developed to make stochastic comparisons and also study of
structural properties of complex stochastic systems in several fields. A number of stochastic orders has
been routinely utilized in many applications in economics, finance, insurance, management science,
operations research, statistics, and various other contexts [6, 37, 42].

Let X and Y be two non-negative random variables with cdfs F and G, pdfs (whenever they exist) f
and g, respectively. Then, the hazard rates of X and Y are defined as hX(t) =

f (t)
F̄(t) for all t : F̄(t) > 0 and

hY(t) =
g(t)
Ḡ(t) for all t : Ḡ(t) > 0, where F̄ and Ḡ are, respectively, the sfs of X and Y . The reversed hazard

rates of X and Y are given by rX(t) =
f (t)
F(t) for all t : F(t) > 0 and rY(t) =

g(t)
G(t) for all t : G(t) > 0. Four

well-known stochastic orders to compare the magnitude of the random variables X and Y are defined
as follows.
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Definition 1. The random variable X is said to be less (resp. greater) or equal than the random
variable Y in the (see, e.g., [42])

(i) likelihood ratio order (denoted as X ≤lr (resp. ≥lr)Y) whenever g(t)
f (t) is increasing (resp.

decreasing) in t ≥ 0.
(ii) hazard rate order (denoted as X ≤hr (resp. ≥hr)Y) whenever hX(t) ≥ (resp. ≤)hY(t) for all t ≥ 0 or

equivalently if Ḡ(t)
F̄(t) is increasing (resp. decreasing) in t ≥ 0.

(iii) reversed hazard rate order (denoted as X ≤rh (resp. ≥rh)Y) whenever rX(t) ≤ (resp. ≥)rY(t) for
all t ≥ 0 or equivalently if G(t)

F(t) is increasing (resp. decreasing) in t ≥ 0.
(iv) usual stochastic order (denoted as X ≤st (resp. ≥st)Y) whenever F̄(t) ≤ (resp. ≥)Ḡ(t) for all t ≥ 0.

The stochastic orders in Definition 1 are connected as indicated in the following chain:

X ≤lr (≥lr)Y −→ X ≤hr (≥hr)Y

⇓ ⇓

X ≤rh (≥rh)Y −→ X ≤st (≥st)Y.

2.4. Dependencies and copulas

The notion of dependence is quantified by some inequalities that represent some well-known
concepts of dependence from weakest to strongest in the bivariate case [8, 11, 43]. The following
definition introduces totally positive (reverse regular) of order two functions.

Definition 2. A non-negative real valued bivariate function h is said to be totally positive of order 2
(TP2) in (x, y) ∈ χ × Υ, whenever

h(x1, y1)h(x2, y2) ≥ h(x1, y2)h(x2, y1), (2.10)

for all x1 ≤ x2 ∈ χ and y1 ≤ y2 ∈ Υ, where χ and γ are two arbitrary subsets of the real line R. If the
orientation of the inequality in (2.10) is reversed, then h is called the reverse regular of order 2 (RR2)
in (x, y) ∈ χ × Υ

Next, a number of partial dependencies from [38] are presented.

Definition 3. Suppose that (X,Y) is a random pair with the joint cdf F, the joint sf F̄ and the joint pdf
f . We write FX and FY for marginal cdf of X and marginal cdf of Y, respectively.

(i) The random variables X and Y are said to be positive (negative) likelihood ratio dependent, PLRD
(NLRD), if f (x, y) is T P2 (RR2) in (x, y) ∈ {(x, y) p f (x, y) > 0}.

(ii) The random variable Y is stochastically increasing (decreasing) in X, SI(Y p X) (SD(Y p X)) if
P(Y > y p X = x) is increasing (decreasing) in x, for all y.

(iii) The random variables X and Y are left corner set decreasing (increasing), LCSD(X,Y)
[LCSI(X,Y)] if F(x, y) is T P2 (RR2) in (x, y) ∈ {(x, y) : F(x, y) > 0}.

(iv) The random variables X and Y are right corner set increasing (decreasing), RCSI(X,Y)
(RCSD(X,Y)) if F̄(x, y) is T P2 (RR2) in (x, y) ∈ {(x, y) : F̄(x, y) > 0}.
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(v) The random variables X and Y are positive (negative) quadrant dependent, PQD(X,Y)
[NQD(X,Y)) whenever F(x, y) ≥ (≤)FX(x)FY(y) for all (x, y) ∈ R2.

The dependence structures in Definition 3 are connected as:

S I(Y |X) ⇐= PLRD(X,Y) =⇒ LCS D(X,Y),RCS I(X,Y) =⇒ NQD(X,Y).

S D(X|Y) ⇐= NLRD(X,Y) =⇒ LCS I(X,Y),RCS D(X,Y) =⇒ PQD(X,Y).

The PLRD (NLRD), the RCSI (RCSD), the LCSD (LCSI) and the SI (SD) as well as the PQD
(NQD) structures for the mixing random variable Θ and the overall population random variable X∗

which follows the cdf (2.3) are characterized in Subsection 3.1 by the stochastic orders given in
Subsection 2.3.

The copula function provides a unique concept of dependence that is completely detached from
all other characteristics of the underlying marginal distributions. The copula function enables the
dependence structure to be separated from the marginal distributions (see, e.g., [9, 20, 21, 30, 38]. The
copula is a measure playing a central role in modelling the dependence between the components of
a random pair. More precisely, let X and Y be continuous random variables with joint distribution
function H and marginal distribution functions F and G, respectively. The copula C associated with
the random pair (X,Y) is the joint distribution function of the uniform pair (U,V) such that U = F(X)
and V = G(Y). According to the well-known Sklar’s theorem, the copula can express in terms of the
joint and marginal distribution functions as follows:

C(u, v) = H(F−1(u),G−1(v)), for all (u, v) ∈ [0, 1]2,

where F−1 and G−1 denote the inverse functions of F and G. Notice that the previous formula is
equivalent to

H(x, y) = C(F(x),G(y)), for all (x, y) ∈ R2.

Let H̄, F̄ and Ḡ denote the survival functions of (X,Y), X and Y , respectively. The previous formula
leads to

H̄(x, y) = Ĉ(F̄(x), Ḡ(y)), for all(x, y) ∈ R2.

The function Ĉ is called the survival copula. It is linked to C via the next formula

Ĉ(u, v) = u + v − 1 + C(1 − u, 1 − v), for all (u, v) ∈ [0, 1]2.

Remark that C and Ĉ coincide with independent copula when X and Y are independent, that is,

C(u, v) = Ĉ(u, v) = Π(u, v) = uv, for all (u, v) ∈ [0, 1]2.

It is well-known that for any copula C and for all u, v ∈ [0, 1],

max(u + v − 1, 0) ≤ C(u, v) ≤ min(u, v).

previous bivariate functions W(u, v) = max(u+v−1, 0) and M(u, v) = min(u, v) are themselves copulas
called Fréchet-Hoeffding bounds. For more on the construction of these bounds, see [13] and for more
details on the notion of copula, we refer the interested reader to [38]
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3. Main results

This section presents the novelties of the paper including characterizations of partial dependencies
enumerated in Definition 3 among two random variables contributed to the mixture model (2.3) using
stochastic orders given in Subsection 2.3. The copula function which identifies completely (not
regularly or partially), the dependency phenomenon in the mixture semiparametric model (2.8) is
derived.

3.1. Characterizations of dependencies in the mixture weighted distribution

Based on the mixture model (2.3), the magnitude the random variable X∗ has is affected by that
of the random variable Θ. The model (2.3) implies that F∗(x) = E[F(x; Θ)] where F(·; θ) is the
conditional cdf of X∗ given Θ = θ. Thus the probability of X∗ being smaller than x depends on the
average of probabilities of X∗ given Θ is less or equal than x where the average is taken over all possible
values of Θ. For instance, F∗ may be the income distribution in a population where Θ is the age of a
randomly drawn individual. F∗ may be, as another example, the lifetime distribution of an electrical
used device so that Θ is the duration during which it has been inactive since the last time it has been in
use. In such circumstances, characterizations of the dependencies between X∗ and Θ and also a need
for the associated copula function are considered to be significant. The association (or the dependence
structure) X∗ and Θ has can be assessed through the bivariate density function

f ∗(x, θ) = f ∗(x|θ)dΛ(θ) =
w(x; θ) fX(x)

η(θ)
λ(θ), (3.1)

in which the statement inserted after the second identity is valid when Θ has an absolutely continuous
cdf Λ with pdf λ. In (3.1), f ∗(x|θ) =

w(x,θ)
η(θ) fX(x) is the conditional density of X∗ given that Θ equals θ.

Since the joint pdf (3.1) is a bivariate weighted distribution with original distribution g(x, θ) =

fX(x)λ(θ) representing the case when X and Θ are independent, thus the strongest dependence concept
between X∗ and Θ follows from Theorem 1 in [16]. Formally,

if w(x, θ) is T P2 (RR2) in (x, θ), then X∗ and Θ are PLRD (NLRD).

Generally, in 2016, Izadkhah et al. [16] proved that under some sufficient conditions the partial
dependencies given in Definition 3 are preserved under the transformation (X,Y) 7→ (Xw,Yw) in
which (X,Y) has a joint pdf f (x, y) associated with the original distribution and (Xw,Yw) has a joint
pdf fw(x, y) =

w(x,y)
E[w(X,Y)] f (x, y). In this paper, (X,Θ) is considered as the random pair with original

distribution in which X and Θ have been assumed to be independent. However, our goal is not here to
obtain sufficient condition(s) for preservation of a dependence structure under (X,Θ) 7→ (X∗,Θ). The
first aim of the current study is to present some necessary and sufficient conditions for (X∗,Θ) to follow
the dependence structures (i)–(v) in Definition 3. The equivalent conditions we will present to this end
are particularly useful to obtain the dependency induced by the model (2.8) between X∗ and Θ.

Suppose that F−1
X is the right continuous inverse function of FX given by F−1

X (u) = inf{τ|FX(τ) ≥ u}
for u ∈ [0, 1]. Suppose that Uθ is a random variable contained in [0, 1] having cdf

Gθ(u) =

∫ u

0
w(F−1

X (y); θ)dy∫ 1

0
w(F−1

X (y); θ)dy
. (3.2)
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Therefore, the cdf of the mixture model (2.4) when F(x; θ) =
∫ x

−∞
f (t; θ)dθ where f (t; θ) is as given

in (2.2), is represented as

F∗(x) =

∫ +∞

−∞

F(x; θ)dΛ(θ)

=

∫ +∞

−∞

∫ x

−∞
w(t; θ) fX(t)dt∫ +∞

−∞
w(t; θ) fX(t)dt

dΛ(θ)

=

∫ +∞

−∞

∫ FX(x)

0
w

(
F−1

X (y); θ
)

dy∫ 1

0
w(F−1

X (y); θ)dy
dΛ(θ)

=

∫ +∞

−∞

Gθ(FX(x)) dΛ(θ). (3.3)

The density function of X∗ is also

f ∗(x) =

∫ +∞

−∞

fX(x)gθ(FX(x)) dΛ(θ), (3.4)

where gθ(·) is the derivative (density) of Gθ(·). Let w(·; θ) be the weight function in the family of the
weighted distributions (2.3), i.e. w(x; θ) = ξ(FX(x), θ) which is prevalently arisen with many statistical
models. In such a case the cdf Gθ in (3.2) does not depend on FX and plays the role of generator of
the cdf of X∗ as revealed in (3.3). In fact, in the cases where a semiparametric family as considered in
Subsection 2.2 is given, we will have Gθ(u) = d(u, θ).

There are studies conducted in the literature where the dependencies in the pair (X,Y) in Definition 3
are characterized by some stochastic orders, namely, likelihood ratio order (≤lr), hazard rate order
(≤hr), reversed hazard rate order (≤rh) and usual stochastic order (≤st) of conditional random variables
[Y |X = x], [Y |X > x] and [Y |X ≤ x] (see, for instance, Lemma 1 in [16]).

The next result identifies necessary and sufficient conditions for the dependency structures in
Definition 3 in the random pair (X∗,Θ) based on the generator (3.2). The class of weighted
distributions corresponding to the semiparametric class of distributions can be also considered as a
typical application. The distinctive dependencies given in Definition 3 are characterized with stochastic
orders of Uθ with respect to θ as follows:

Theorem 4. The following assertions hold:

(i) X∗ and Θ are PLRD (NLRD) if, and only if, Uθ1 ≤lr (≥lr) Uθ2 for all θ1 ≤ θ2 ∈ χ.

(ii) X∗ and Θ are RCSI (RCSD) whenever Uθ1 ≤hr (≥hr) Uθ2 for all θ1 ≤ θ2 ∈ χ.

(iii) X∗ and Θ are LCSD (LCSI) whenever Uθ1 ≤rh (≥rh) Uθ2 for all θ1 ≤ θ2 ∈ χ.

(iv) X∗ is SI (SD) in Θ if, and only if, Uθ1 ≤st (≥st) Uθ2 for all θ1 ≤ θ2 ∈ χ.
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Proof.

(i) By virtue of (3.2), Uθ has the pdf

gθ(u) =
w(F−1

X (y); θ)∫ 1

0
w(F−1

X (y); θ)dy
.

It is known that X∗ given Θ = θ has pdf

f ∗(x|θ) =
w(x; θ) fX(x)

η(θ)

=
w(x; θ) fX(x)∫ 1

0
w(F−1

X (y); θ)dy
= gθ(FX(x)) fX(x).

Notice that X∗ and Θ are PLRD (NLRD) whenever f ∗(x p θ) is T P2 (RR2) in (x, θ). On the other hand,
it is apparently evident that Uθ1 ≤lr (≥lr)Uθ2 for all θ1 ≤ θ2 if, and only if, g(u p θ) is T P2 (RR2) in
(u, θ) ∈ [0, 1]×χ. By the consequences B.2. and B.3. of Definition B.1. in [34], the last property holds
if, and only if, g(FX(x)|θ) fX(x) is T P2 (RR2) in (x, θ) ∈ R × χ. The proof of (i) is complete.

(ii) Let us write for the joint cdf of X∗ and Θ

F̄∗(x, θ) =

∫ +∞

θ

∫ ∞

x

w(x′; θ′) fX(x′)
η(θ′)

λ(θ′) dx′dθ′

=

∫ +∞

θ

∫ 1

FX(x)

w(F−1
X (y); θ′)
η(θ′)

λ(θ′) dydθ′

=

∫ ∞

θ

(1 −G(FX(x)|θ′))λ(θ′) dθ′

=

∫
R

Ḡ(FX(x)|θ′)λ(θ′)I[θ > θ′] dθ′.

Note that Uθ1 ≤hr (≥hr)Uθ2 for all θ1 ≤ θ2 ∈ χ if, and only if, Ḡθ′(u) is T P2 (RR2) in (u, θ′) ∈ [0, 1] × χ
which further implies that Ḡθ′(FX(x)) is T P2 (RR2) in (x, θ′) ∈ R × χ. We know that λ(θ′)I[θ > θ′]
is T P2 in (θ, θ′). Therefore, by the well-known general composition theorem of [22], F̄∗(x, θ) is T P2

(RR2) in (x, θ) ∈ R × χ. This completes the proof of (ii).

(iii) The proof is similar to (ii).
(iv) It is plain to see that Uθ1 ≤st (≥st)Uθ2 for all θ1 ≤ θ2 ∈ χ if, and only if, Gθ1(u) ≥ (≤)Gθ2(u), for all

θ1 ≤ θ2 ∈ χ and for all u ∈ [0, 1], or equivalently, Gθ1(FX(x)) ≥ (≤)Gθ2(FX(x)), for all θ1 ≤ θ2 ∈ χ

and for all x ∈ R. To establish the SI (SD) property, we first observe that

F̄∗(x|θ) =

∫ ∞

x

w(x′; θ) fX(x′)
η(θ)

dx′

=

∫ 1

FX(x)

w(F−1
X (y); θ)
η(θ)

dy

= 1 −
∫ FX(x)

0

w(F−1
X (y); θ)
η(θ)

dy

= 1 −Gθ(FX(x)).
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The proof of (iv) is complete as a direct consequence of Definition 3.2 (ii). �

Remark 5. To establish the PQD (NQD) property, using the statement given for the joint survival
function of X∗ and Θ in the proof of Theorem 4(ii), we conclude that X∗ and Θ are PQD (NQD) if, and
only if, E[ḠΘ(u) p Θ > θ] ≥ (≤) E[ḠΘ(u)], holds for all u ∈ [0, 1] and for all θ ∈ R.

Examples of reputable statistical mixture (or frailty) models is taken into consideration in Appendix
to construct the distribution function (3.2) and examine the correctness of the results reported in
Theorem 4 (see Examples A.1–A.10 in Appendix).

Remark 6. It is generally evident that the generator distribution function Gθ in (3.2) does not
depend on the baseline distribution function FX when considering the mixture model of a classical
semiparametric family of distributions presented in Section 2. In this case, the distribution function Gθ

in (3.2) and the generator of the underlying semiparametric distribution in (2.2) actually coincide.

3.2. Derivation of copula functions in the mixture semiparametric model

The study of copulas in a variety of mixture models and also analysis of joint frailty-copula models
have been recently considered (see, e.g., [3, 5, 10, 28, 36, 46]). For evaluating the influence the mixing
random variable Θ has on variation of the resultant random variable X∗ in the weighted mixture
model (2.3), identification of the partial dependence structures enumerated in Definition 3 between
Θ and X∗ has its limitations. This is because there may be situations where these dependencies are not
fulfilled. Drawing the copula function out is, therefore, important as the copula is a principal reference
to provide a comprehensive analysis of dependency in the pair (X∗,Θ). Since X∗ follows a mixture
model, thus the implied copula function is supposed to be mixture-based.

To obtain the mixture-based copula function associated with the pair (X∗,Θ) specified in the mixture
weighted model (2.4), we recall the notion of copula function.

The joint distribution function of (X∗,Θ) is needed. From (1.4), the joint distribution function is

F∗(x, θ) =

∫ θ

−∞

∫ x

−∞

w(x′, θ′) fX(x′)
η(θ′)

λ(θ′) dx′dθ′

=

∫ θ

−∞

λ(θ′)
η(θ′)

(∫ x

−∞

w(x′, θ′) fX(x′)dx′
)

dθ′

=

∫ θ

−∞

λ(θ′)
η(θ′)

(∫ FX(x)

0
w(F−1

X (y), θ′)dy
)

dθ′.

Applying Sklar’s theorem for distribution functions, one obtains the copula function of the joint
distribution of X∗ and Θ, as a result

C(u, v) = F∗(F−1
X∗ (u),Λ−1(v))

=

∫ Λ−1(v)

−∞

λ(θ′)
η(θ′)

∫ FX(F−1
X∗ (u))

0
w(F−1

X (y); θ′)dydθ′
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=

∫ Λ−1(v)

−∞

λ(θ′)Gθ′(FX(F−1
X∗ (u)))dθ′

= vE[GΘ(FX(F−1
X∗ (u)))|Θ ≤ Λ−1(v)], f or all u, v ∈ [0, 1]. (3.5)

On the other hand, the joint survival function of (X∗,Θ) as given in the proof of Theorem 4 (ii) is

F̄∗(x, θ) =

∫ ∞

θ

λ(θ′)
η(θ′)

(∫ 1

FX(x)
w(F−1

X (y), θ′)dy
)

dθ′.

Applying Sklar’s theorem for survival functions, the survival copula of X∗ and Θ is derived as

Ĉ(u, v) = F̄∗(F̄−1
X∗ (u), Λ̄−1(v))

= F̄∗(F−1
X∗ (1 − u),Λ−1(1 − v))

=

∫ +∞

Λ−1(1−v)

λ(θ′)
η(θ′)

∫ 1

FX(F−1
X∗ (1−u))

w(F−1
X (y); θ′)dydθ′

=

∫ +∞

Λ−1(1−v)
λ(θ′)(1 −Gθ′(FX(F−1

X∗ (1 − u))))dθ′

= v(1 − E[GΘ(FX(F−1
X∗ (1 − u)))|Θ > Λ−1(1 − v)]), f or all u, v ∈ [0, 1]. (3.6)

However, the copula function C in (3.5) and the survival copula Ĉ in (3.6) are connected to
each other as Ĉ(u, v) = u + v − 1 + C(1 − u, 1 − v) [38]. In mixture model of the underlying
semiparametric family of distributions which introduced and described in Section 2, the derivation
of the copula function (3.5) and/or the survival copula function (3.6) is more abstract. To this end, for
w(x, θ) = ξ(FX(x), θ) one has

FX∗(x) = E[d(FX(x),Θ)]

=

∫ +∞

−∞

d(FX(x), θ)dΛ(θ),

from which we can define

K(u) = FX∗(F−1
X (u))

=

∫ +∞

−∞

d(u, θ)dΛ(θ)

=

∫ 1

0
d(u,Λ−1(y))dy.
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To derive an explicit and attainable expression for the composition function FXoF−1
X∗ in (3.5) and

(3.6), we use the fact that the function K−1 and the function FXoF−1
X∗ are identical. Therefore, in view

of (3.5),

C(u, v) =

∫ Λ−1(v)

−∞

λ(θ′)Gθ′(FX(F−1
X∗ (u))) dθ′

=

∫ Λ−1(v)

−∞

λ(θ′)d(K−1(u), θ′) dθ′

=

∫ v

0
d(K−1(u),Λ−1(y)) dy, ∀ u, v ∈ [0, 1]. (3.7)

The survival copula is obtained by (3.6) as

Ĉ(u, v) =

∫ +∞

Λ−1(1−v)
λ(θ′)(1 −Gθ′(FX(F−1

X∗ (1 − u))))dθ′

=

∫ +∞

Λ−1(1−v)
λ(θ′)d(K−1(1 − u), θ′) dθ′

=

∫ v

0
d(K−1(1 − u),Λ−1(1 − y)) dy, ∀ u, v ∈ [0, 1]. (3.8)

Remark 7. To extract the copula function associated with mixture models in Subsections 2.1 and 2.2,
as by the Sklar’s theorem the copula function does not depend on the marginal distributions of
X∗ and Θ, thus it suffices to move forward along an arbitrary continuous distribution for Θ. The
marginal distribution function of X∗ is then obtained in the spirit of (3.3) as FX∗(x) = E[GΘ(FX(x))] =∫ +∞

−∞
Gθ(FX(x)) dΛ(θ) where FX is a given (baseline) cdf where the expectation is taking with respect

to the cdf of Θ.

Remark 8. That the implied copula function (3.5) and also the copula function (3.7) have a closed
expression depends on whether the function K(u) has a closed form. It also depends on whether
the integrations (3.5) and (3.7) are algebraically solvable. In general, the equation K(u) = y used
to determine the inverse function K−1 may have an exact solution or be inherently a transcendental
equation. In the latter case, the desired copula function has no closed nice expression.

Remark 9. The approach proposed in this subsection to derive the copula function assumed that X∗

and Θ in both of the mixture models (2.3) and (2.8) are continuous random variables which is a basic
assumption for uniqueness of the copula function. In spite of that, there may be situations where Θ is
a discrete random variable where the uniqueness of copula is a brittle assumption. To describe such
a situation, consider the random sequence X1, X2, . . . of independent and identical random variables,
then the extreme order statistic X1:N = min{X1, . . . , XN} follows the proportional hazard rates model
and the extreme order statistic XN:N = max{X1, . . . , XN} follows the proportional reversed hazard rates
model where N is the mixing component that needs to be counted. Methods for finding copulas in such
cases have been developed in the literature recently (see, e.g., [1, 44]).

Examples have been presented in Appendix to derive the copula function in some well-known frailty
models (see Examples A.11–A.14 in Appendix).
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3.3. Further application in modeling bivariate variable dependency

In general, the model (2.4) is applicable in a broader setting when knowing that there are always
some weight functions that relates two densities. Let us assume that the random pair (X,Y) has a joint
density f (x, y) (whenever it exists) where X and Y are continues univariate random variables following
marginal densities fX(x) and fY(y), respectively. Denote by f (x|y) and g(y|x) the conditional densities
of of X given Y = y and that of Y given X = x, respectively. It is well-known that

fX(x) =

∫ ∞

−∞

f (x|y) fY(y) dy (3.9)

and
fY(y) =

∫ ∞

−∞

g(y|x) fX(x) dx (3.10)

To exploit (3.9) and (3.10) to an advantage in terms of the model (2.4), one rewrites them as follows:

fX(x) = fZ(x)
∫ ∞

−∞

w(x; y)
η(y)

fY(y) dy = fZ(x)
∫ ∞

−∞

w(x; y) fY(y) dy, (3.11)

where w(x; y) = f (x|y)/ fZ(x) and η(y) =
∫ ∞
−∞

w(x; y) fZ(x) dx = 1 where fZ is the pdf of Z which is
assumed to be a random variable with an absolutely continuous distribution function. In parallel, we
analogously have

fY(y) = fW(y)
∫ ∞

−∞

w∗(y; x)
η∗(y)

fX(x) dx = fW(y)
∫ ∞

−∞

w∗(y; x) fX(x) dx, (3.12)

where w∗(y; x) = g(y p x)/ fW(y) and η∗(y) =
∫ ∞
−∞

w∗(y; x) fX(y) dy = 1 where fW is the pdf of W
which is assumed to be a random variable with an absolutely continuous distribution function. It is
noticeable that (3.11) applies when there exists a random variable Z for which (X p Y = y) is equal
in distribution with Zw(·;y) which is the weighted version of Z with y-indexed weight function w(·; y).
The representation (3.12) also applies when there exists a random variable W for which (Y p X = x)
is equal in distribution with Ww(·;x) which is the weighted version of W with x-indexed weight function
w(·; x). For instance, in light of the results of the paper, the bivariate distributions for which there exists
a random variable Z with cdf FZ and a function φ(·; y) ≥ 0 such that

P(X ≤ x|Y = y) = φ(FZ(x); y)

and the bivariate distributions for which there exists a random variable W with cdf FW and a function
ψ(·; x) ≥ 0 that fulfills the relation

P(Y ≤ y|X = x) = ψ(FW(y); x), (3.13)

are applicable and the formula (3.7) gives the copula function of (X,Y) in such cases. There are some
data sets whose observations are distribution functions rather than the single numerical point value of
classical data [45]. Consider a situation where the regression of FZ(Y) on g(X) is carried out and the
linear form

FW(Yi) = α + βg(Xi) + εi, i = 1, 2, . . . , n
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is under consideration in which εi ∼ N(0, σ2) and α and β are two real-valued parameters and g is a
proper function. It is ordinarily assumed that Xi and εi are independent. To characterize the copula
function of (X,Y) the approach proposed in this paper can be adopted. We have

P(Y ≤ y|X = x) = P(F−1
Z (α + βg(X)) ≤ y|X = x)

= P(εi ≤ FW(y) − α − βg(X)|X = x)
= Φ(σ(FW(y) − α − βg(x)))
= ψα,β,σ(FW(y); x),

where Φ is the cdf of standard normal distribution and ψα,β,σ is the function fulfilling the identity (3.13).
It is noticeable that given the value of y the weight w(x; y) is a weight function on the pdf of X and

on the other hand given the value of x the weight w∗(y; x) is a weight function onpdf of Y . Therefore,
the realization y from Y and the realization x from X play the role of the parameter θ in the mixture
weighted distribution (2.4). The model is, therefore, can be applied in the context of any bivariate
distribution. The random pair (X,Y) with baseline Z and the random pair (Y, X) with baseline W can be
considered in place of (X∗,Θ) so that the selection of distribution of Z and the selection of distribution
of W are at the disposal of the model. The objective of putting (X,Y) in the framework of the mixture
model (2.4) is to have a representation of the associated copula function in situations where it does not
have a closed form or situations in which the Sklar’s theorem does not provide the expression of the
copula function.

4. Conclusions

In this paper, we have achieved two goals. Firstly, we have established necessary and sufficient
conditions for the partial dependence structures PLRD (NLRD), RCSI (RCSD), LCSD (LCSI), SI
(SD) and PQD (NQD) with respect to the stochastic orders ≤lr,≤hr, ≤rh and ≤st between two parameter-
indexed copies of a random variable from a baseline generator distribution (see, cdf (3.2)). It was
shown that the strongest dependence property holds if the parameter-indexed weight function w(x, θ)
has a regular form that is TP2 for positive dependence (or RR2 for alternative negative dependence).
It is shown that the situation described in this theorem is applicable in the context of proportional
hazards (reversed), proportional odds, upper (lower) tail, residual life (inactivity time) models, and
scale change model when the model is mixed and the parameter for the individual in the resulting
samples is randomly drawn. The weaker dependence structures are also characterized in the mixed
model of residual lifetime (inactivity time) and the mixed model of scale change by several known
aging notions.

Secondly, since each bivariate distribution function induces a particular copula function, the copula
function of the random pair was derived from the mixture (unobservable) and the resultant (overall
population). Such an investigation seems to be important and plays an essential role in the literature
to focus on further aspects of dependencies using the implicit copula functions. It was found that
in some semiparametric distribution families, including the very well-known proportional hazard and
proportional reverse hazard models, the copula functions have explicit closed forms.

In the future study of this work, mixture-based copula functions of weighted distributions in high
(more than two) dimensions will be considered and also possible extensions of the results of this
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paper to the multivariate case will be gone over. Further analysis of dependence characteristics using
the derived bivariate copula function and the presented multivariate copula function is performed.
The authors are quite optimistic about the goal of the current study, which will be pursued by many
researchers in this field.
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Appendix

Example A.1 (Proportional hazards model with random effects). Suppose that w(x; θ) = F̄θ−1(x), θ > 0.
It is seen that (∂2/∂θ∂x) ln(w(x; θ)) = −hX(x) < 0 for all x ≥ 0 and θ > 0 where hX is the hazard rate
function of X given by hX(x) = f (x)/F̄(x). Hence, w(x; θ) is RR2 in (x, θ) and thus from Theorem 3.1,
we conclude that X∗ with sf E[F̄Θ

X (x)] and Θ admit the Nlrd property. In addition, to determine the
distribution of Uθ, (3.2) provides that Gθ(u) = 1 − (1 − u)θ which is the cdf of Beta(1, θ). It is trivially
apparent that Uθ1 ≥lr Uθ2 for all 0 < θ1 < θ2 by which the result of Theorem 4 (i) is validated.

Example A.2 (Proportional reversed hazards model with random effects). Suppose that w(x; θ) =

Fθ−1(x), θ > 0. It is obtained that (∂2/∂θ∂x) ln(w(x; θ)) = h̃X(x) > 0 for all x ≥ 0 and θ > 0 where h̃X

is the reversed hazard rate function of X, defined as h̃X(x) = f (x)/F(x).Hence, w(x; θ) is T P2 in (x, θ)
which implies that X∗ with cdf E[FΘ

X (x)] and Θ have the PLRD property. Furthermore, to identify the
distribution of Uθ, (3.2) gives Gθ(u) = uθ which is the cdf of Beta(θ, 1). It can simply be checked that
Uθ1 ≤lr Uθ2 for all 0 < θ1 < θ2 fulfilling the result of Theorem 4 (i).

Example A.3 (Proportional odds model with random tilt parameter). Let us assume that w(x; θ) =

1/(1− θ̄F̄(x))2, θ > 0 with θ̄ = 1− θ. It can be seen that (∂2/∂θ∂x) ln(w(x; θ)) = 2 fX(x)/(1− θ̄F̄X(x))2 >

0 for all x ≥ 0 and for all θ > 0. Therefore, w(x; θ) is T P2 in (x, θ) and therefore, X∗ with cdf
E[FX(x)/(1 − Θ̄F̄X(x))2] and Θ satisfy the PLRD property. To characterize the distribution of Uθ by
(3.2), we have Gθ(u) = u/(1− θ̄(1− u)). The stochastic ordering relation Uθ1 ≤lr Uθ2 for all 0 < θ1 < θ2

holds true and Theorem 4 (i) is valid.

Example A.4 (Upper tail mixture model). Let us assume that w(x; θ) = I[x > F−1
X (θ)] where θ ∈

[0, 1]. For all x1 ≤ x2 and for all θ1 ≤ θ2 ∈ [0, 1], by considering all possible ordering arrangements
between x1 and x2 together with θ1 and θ2 it holds that I[x1 > F−1

X (θ1)]I[x2 > F−1
X (θ2)] ≥ I[x1 >

F−1
X (θ2)]I[x2 > F−1

X (θ1)]. It thus follows that w(x; θ) = I[x > F−1
X (θ)] is T P2 in (x, θ) and thus, X∗

with pdf fX(x)
∫ FX(x)

0
(1 − θ)dΛ(θ) and Θ fulfill the PLRD structure. The distribution of Uθ in (3.2) is

determined as

Gθ(u) =
u − θ
1 − θ

I[u > θ],

and thus Uθ has uniform distribution on [θ, 1]. The density function of Uθ is gθ(u) = I[θ ≤ u ≤ 1]/(1−θ)
which for all u1 ≤ u2 and for all θ≤θ2 satisfies

gθ1(u1)gθ2(u2) =
I[θ1 ≤ u1 ≤ 1]I[θ2 ≤ u2 ≤ 1]

(1 − θ1)(1 − θ2)

≥
I[θ2 ≤ u1 ≤ 1]I[θ1 ≤ u2 ≤ 1]

(1 − θ1)(1 − θ2)
= gθ2(u1)gθ1(u2),

thus, gθ(u) is T P2 in (u, θ) ∈ [0, 1]2. Hence, Uθ1 ≤lr Uθ2 for all 0θ1 < θ2 ∈ [0, 1] which confirms
Theorem 4 (i).
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Example A.5 (Lower tail mixture model) Assume that w(x; θ) = I[x ≤ F−1
X (θ)] where θ ∈ [0, 1]. It

can be observed as previous case that w(x; θ) = I[x ≤ F−1
X (θ)] is T P2 in (x, θ) and thus it follows

that that X∗ with pdf fX(x)
∫ 1

FX(x)
(1/θ)dΛ(θ) and Θ are PLRD. In this case, the distribution of Uθ is

Gθ(u) = min{u/θ, 1} and thus Uθ has uniform distribution on [0, θ]. The associated density function is
gθ(u) = I[0 ≤ u ≤ θ]/θ. It is readily seen again that gθ(u) is T P2 in (u, θ) ∈ [0, 1]2. Hence, Uθ1 ≤lr Uθ2

for all 0 < θ1 < θ2 which fulfils Theorem 4 (i).
In the following mixture models unlike the foregoing cases where the generator distribution Gθ is

independent of FX, they depend on FX.

Example A.6 (Right truncation mixture model). Assume that w(x; θ) = I[x > θ] [28]. For all x1 ≤ x2

and for all θ1 ≤ θ2, by considering all possible ordering arrangements between x1 and x2 together with
θ1 and θ2 one has I[x1 > θ1]I[x2 > θ2] ≥ I[x1 > θ2]I[x2 > θ1]. Hence, w(x; θ) = I[x > θ] is T P2 in (x, θ)
and from thus, X∗ with pdf fX(x)

∫ x

−∞
(1/F̄X(θ))dΛ(θ) and Θ satisfy the PLRD property. To identify the

distribution of Uθ as given in (3.2), we get

Gθ(u) =
u −min{u, FX(θ)}

F̄X(θ)
,

and thus Uθ has uniform distribution on [FX(θ), 1] provided that FX(θ) < 1. The density function of Uθ

is gθ(u) = I[FX(θ) ≤ u ≤ 1]/(F̄X(θ)) which for all u1 ≤ u2 and for all θ1 ≤ θ2 satisfies

gθ1(u1)gθ2(u2) =
I[u1 > FX(θ1)]I[u2 > FX(θ2)]

F̄X(θ1)F̄X(θ2)

≥
I[u1 > FX(θ2)]I[u2 > FX(θ1)]

F̄X(θ1)F̄X(θ2)
= gθ2(u1)gθ1(u2),

which establishes that gθ(u) is T P2 in (u, θ). Hence, the stochastic ordering relation Uθ1 ≤lr Uθ2 for all
0 < θ1 < θ2 holds true which is an indication of the correctness of Theorem 4 (i).

Example A.7 (Left truncated mixture model). Let w(x; θ) = I[x ≤ θ]. It is then proved that w(x; θ) =

I[x ≤ θ] is T P2 in (x, θ) and therefore, X∗ with pdf fX(x)
∫ +∞

x
(1/FX(θ))dΛ(θ) and Θ have the PLRD

property. To characterize the distribution of Uθ in (3.2), one realizes that Gθ(u) = min{u, FX(θ)}/FX(θ)
and thus Uθ follows uniform distribution on [0, FX(θ)] provided that FX(θ) > 0. In this case, the density
function of Uθ is gθ(u) = I[0 ≤ u ≤ FX(θ)]/(FX(θ)). It can be shown, as in the previous case, that gθ(u)
is T P2 in (u, θ). Hence, Uθ1 ≤lr Uθ2 for all 0 < θ1 < θ2 which is in agreement with Theorem 3.2 (i).

Example A.8 (The residual life mixture model). Let w(x; θ) = fX(x + θ)/ fX(x) in which θ is a certain
survival time [25]. It can be demonstrated that w(x; θ) = fX(x + θ)/ fX(x) is T P2 (RR2) in (x, θ) if, and
only if, X has a log-convex (log-concave) density function which concludes that X∗ and Θ have the
PLRD (NLRD) property. The distribution of Uθ in (3.2) for the cdf FX with FX(0) = 0 and FX(θ) < 1
is derived as

Gθ(u) =

∫ u

0
( fX(F−1

X (x) + θ))/( fX(F−1
X (x))) dx∫ 1

0
( fX(F−1

X (x) + θ))/( fX(F−1
X (x))) dx
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=
FX(θ + F−1

X (u)) − FX(θ)
F̄X(θ)

= Fθ(F−1
X (u)), u ∈ [0, 1],

where Fθ is the cdf of Xθ = (X − θ p X > θ) with FX(θ) < 1. The random variable Xθ is the residual
lifetime, after the time θ, of a lifetime unit whose length of life is X. The density function of Uθ is

gθ(u) =
fX(θ + F−1

X (u))
fX(F−1

X (u))F̄X(θ)
, u ∈ [0, FX(F−1

X (1) − θ)].

It can be seen that gθ(u) is T P2 (RR2) in (u, θ) whenever X has a log-convex (log-concave) density
function which further establishes that Uθ1 ≤lr Uθ2 for all 0 < θ1 < θ2. This is a confirmation for the
result of Theorem 3.2 (i).

Example A.9 (The average inactivity time model). Let w(x; θ) = fX(θ − x)/ fX(x) where θ is the time
of observation of failure [27]. It is observed in this case that w(x; θ) = fX(θ − x)/ fX(x) is T P2 (resp.
RR2) in (x, θ) if, and only if, X has a log-concave (resp. log-convex) density function and thus X∗ and
Θ have the PLRD (NLRD) property. The distribution of Uθ in (3.2) for the cdf FX with FX(0) = 0 and
FX(θ) > 0 is derived as

Gθ(u) =

∫ u

0
( fX(θ − F−1

X (x)))/( fX(F−1
X (x))) dx∫ 1

0
( fX(θ − F−1

X (x)))/( fX(F−1
X (x))) dx

=
FX(θ) − FX(θ − F−1

X (u))
FX(θ)

= F(θ)(F−1
X (u)), u ∈ [0, 1],

where F(θ) is the cdf of X(θ) = (θ− X p X ≤ θ) with FX(θ) > 0. The random variable X(θ) is the inactivity
time of a lifetime unit with lifespan X at the time θ (see [17,23,24,29,31]). The density function of Uθ

is thus obtained as

gθ(u) =
fX(θ − F−1

X (u))
fX(F−1

X (u))FX(θ)
, u ∈ [0, FX(θ)].

As a function of u and of θ, gθ(u) is T P2 (resp. RR2) in (u, θ) whenever X has a log-concave (log-
convex) density function which holds if, and only if, Uθ1 ≤lr Uθ2 for all 0 < θ1 < θ2. The result of
Theorem 4 (i) is once again confirmed and validated.

Example A.10 (Scale change mixture model). Let w(x; θ) = fX(θx)/ fX(x) where θ > 0 [33]. From
Definition 2.3(2) in [7], the weight w(x; θ) = fX(θx)/ fX(x) is T P2 (RR2) in (x, θ) if, and only if, X
has a decreasing (resp. increasing) proportional likelihood ratio and thus X∗ and Θ satisfy the PLRD
(NLRD) property. The cdf of Uθ in (3.2) when FX(0) = 0 is obtained as

Gθ(u) =

∫ u

0
( fX(θF−1

X (x)))/( fX(F−1
X (x))) dx∫ 1

0
( fX(θF−1

X (x)))/( fX(F−1
X (x))) dx
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=
FX(θF−1

X (u))
FX(θF−1

X (1))
.

The associated density function is

gθ(u) =
fX(θF−1

X (u))
fX(F−1

X (u))FX(θF−1
X (1))

, u ∈ [0, 1].

We see that gθ(u) is T P2 (RR2) in (u, θ) whenever X has decreasing (increasing) proportional
likelihood ratio which holds if, and only if, Uθ1 ≤lr Uθ2 for all 0 < θ1 < θ2 which fulfills the result of
Theorem 4 (i) again.

Example A.11 (Proportional hazards model). The generator of the semiparametric distribution in this
case as recognized in Section 2 is d(u, θ) = 1 − (1 − u)θ with θ > 0. Let us assume that Θ has
exponential distribution with mean one. It is seen that K(u) = − ln(1 − u)/(1 − ln(1 − u)) and thus
K−1(u) = 1 − exp{−u/(1 − u)} for all u ∈ (0, 1). From (3.7), since Λ−1(y) = − ln(1 − y), thus we can get

C(u, v) =

∫ v

0
(1 − (1 − K−1(u))Λ−1(y)) dy

=

∫ v

0
(1 − (1 − y)

u
1−u ) dy

= v + (1 − u)((1 − v)
1

1−u − 1), f or all u, v ∈ [0, 1].

Example A.12 (Proportional reversed hazards model). The generator of the semiparametric
distribution in this case as characterized in Section 2 is d(u, θ) = uθ with θ > 0. As in Example
4.1 we assume again that Θ has exponential distribution with mean one. One has K(u) = 1/(1 − ln(u))
and it follows that K−1(u) = exp{(u − 1)/u} for all u ∈ (0, 1). From (3.7) one obtains

C(u, v) =

∫ v

0
(K−1(u))Λ−1(y)) dy

=

∫ v

0
(1 − y)

1−u
u dy

= u(1 − (1 − v)
1
u ), f or all u, v ∈ [0, 1].

Example A.13 (Upper tail mixture model). The generator d in this case is d(u, θ) = (u − θ)I[u >

θ]/(1− θ) with θ ∈ [0, 1]. We assume that Θ has beta distribution with density function λ(θ) = 2(1− θ).
Hence, Λ−1(y) = 1 −

√
1 − y. It is seen that K(u) = u2 and thus K−1(u) =

√
u for all u ∈ (0, 1). By

substituting in (3.7), the copula function is identified as

C(u, v) =

∫ v

0

√
u − (1 −

√
1 − y)

1 − (1 −
√

1 − y)
I[
√

u > (1 −
√

1 − y)] dy
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=

∫ min{v,1−(1−
√

u)2}

0

1 +

√
u − 1√
1 − y

 dy

= 2(1 −
√

u)(
√

1 −min{v, 1 − (1 −
√

u)2} − 1) + min{v, 1 − (1 −
√

u)2}.

Example A.14 (Lower tail mixture model). In this case we have d(u, θ) = min{u/θ, 1} for θ ∈ [0, 1].
Suppose that Θ has beta distribution with density function λ(θ) = 2θ and thus Λ−1(y) =

√
y. We also

see that K(u) = 2u − u2 and thus K−1(u) = 1 −
√

1 − u for all u ∈ (0, 1). By using (3.7),

C(u, v) =

∫ v

0
min{

K−1(u)
Λ−1(y)

, 1} dy

=

∫ v

0
min{

1 −
√

1 − u
√

y
, 1} dy

= (1 −
√

1 − u)(2
√

v − 1 +
√

1 − u)+ + min{v, 1 − (1 −
√

1 − u)2},

where a+ = max{0, a}.
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