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Abstract: The bond incident degree (BID) index of a graph G is defined as BID f (G) =∑
uv∈E(G) f (d(u), d(v)), where d(u) is the degree of a vertex u and f is a non-negative real valued

symmetric function of two variables. A graph is stepwise irregular if the degrees of any two of its
adjacent vertices differ by exactly one. In this paper, we give a sharp upper bound on the maximum
degree of stepwise irregular graphs of order n when n ≡ 2(mod 4), and we give upper bounds on BID f

index in terms of the order n and the maximum degree ∆. Moreover, we completely characterize the
extremal stepwise irregular graphs of order n with respect to BID f .
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1. Introduction

In molecular graphs, the vertices correspond to atoms, while the edges represent covalent bonds
between atoms. A molecular structure can be characterized using many numerical descriptors which
are usually defined by formulas involving atoms and bonds. Such numerical descriptor is called
molecular structure descriptor or topological index. During the last decade, topological indices are
being be widely used in theoretical chemistry and pharmaceutical researchers. Among them, a large
number of topological indices depend only vertex degrees of the molecular graph. Such index is called
vertex-degree-based topological index.

Let G = (V, E) be a connected graph with vertex set V(G) and edge set E(G). We denote by d(v),
the degree of a vertex v of G. The maximum degree ∆ and minimum degree δ of a graph G is the
maximum and minimum value of the degrees of vertices in G, respectively.
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The general form of vertex-degree-based topological index is defined as

BID f (G) =
∑

uv∈E(G)

f (d(u), d(v))

and called the bond incident degree index, where f (x, y) is a non-negative real valued symmetric
function. The general form BID index

∑
uv∈E(G) f (du, dv) was first proposed in [13], and an early one

with constraint on f was considered in [27].
The most studied vertex-degree-based topological indices are the first and second Zagreb indices

and defined as

M1(G) =
∑

uv∈E(G)

(dG(u) + dG(v)) and M2(G) =
∑

uv∈E(G)

dG(u)dG(v).

These topological indices have been intensively studied for the last fifty years, see [4, 5, 8, 11].
Moreover, the relation between these indices and the reduced form of the second Zagreb index RM2

which is called the reduced second Zagreb index, were studied in [7, 9, 10, 12, 18].
Recently, Gutman introduced new degree based topological indices which are called the Sombor

index and the reduced Sombor index. They are defined as

S O(G) =
∑

uv∈E(G)

√
dG(u)2 + dG(v)2

and

S Ored(G) =
∑

uv∈E(G)

√
(dG(u) − 1)2 + (dG(v) − 1)2.

It invented in the Summer of 2020, and made publicly available in early 2021. In less than one year,
more than fifty research papers on this topological index were produced, see [16,17,19,20,23,26] and
cited therein.

Two multiplicative versions of Zagreb indices are defined as

Π2(G) =
∏

uv∈E(G)

dG(u)dG(v) and Π∗1(G) =
∏

uv∈E(G)

(dG(u) + dG(v)),

and called the multiplicative second Zagreb index and the multiplicative sum Zagreb index,
respectively. Recent results related to them can be found in [14, 21, 24, 28].

The Zagreb indices, the Sombor index, the reduced Sombor index and the reduced form of the
second Zagreb index are direct special cases of the bond incident index, in particular

M1(G) = BID f1(G), M2(G) = BID f2(G) and RM2(G) = BID f3(G),

and

S O(G) = BID f4(G) and S Ored(G) = BID f5(G),

where f1(x, y) = x + y, f2(x, y) = xy, f3(x, y) = (x − 1)(y − 1), f4(x, y) =
√

x2 + y2 and f5(x, y) =√
(x − 1)2 + (y − 1)2.
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The above multiplicative versions of Zagreb indices are indirect special cases, but are related as

ln Π2(G) = BID f6(G) and ln Π∗1(G) = BID f7(G),

where f6(x, y) = ln xy and f7(x, y) = ln(x + y).
In the recent years, several articles associated with the BID indices of molecular graphs were

published. In [25], authors studied the behavior of BID indices over catacondensed pentagonal
systems and derived a general expression for calculating them. In [22], authors determined the
bond incident degree indices of complex structures in drugs called nanostar dendrimers and compute
the closed formula for these indices. They also obtained some results which will be applicable to
the physiochemical properties, chemical reactivity or biological activities. Ali and his colleagues
computed BID indices of several nanostructures and pentagonal chains [2, 3]. They also characterized
graphs with maximum values of BID indices among tree, unicyclic, bicyclic, tricyclic and tetracyclic
graphs [1].

In 2018, Gutman [15] introduced the class of stepwise irregular graphs and studied their properties.
A graph is stepwise irregular (SI) if the degrees of any two of its adjacent vertices differ by exactly
one. In [6], authors give some sharp upper bounds on the maximum degree of SI graphs of order n
when n . 2(mod 4), and give upper bounds on the size of SI graphs in terms of the order n and the
maximum degree ∆. In this paper, we consider BID f indices over the class of SI graphs. For the class
of SI graphs, we can assume f (x, y) as a function of a single variable, i.e., f (x, y) = f (x, x − 1).

This paper is organized as follows. In Section 2, we introduce some notations and some previously
known results. In Section 3, we give an upper sharp bound on the maximum degree of SI graphs of
order n when n ≡ 2(mod 4). In Section 4, we give sharp upper bounds on the BID index of SI graphs
in term of the order for f (x, x − 1) which is increasing on [1,∞).

2. Preliminaries

For notations and terminologies, we follow [6]. Let G be a SI graph of order n with the maximum
degree ∆ and minimum degree δ. Denote by Ak the set of vertices of degree ∆ − k in G for k =

0, 1, . . . ,∆ − δ. Denote |Ak| = ak.
Let u and v be vertices of degree ∆ and δ. Then all vertices in N(u) and N(v) have degree ∆ − 1 and

δ + 1, respectively. Hence, N(u) ⊆ A1 and N(v) ⊆ A∆−δ−1. It follows that

a1 ≥ ∆ (2.1)

and
a∆−δ−1 ≥ δ. (2.2)

Similarly, for 1 ≤ k ≤ ∆− δ− 1, let w be a vertex of degree ∆− k. Then N(w) is a subset of Ak−1 ∪ Ak+1

since the degree of any vertex adjacent to w is d(w) + 1 or d(w) − 1. Hence one can see easily that

∆ − k ≤ ak−1 + ak+1 for 1 ≤ k ≤ ∆ − δ − 1. (2.3)

For 0 ≤ i ≤ ∆−δ, denote by E(Ai) the sets of edges incident with a vertex in Ai. Then |E(Ai)| = ai(∆− i)
and E(Ai) ⊆ E(Ai−1 ∪ Ai+1) for 1 ≤ i ≤ ∆ − δ − 1. Therefore

ai(∆ − i) ≤ ai−1(∆ − i + 1) + ai+1(∆ − i − 1). (2.4)
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On the other hand, since E(A0) ⊆ E(A1) and E(A∆−δ) ⊆ E(A∆−δ−1), we have

∆a0 ≤ (∆ − 1)a1 (2.5)

and
δa∆−δ ≤ (δ + 1)a∆−δ−1, (2.6)

respectively. The equalities in (2.5) and (2.6) hold if and only if δ = ∆ − 1.

Let a0 + a2 = ∆ − 1. Then from (2.1) and (2.4), we get

∆(∆ − 1) ≤ a1(∆ − 1) ≤ a0∆ + a2(∆ − 2) = ∆(a0 + a2) − 2a2 = ∆(∆ − 1) − 2a2

and it follows that a2 = 0. Therefore, we have

a0 + a2 ≥ ∆, if a2 > 0 (or δ < ∆ − 1) (2.7)

by (2.3).

We introduce some results and main properties of SI graphs [6, 15].

Lemma 2.1. [6, 15] Let G be a SI graph. Then the following properties hold:

(i) G is bipartite.
(ii) The number of edges of G is even.

(iii) Let X and Y be the parts of G. Then either |X| or |Y | is even.

In [6], authors presented that for a positive integer n such that n ≡ 0(mod 4), there is the unique SI
graph G of order n with the maximum degree n/2 such that V(G) = A0∪A1∪A2, |A0| = n/4, |A1| = n/2
and |A2| = n/4. Further, this unique SI graph will be denoted by Gn.

Lemma 2.2. [6] Let G be a SI graph of order n with the maximum degree ∆, the minimum degree δ.
Let X and Y be the parts of G. Then the following inequalities hold:

(i) ∆ ≤

⌊
n + 1

2

⌋
with equality if and only if G � K∆,∆−1 when n is odd or G � Gn

when n ≡ 0(4).
(ii) If ||X| − |Y || ≥ 2 or δ ≤ ∆ − 4 then ∆ ≤ (n + 9)/4.
(iii) If ||X| − |Y || ≥ 2 and δ > ∆ − 4 then ∆ < (n + 6)/4.

Lemma 2.3. [6] Let G be a SI graph of order n with maximum degree ∆. Then

|E(G)| ≤
∆(∆ − 1)n

2∆ − 1

with equality if and only if δ = ∆ − 1.

Lemma 2.4. [6] Let G be a SI graph of order n with maximum degree ∆. Then

|E(G)| ≤
(n − 1)∆

2

with equality if and only if G � K∆,∆−1.
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Lemma 2.5. [6] Let G be a stepwise irregular graph of order n with maximum degree ∆ which is
different from K∆,∆−1. Then

|E(G)| ≤ (∆ − 1)(n − ∆)

with equality if and only if δ = ∆ − 2.

When n ≡ 2(mod 4), denote by Gn the set of all SI graphs of order n with the maximum degree
(n + 2)/4 such that V(G) = A0 ∪ A1, |A0| = (n − 2)/2, |A1| = (n + 2)/2.

Lemma 2.6. [6] Let G be a SI graph of order n.
(i) If n is odd then |E(G)| ≤ (n2 − 1)/4 with equality if and only if G � K(n+1)/2,(n−1)/2.

(ii) If n ≡ 0(mod 4) then |E(G)| ≤ (n2 − 2n)/4 with equality if and only if G � Gn.
(iii) If n ≡ 2(mod 4) then |E(G)| ≤ (n2 − 4)/8 with equality if and only if G ∈ Gn.

3. Upper bounds on the maximum degree of SI graphs

In this section, our purpose is to give a sharp upper bound on the maximum degree of SI graphs of
order n when n ≡ 2(mod 4).

Let G be a SI graph of order n ≡ 2(mod 4) with the maximum degree ∆ and X, Y be the parts of
G in which X contains the maximum degree vertex. Then by Lemma 2.1(iii), ||X| − |Y || ≥ 2. Since
Lemma 2.2(ii) and n ≡ 2(mod 4), it follows that

∆ ≤
(n + 6)

4
.

In the Lemmas 3.1–3.5, we will show that the latter inequality holds strictly.

Lemma 3.1. Let G be a SI graph of order n ≡ 2(mod 4) with the maximum degree ∆ and the minimum
degree δ. If δ ≤ ∆ − 8 then

∆ <
n + 6

4
.

Proof. Conversely, suppose ∆ = (n + 6)/4. Then n = 4∆ − 6. Since δ ≤ ∆ − 8, clearly a8 ≥ 1 and
∆ ≥ 9. Since (2.1), (2.3), (2.7), a7 ≥ 1 and a8 ≥ 1, we have

|Y | ≥ a1 + a3 + a5 + a7 + a9 ≥ ∆ + (∆ − 4) + 1 + 0 = 2∆ − 3

and
|X| ≥ a0 + a2 + a4 + a6 + a8 ≥ ∆ + (∆ − 5) + 1 = 2∆ − 4.

Hence, we get |Y | = 2∆ − 2 and |X| = 2∆ − 4 because |X| + |Y | = 4∆ − 6. Moreover, we get a0 + a2 =

∆, a4 + a6 = ∆ − 5, a8 = 1, a10 = 0. Therefore, we have

|E(G)| = a0∆ + a2(∆ − 2) + a4(∆ − 4) + a6(∆ − 6) + a8(∆ − 8)
= (a0 + a2)∆ + (a4 + a6)(∆ − 4) + (∆ − 8) − 2a2 − 2a6

= 2∆2 − 8∆ + 12 − 2(a2 + a6). (3.1)

On the other hand, we have

|E(G)| = a1(∆ − 1) + a3(∆ − 3) + a5(∆ − 5) + a7(∆ − 7) + a9(∆ − 9)

AIMS Mathematics Volume 7, Issue 5, 8685–8700.



8690

= (a1 + a3 + a5 + a7 + a9)(∆ − 9) + 8a1 + 4(a3 + a5) + 2a3 + 2a7

= (2∆ − 2)(∆ − 9) + 8a1 + 4(a3 + a5) + 2a3 + 2a7

= 2∆2 − 8∆ + 2 + 8(a1 − ∆) + 4(a3 + a5 − ∆ + 4) + 2a3 + 2a7. (3.2)

If a1 ≥ ∆ + 1 or a3 + a5 ≥ ∆ − 3 then

|E(G)| = 2∆2 − 8∆ + 2 + 8(a1 − ∆) + 4(a3 + a5 − ∆ + 4) + 2a3 + 2a7

≥ 2∆2 − 8∆ + 10 > 2∆2 − 8∆ + 12 − 2(a2 + a6) = |E(G)|

since a2, a3, a6 and a7 are positive integers. Hence, we have a1 = ∆ and a3 + a5 = ∆ − 4. Since
|Y | = 2∆ − 2, we get a7 + a9 = 2. Also from (3.1) and (3.2), one can see that a2 + a3 + a6 + a7 = 5.

If a2 = 1 then a0 = ∆ − 1 and a1 = ∆ which contradicts to a0∆ < a1(∆ − 1). Therefore, a2 = 2 and
a3 = a6 = a7 = 1. Then a9 = 1 and since a6 + a8 ≥ ∆ − 7, it follows ∆ ≤ 9. This is a contradiction to
a9 = 1. �

Lemma 3.2. Let G be a SI graph of order n ≡ 2(mod 4) with the maximum degree ∆ and the minimum
degree δ. If δ = ∆ − 7 then

∆ <
n + 6

4
.

Proof. Suppose ∆ = (n + 6)/4. Then n = 4∆ − 6. Since δ = ∆ − 7, it is clear that a7 ≥ 1, a8 = 0 and
∆ ≥ 8. From (2.1), (2.3) and a7 ≥ 1, we get

|Y | = a1 + a3 + a5 + a7 ≥ ∆ + ∆ − 4 + 1 = 2∆ − 3. (3.3)

We also get |X| = a0 + a2 + a4 + a6 ≥ ∆ + ∆ − 5 = 2∆ − 5 since (2.3) and (2.7). Hence one can easily
see that |X| = 2∆ − 4 and |Y | = 2∆ − 2 because |X| + |Y | = 4∆ − 6 and |X|, |Y | are even. Also we have
a0 + a2 = ∆ or a0 + a2 = ∆ + 1. Therefore

|E(G)| = (a0 + a2 + a4 + a6)(∆ − 6) + 6a0 + 4a2 + 2a4

= (2∆ − 4)(∆ − 6) + 6a0 + 4a2 + 2a4

=

2∆2 − 12∆ + 24 + 2a0 + 2a4 if a0 + a2 = ∆

2∆2 − 12∆ + 28 + 2a0 + 2a4 if a0 + a2 = ∆ + 1
.

(3.4)

From (2.2), we have 2∆ − 4 = a0 + a2 + a4 + a6 ≥ a0 + a2 + a4 + ∆ − 7 and it follows that

a4 ≤

3 if a0 + a2 = ∆

2 if a0 + a2 = ∆ + 1
. (3.5)

Similarly, using (2.2) and (2.3), we have 2∆− 4 = a0 + a2 + a4 + a6 ≥ a0 + ∆− 3 + ∆− 7 and it follows
that

a0 ≤ 6. (3.6)

Using (3.4)–(3.6), we get

|E(G)| ≤

2∆2 − 12∆ + 42 if a0 + a2 = ∆

2∆2 − 12∆ + 44 if a0 + a2 = ∆ + 1
. (3.7)
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The equality in (3.7) holds if and only if a0 = 6, a4 = 3, a0 + a2 = ∆ or a0 = 6, a4 = 2, a0 + a2 = ∆ + 1.
On the other hand, we have

|E(G)| = (a1 + a3 + a5 + a7)(∆ − 7) + 6a1 + 2(a3 + a5) + 2a3. (3.8)

From (3.8), (2.3) and a3 ≥ 1, we get

|E(G)| ≥ (2∆ − 2)(∆ − 7) + 6a1 + 2(∆ − 4) + 2
= 2∆2 − 14∆ + 8 + 6a1.

(3.9)

The equality in (3.9) holds if and only if a3 = 1, a5 = ∆ − 5. From (3.7) and (3.9), we get

∆ + 18 ≥ 3a1.

If a1 ≥ ∆ + 1 then we get ∆ < 8 which is a contradiction to δ = ∆ − 7. Hence a1 = ∆ and 8 ≤ ∆ ≤ 9.
Let ∆ = 9. From (3.7) and (3.9), we get

98 = 2∆2 − 12∆ + 44 ≥ |E(G)| ≥ 2∆2 − 14∆ + 8 + 6a1 = 98

By the equalities conditions of (3.7) and (3.9), we have a0 = 6, a4 = 2, a2 = 4, a3 = 1. But this
contradicts to a0∆ + a2(∆ − 2) < a1(∆ − 1) + a3(∆ − 3).

Let ∆ = 8. Since (3.3), |Y | = 2∆ − 2 and a1 = ∆, it follows that a3 + a5 = ∆ − 4, a7 = 2 or
a3 + a5 = ∆ − 3, a7 = 1. Now we distinguish the following four cases.
Case 1. a0 + a2 = ∆, a3 + a5 = ∆ − 4. Then a7 = 2 and from |X| = 2∆ − 4, one can see that
a4 + a6 = ∆ − 4 = 4. By using (3.4), (3.8), we get 7 + a3 = a0 + a4. Since a7 = 2, it follows a6 ≥ 2 and
a4 ≤ 2. Thus, 7 + a3 = a0 + a4 ≤ 6 + 2 and a3 ≤ 1. Hence, a3 = 1, a0 = 6, a4 = 2. Then a2 = 2. But
this contradicts to a2 + a4 ≥ ∆ − 3.
Case 2. a0 +a2 = ∆, a3 +a5 = ∆−3. Then a7 = 1 and by using (3.4), (3.8), we get 8+a3 = a0 +a4. From
|X| = 2∆−4, one can see that a4 +a6 = ∆−4 = 4. From (3.5), (3.6), we see that 8+a3 = a0 +a4 ≤ 6+3.
Thus a3 = 1, a0 = 6, a4 = 3. Then a2 = 2. Since a3 = 1 and a2 + a4 = 5, the unique vertex in A3 is
adjacent to all vertices in A2∪A4. Therefore, the number of edges between A1 and A2 must be a2(∆−3).
On the other hand, it is equal to a1(∆ − 1) − a0∆. But a2(∆ − 3) > a1(∆ − 1) − a0∆ and a contradiction.
Case 3. a0 + a2 = ∆ + 1, a3 + a5 = ∆− 4. Then a7 = 2 and by using (3.4), (3.8), we get 5 + a3 = a0 + a4.

From |X| = 2∆ − 4, one can see that a4 + a6 = ∆ − 5 = 3. Since a7 = 2, we have a6 ≥ 2 and a4 ≤ 1.
Thus, a4 = 1 and a6 = 2. Therefore, 5 + a3 = a0 + a4 ≤ 6 + 1. It follows that a3 ≤ 2 and a5 ≥ 2. But

8 = a4(∆ − 4) + a6(∆ − 6) > a5(∆ − 5) + a7(∆ − 7) = 3a5 + 2 ≥ 3 · 2 + 2 = 8,

which is a contradiction.
Case 4. a0 + a2 = ∆ + 1, a3 + a5 = ∆− 3. Then a7 = 1 and by using (3.4), (3.8), we get 6 + a3 = a0 + a4.

From |X| = 2∆ − 4, one can see that a4 + a6 = ∆ − 5 = 3. It follows a4 ≤ 2 and 6 + a3 = a0 + a4 ≤ 8.
Therefore, we get a3 ≤ 2 and a5 ≥ 3 since a3 + a5 = 5. But

10 = 2 · 3 + 2 · 2 ≥ 2(a4 + a6) + 2a4 = a4(∆ − 4) + a6(∆ − 6)
> a5(∆ − 5) + a7(∆ − 7) = 3a5 + 1 ≥ 3 · 3 + 1 = 10,

which is a contradiction.

From the above all, the proof is completed. �
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Lemma 3.3. Let G be a SI graph of order n ≡ 2(mod 4) with the maximum degree ∆ and the minimum
degree δ. If δ = ∆ − 6 then

∆ <
n + 6

4
.

Proof. Conversely, Suppose ∆ = (n + 6)/4. From δ = ∆ − 6, a6 ≥ 1, a7 = 0 and ∆ ≥ 7. We have
|Y | = a1 + a3 + a5 ≥ 2∆− 4 and |X| ≤ 2∆− 2 from |X|+ |Y | = 4∆− 6. Now we distinguish the following
two cases.
Case 1. Let |X| ≥ |Y | + 2. Then |X| = 2∆ − 2 and |Y | = 2∆ − 4. Thus, a1 = ∆, a3 + a5 = ∆ − 4. From
a5 ≥ ∆ − 6, we get a3 ≤ 2. Also we have

|E(G)| = a1(∆ − 1) + a3(∆ − 3) + a5(∆ − 5) = a0∆ + a2(∆ − 2) + a4(∆ − 4) + a6(∆ − 6)

and an elementary calculation gives that

3a0 + 2a2 + a4 = 2∆ + 4 + a3. (3.10)

If a0 + a2 ≥ ∆ + 2 then from (3.10), we have a0 + a4 ≤ a3 ≤ 2. It follows that a0 = a4 = 1, a3 = 2 and
a0 + a2 = ∆ + 2. Then a5 = ∆ − 6, a6 = ∆ − 5 and it contradicts to a5(∆ − 5) > a6(∆ − 6).
If a0 + a2 = ∆ + 1 then from (3.10), we have a0 + a4 = a3 + 2. Since a4 + a6 = ∆−3 and a3 + a5 = ∆−4,
we get a0 + a5 = a6 + 1. On the other hand, we have

(∆ + 1)(∆ − 2) + 2a0 = a0∆ + a2(∆ − 2) > a1(∆ − 1) = ∆(∆ − 1).

Hence, we get a0 ≥ 2 and a6 ≥ a5 + 1. Therefore, we have

a5(∆ − 5) > a6(∆ − 6) ≥ (a5 + 1)(∆ − 6).

It follows that a5 > ∆ − 6. Since a3 + a5 = ∆ − 4, we get a5 = ∆ − 5. Similarly, we get a6 =

∆ − 4 and a3 = a4 = 1. Now we consider the number of edges between A4 and A5. This number is
a5(∆ − 5) − a6(∆ − 6) = a4(∆ − 4) − 1 because there is only one edge between A3 and A4. Hence, we
get ∆ = 6 and a contradiction.
If a0 + a2 = ∆ then the inequality

∆(∆ − 2) + 2a0 = a0∆ + a2(∆ − 2) > a1(∆ − 1) = ∆(∆ − 1)

holds and hence 2a0 ≥ ∆ ≥ 7 and so a0 ≥ 4. Also from (3.10), we have a0 + a4 = 4 + a3. Since
a4 + a6 = ∆ − 2 and a3 + a5 = ∆ − 4, we get

a6 = a0 + a5 − 2 ≥ a5 + 2.

Therefore, we have
a5(∆ − 5) > a6(∆ − 6) ≥ (a5 + 2)(∆ − 6)

and it follows that 2∆−11 ≤ a5 ≤ ∆−5 since a3 + a5 = ∆−4. Hence we get ∆ ≤ 6 and a contradiction.
Case 2. If |Y | ≥ |X| + 2 then |X| ≤ 2∆ − 4 and

|X| = a0 + a2 + a4 + a6 ≥ ∆ + ∆ − 5 = 2∆ − 5.
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Thus, |X| = 2∆ − 4 and |Y | = 2∆ − 2 by Lemma 2.1(iii). Hence a0 + a2 ≤ ∆ + 1 and a4 = 2∆ − 4 −
(a0 + a2) − a6 ≤ 2∆ − 5 − (a0 + a2). We also have

2∆ − 4 = |X| = a0 + a2 + a4 + a6 ≥ a0 + ∆ − 3 + 1

and we obtain a0 ≤ ∆ − 2. Therefore

|E(G)| = a0∆ + a2(∆ − 2) + a4(∆ − 4) + a6(∆ − 6)
= (a0 + a2 + a4 + a6)(∆ − 6) + 2a4 + 4(a0 + a2) + 2a0

≤ (2∆ − 4)(∆ − 6) + 2(2∆ − 5) + 2(a0 + a2) + 2(∆ − 2)
≤ 2∆2 − 8∆ + 12. (3.11)

From a1 ≥ ∆ and a3 ≥ 1, we obtain

|E(G)| = a1(∆ − 1) + a3(∆ − 3) + a5(∆ − 5) = (a1 + a3 + a5)(∆ − 5) + 4a1 + 2a3

= (2∆ − 2)(∆ − 5) + 4a1 + 2a3 ≥ 2∆2 − 8∆ + 12. (3.12)

From (3.11) and (3.12), we obtain a0 = ∆ − 2, a1 = ∆, a2 = 3, a3 = 1, a4 = ∆ − 6, a5 = ∆ − 4, a6 = 1
which contradicts to a4(∆ − 4) + a6(∆ − 6) > a5(∆ − 5).

The above two cases, the proof is finished. �

Lemma 3.4. Let G be a SI graph of order n ≡ 2(mod 4) with the maximum degree ∆ and the minimum
degree δ. If δ = ∆ − 5 then

∆ <
n + 6

4
.

Proof. Conversely, suppose ∆ = (n + 6)/4. Then n = 4∆ − 6. Since δ = ∆ − 5, clearly a5 ≥ 1, a6 = 0.
Then |Y | = a1 + a3 + a5 ≥ 2∆ − 4 by (2.1) and (2.3).

If |X| ≥ |Y | + 2 then |X| ≥ 2∆ − 2. It follows from |X| + |Y | = 4∆ − 6 that

|X| = 2∆ − 2 and |Y | = 2∆ − 4.

Thus, a1 = ∆, a3 + a5 = ∆ − 4 and a3 ≤ ∆ − 5. Hence, we get

|E(G)| = a1(∆ − 1) + (a3 + a5)(∆ − 5) + 2a3

≤ ∆(∆ − 1) + (∆ − 4)(∆ − 5) + 2(∆ − 5)
= 2∆2 − 8∆ + 10

(3.13)

and
|E(G)| = a0∆ + a2(∆ − 2) + a4(∆ − 4)

= (a0 + a2 + a4)(∆ − 4) + 2(a0 + a2) + 2a0

≥ (2∆ − 2)(∆ − 4) + 2∆ + 2
= 2∆2 − 8∆ + 10.

(3.14)

From inequalities (3.13) and (3.14), it follows that a5 = 1, a3 = ∆ − 5, a2 = ∆ − 1, a0 = 1. But it
contradicts to the inequalities a0∆ + a2(∆ − 2) > a1(∆ − 1) and ∆ ≥ 6.
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If |Y | ≥ |X| + 2 then from |X| + |Y | = 4∆ − 6, we have |X| ≤ 2∆ − 4 and other hand

|X| = a0 + a2 + a4 ≥ ∆ + ∆ − 5 = 2∆ − 5.

Hence we have |X| = 2∆ − 4 by Lemma 2.1(iii). Moreover, one can see that a4 = ∆ − 4 or a4 = ∆ − 5.
Since a0∆ < a1(∆ − 1), we get (a1 − a0)∆ > a1 ≥ ∆ and it follows that a1 − a0 ≥ 2. Also we have

|E(G)| = a1(∆ − 1) + a3(∆ − 3) + a5(∆ − 5) = a0∆ + a2(∆ − 2) + a4(∆ − 4)

and an elementary calculation gives that 1 + a0 − a4 = a1 − a5. Hence, we get

a5 = a4 + a1 − a0 − 1 ≥ a4 + 1.

Therefore, a4(∆ − 4) > a5(∆ − 5) ≥ (a4 + 1)(∆ − 5) and it is equivalent to a4 > ∆ − 5, i.e., a4 = ∆ − 4.
If a5 ≥ ∆ − 2 then it contradicts to the inequality a4(∆ − 4) > a5(∆ − 5) and ∆ ≥ 6. Hence, we have
a5 = ∆ − 3, a1 − a0 = 2 and a1 + a3 = ∆ + 1. Moreover, a1 = ∆, a3 = 1, a0 = ∆ − 2 and a2 = 2.

Since a4(∆− 4)− a5(∆− 5) = 1 and a2 = 2, we have ∆− 3 = 3. Therefore ∆ = 6 and one can easily
see that the graph is disconnected. This completes the proof. �

Lemma 3.5. Let G be a SI graph of order n ≡ 2(mod 4) with the maximum degree ∆ and the minimum
degree δ. If δ = ∆ − 4 then

∆ <
n + 6

4
.

Proof. Conversely, suppose ∆ = (n + 6)/4. Then n = 4∆ − 6. Since δ = ∆ − 4, clearly a4 ≥ 1 and
a5 = 0. From (2.1) and (2.2), it follows that |Y | = a1 + a3 ≥ 2∆ − 4.

If |X| ≥ |Y | + 2 then |X| ≥ 2∆ − 2. Therefore, by |X| + |Y | = 4∆ − 6,

|X| = 2∆ − 2 and |Y | = 2∆ − 4.

Thus, a1 = ∆, a3 = ∆ − 4. We have

|E(G)| = a1(∆ − 1) + a3(∆ − 3) = 2∆2 − 8∆ + 12. (3.15)

Since a4(∆ − 4) < a3(∆ − 3) = (∆ − 4)(∆ − 3), we can easily see that a4 ≤ ∆ − 4 and a0 + a2 ≥ ∆ + 2.
Thus,

|E(G)| = (a0 + a2 + a4)(∆ − 4) + 2(a0 + a2) + 2a0

≥ (2∆ − 2)(∆ − 4) + 2(∆ + 2) + 2
= 2∆2 − 8∆ + 14

and it contradicts to (3.15).
If |Y | ≥ |X| + 2 then |X| ≤ 2∆ − 4. Therefore, by |X| + |Y | = 4∆ − 6, we can see that |Y | ≥ 2∆ − 2.

Using (2.1) and |Y | ≥ 2∆ − 2, we obtain

|E(G)| = a1(∆ − 1) + a3(∆ − 3) = (a1 + a3)(∆ − 3) + 2a1

≥ (2∆ − 2)(∆ − 3) + 2∆ = 2∆2 − 6∆ + 6.
(3.16)

Also, using |X| ≤ 2∆ − 4, (2.3) and a4 ≥ 1, we obtain

|E(G)| = a0∆ + a2(∆ − 2) + a4(∆ − 4) = (a0 + a2 + a4)∆ − 2(a2 + a4) − 2a4

≤ (2∆ − 4)∆ − 2(∆ − 3) − 2 = 2∆2 − 6∆ + 4

and it contradicts to (3.16). �
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In this section, our purpose is provided by the next theorem.

Theorem 3.6. Let G be a SI graph of order n ≡ 2(mod 4) with the maximum degree ∆. Then ∆ ≤

(n + 2)/4. If G ∈ Gn then ∆ = (n + 2)/4.

Proof. Let δ be the minimum degree in G. If δ > ∆ − 4 then by Lemma 2.2(iii), we get the required
result. If δ ≤ ∆ − 4 then by Lemmas 3.1–3.5, we get the required result. Therefore, this completes the
proof. �

4. Maximum value of BID index over SI graphs

In this section, we obtain some sharp upper bounds on BID index with a function f over the class
of SI graphs of the given order. For the convenience, we denote f̄ (x) = f (x, x − 1). Then BID index of
a SI graph G can be written as

BID f (G) =
∑

uv∈E(G)

f (d(u), d(v)) =
∑

uv∈E(G), d(u)>d(v)

f̄ (d(u)).

Lemma 4.1. Let G be a SI graph of order n with the maximum degree ∆. If the function f̄ is increasing
then

BID f (G) ≤
∆(∆ − 1)n

2∆ − 1
· f̄ (∆)

with equality if and only if δ = ∆ − 1

Proof. Since f̄ is an increasing function, we have

BID f (G) =
∑

uv∈E(G), d(u)>d(v)

f̄ (d(u)) ≤
∑

uv∈E(G), d(u)>d(v)

f̄ (∆) = |E(G)| f̄ (∆).

By Lemma 2.3, we get the desired inequality with equality if and only if δ = ∆ − 1. �

Lemma 4.2. Let G be a SI graph of order n with the maximum degree ∆. If f̄ is an increasing function
then

BID(G) ≤
(n − 1)∆

2
· f̄ (∆)

with equality if and only if G � K∆,∆−1

Proof. Since f̄ is an increasing function, we have

BID(G) =
∑

uv∈E(G), d(u)>d(v)

f̄ (d(u)) ≤
∑

uv∈E(G), d(u)>d(v)

f̄ (∆) = |E(G)| f̄ (∆).

By Lemma 2.4, we get the desired inequality with equality if and only if G � K∆,∆−1. �

Lemma 4.3. Let G be a SI graph of order n with the maximum degree ∆ which is different from K∆,∆−1.
If f̄ is an increasing function then

BID f (G) ≤
(n + 3)∆2 − 2∆3 − n∆

2
· f̄ (∆) +

2∆3 − (n + 5)∆2 + (3n + 2)∆ − 2n
2

· f̄ (∆ − 1)

with equality if and only if G � Gn when n ≡ 0(mod 4).
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Proof. From ∆ − 2i − 1 ≤ ∆ − 1, we have

|E(G)| =
∑
i≥0

a2i+1(∆ − 2i − 1) ≤ (∆ − 1)

∑
i≥0

a2i+1

 = (∆ − 1)

n −∑
i≥0

a2i


by using

∑
i≥0 ai = n. From the above inequality, we get

a0∆ + a2(∆ − 2) ≤ |E(G)| ≤ (∆ − 1) (n − a0 − a2) . (4.1)

Hence, we have
2a0 ≤ (∆ − 1)n − (2∆ − 3)(a0 + a2) ≤ (∆ − 1)n − (2∆ − 3)∆.

since a0 + a2 ≥ ∆.
By Lemma 2.5 and f̄ is increasing, we get

BID f (G) =
∑

uv∈E(G), d(u)>d(v)

f̄ (d(u)) ≤ a0∆ f̄ (∆) + (|E(G)| − a0∆) f̄ (∆ − 1)

=a0∆( f̄ (∆) − f̄ (∆ − 1)) + |E(G)| f̄ (∆ − 1)
≤a0∆( f̄ (∆) − f̄ (∆ − 1)) + (∆ − 1)(n − ∆) f̄ (∆ − 1)

≤
(n + 3)∆ − 2∆2 − n

2
· ∆( f̄ (∆) − f̄ (∆ − 1)) + (∆ − 1)(n − ∆) f̄ (∆ − 1)

=
(n + 3)∆2 − 2∆3 − n∆

2
· f̄ (∆) +

2∆3 − (n + 5)∆2 + (3n + 2)∆ − 2n
2

· f̄ (∆ − 1)

which is the required inequality.
Suppose now that the equality holds. Then from (4.1) and Lemma 2.5, we have δ = ∆−2, a0+a2 = ∆

and a0 + a1 + a2 = n. Hence, we have a1 = n−∆, a0 =
(n+3)∆−2∆2−n

2 and a2 =
2∆2+n−∆(n+1)

2 . One can easily
see that n ≥ 7 and ∆ ≥ 3 because G . K∆,∆−1. If n = 7 then there exist the unique SI graph which is
different from K4,3 and it is easy to see that the strict inequality holds. Therefore, we have n ≥ 8.

If ∆ ≤ (2n − 3)/4 then

a2 =∆2 +
n
2
−

∆(n + 1)
2

≤max

9 +
n
2
−

3(n + 1)
2

,

(
2n − 3

4

)2

+
n
2
−

(2n − 3)(n + 1)
8


= max

{
15 − 2n

2
,

15 − 2n
16

}
< 0

which is a contradiction. Hence, we have ∆ > (2n−3)/4 and moreover ∆ ≥ (n−1)/2. By Lemma 2.2(i),
we get ∆ = (n − 1)/2 or ∆ = n/2. If ∆ = (n − 1)/2 then a0 is not integer by an elementary calculation.
If ∆ = n/2 then G � Gn by Lemma 2.2(i). �

Theorem 4.4. Let G be a SI graph of order n and f̄ be an increasing function.

(i) If n is odd then BID f (G) ≤
n2 − 1

4
· f̄

(
n + 1

2

)
with equality if and only if
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G � K(n+1)/2,(n−1)/2.

(ii) If n ≡ 2(mod 4) then BID f (G) ≤
n2 − 4

8
· f̄

(
n + 2

4

)
with equality if and only if

G ∈ Gn.

(iii) If n ≡ 0(mod 4) then BID f (G) ≤
n2

8
· f̄

(n
2

)
+

n(n − 4)
8

· f̄
(
n − 2

2

)
with equality if and only if G � Gn.

Proof. (i) Let n be an odd integer. Then ∆ ≤
n + 1

2
by Lemma 2.2(i). Hence, by Lemma 4.1 we obtain

BID(G) ≤
∆(∆ − 1)n

2∆ − 1
· f̄ (∆) ≤

n2 − 1
4
· f̄

(
n + 1

2

)
(4.2)

since f̄ (t) and F(t) = (t(t − 1))/(2t − 1) are increasing for t ≥ 2. Equalities in (4.2) hold if and only if

δ = ∆ − 1, ∆ =
n + 1

2
. Therefore G � K(n+1)/2,(n−1)/2 by Lemma 2.2(i).

(ii) Let n be an integer such that n ≡ 2(mod 4). Then ∆ ≤ (n + 2)/4 by Theorem 3.6(ii). Hence, by
Lemma 4.1, we obtain

BID(G) ≤
∆(∆ − 1)n

2∆ − 1
· f̄ (∆) ≤

n2 − 4
8
· f̄

(
n + 2

4

)
(4.3)

since f̄ (t) and F(t) = (t(t − 1))/(2t − 1) are increasing for t ≥ 2. Equalities in (4.3) hold if and only if
δ = ∆ − 1 and ∆ = (n + 2)/4. Then |E(G)| = a0∆ = a1(∆ − 1) and a0 + a1 = n. Hence we get G ∈ Gn.

(iii) From n ≡ 0(mod 4), we get ∆ ≤ n/2 by Lemma 2.2(i). If ∆ = n/2 then G � Gn by Lemma 2.2(i)
and

BID f (G) = BID f (Gn) = a0∆ f̄ (∆) + a2(∆ − 2) f̄ (∆ − 1)

=
n2

8
· f̄

(n
2

)
+

n(n − 4)
8

· f̄
(
n − 2

2

)
.

If ∆ ≤ n/2 − 1 then by f̄ (x) is increasing and Lemma 2.6(ii), we get

BID f (G) =
∑

uv∈E(G), d(u)>d(v)

f̄ (d(u)) ≤ |E(G)| f̄ (∆)

≤
n2 − 2n

4
· f̄ (∆) ≤

n2 − 2n
4

· f̄
(n
2
− 1

)
=

n2

8
· f̄

(n
2
− 1

)
+

n2 − 4n
8

· f̄
(n
2
− 1

)
≤

n2

8
· f̄

(n
2

)
+

n2 − 4n
8

· f̄
(n
2
− 1

)
.

(4.4)

If the equalities in (4.4) hold then |E(G)| =
n2 − 2n

4
and it follows that G � Gn by Lemma 2.6(ii). But

this contradicts to ∆ ≤ n/2 − 1. Therefore, the inequality (4.4) is strict. �
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5. Conclusions

In this work, we have established a sharp upper bound on on the maximum degree of SI graphs of
order n when n ≡ 2(mod 4). We utilize our upper bound and several sharp upper bounds given in [6] to
study BID f indices over the class of SI graphs. Then we give upper bounds on BID f index in terms of
the order n and the maximum degree ∆. Moreover, we completely characterize the extremal SI graphs
of order n with respect to BID f when f̄ is increasing. Hence, we conclude that for a SI graph G of the
given order, BID f (G) is maximum if and only if the size of G is maximum.

In the end, we pose the following open problems.

• Determine the maximum size of SI graphs of order n with maximum degree ∆ and minimum
degree one, and characterize the corresponding extremal SI graphs.
• Characterize the extremal SI graphs of order n with maximum degree ∆ and minimum degree one

with respect to BID f when f̄ is increasing.
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