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Keywords: Erdélyi-Kober fractional derivative; generalized fractional derivative; existence;
uniqueness; stability
Mathematics Subject Classification: 26A33, 34A08, 34A12, 34D20, 34D30

1. Introduction

It has been proved that the fractional calculus is the appropriate tool for characterizing some realistic
problems in physics and engineering, such as viscoelastic, anomalous diffusion, and control [1–6]. In
particular, Erdélyi-Kober fractional integral frequently appears in the description of diffusive processes
governed by the generalized grey Brownian motion [7]. The Erdélyi-Kober fractional integral with
order α (α > 0) is defined as [8, 9]

EKD−αa, t; σ, η f (t) =
t−σ(α+η)

Γ(α)

∫ t

a
(tσ − τσ)α−1τση f (τ) dτσ

=
[
t−(α+η)

RLD−αaσ, t tη f
(
t

1
σ

)] ∣∣∣∣
t→tσ

, t > a ≥ 0, σ > 0, η ∈ R,
(1.1)
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where f (t) is an adequately smooth function. Obviously, the Erdélyi-Kober fractional integral operator
EKD−αa, t; σ, η· is an extension of the Riemann-Liouville fractional integral operator RLD−αa, t·. Moreover, the
operator EKD−αa, t; σ, η· can be degenerated to Kober-Erdélyi operator EKD−αa, t; 1, η· when σ = 1 and Erdélyi-
Kober operator EKD−αa, t; 2, η· if σ = 2 [10–13]. Correspondingly, the Erdélyi-Kober fractional derivative
of order α (n − 1 < α < n ∈ Z+) is resoundingly constructed as [8, 9, 14–16]

EKDα
a, t; σ, η f (t) = t−ση

(
1

σtσ−1

d
dt

)n

tσ(η+n)
EKD−(n−α)

a, t; σ, α+η f (t)

=
[
t−ηRLDα

aσ, t tα+η f
(
t

1
σ

)] ∣∣∣∣
t→ tσ

, t > a ≥ 0, σ > 0, η ∈ R.
(1.2)

The Erdélyi-Kober fractional derivative and its fractional differential equation are widely used in Lie
symmetry analysis of the time fractional generalized fifth-order KdV equation and the space-time
fractional variant Boussinesq system [17,18], which is of great theoretical significance for studying the
fractional nonlinear evolution equations. Therefore, it is necessary to consider the fractional differential
equations with Erdélyi-Kober fractional derivative.

For convenience in application, Kiryakova [8] modified the Erdélyi-Kober fractional integral and
derivative, and which are known as the generalized fractional integral and derivative. Their expressions
are as follows

EKD
−α
a, t; σ, η f (t) = tσαEKD−αa, t; σ, η f (t)

=
t−ση

Γ(α)

∫ t

a
(tσ − τσ)α−1τση f (τ) dτσ

=
[
t−ηRLD−αaσ, t tη f

(
t

1
σ

)] ∣∣∣∣
t→ tσ

, α > 0,

(1.3)

and

EKD
α
a, t; σ, η f (t) = t−σαEKDα

a, t; σ, η−α f (t)

= t−ση
(

1
σtσ−1

d
dt

)n

tσηEKD
−(n−α)
a, t; σ, η f (t)

=
[
t−ηRLDα

aσ, t tη f
(
t

1
σ

)] ∣∣∣∣
t→ tσ

, n − 1 < α < n ∈ Z+,

(1.4)

in which t > a ≥ 0, σ > 0 and η ∈ R. At present, there have been some studies on the integral and
differential equations involving the generalized fractional integral and derivative. In [19], the authors
obtained the explicit solutions to the generalized fractional integral and differential equations below

x(t) − λEKD
−α
0, t; σ, ηx(t) = f (t), α > 0, t > 0, σ > 0, η ∈ R, (1.5)

and
EKD

α
0, t; σ, α+ηx(t) − λx(t) = f (t), n − 1 < α < n ∈ Z+, t > 0, σ > 0, η ∈ R, (1.6)

by using the transformation method. With the help of a generalized weakly singular integral inequality,
Ma and Pečarić [20] investigated the explicit bound of the solution to the following integral equation
with the generalized fractional integral

xp(t) = f (t) +
λt−ση

Γ(α)

∫ t

0
(tσ − τσ)α−1τσηxq(τ) dτσ, t > 0.
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On this basis, in [21], the authors used a directly computational method and Schauder fixed point
theorem to present the existing and unique results of the solution to the following nonlinear integral
equation

x(t) = b1(t) +
b2(t)
Γ(α)

∫ t

0
(tσ − τσ)α−1 τη f (τ, x)dτ, t ∈ J = [0, T ], T > 0,

where α, σ and η are positive parameters, bi(t) (i = 1, 2) : J → R and f (t, x) : J × R → R. And, the
local stability of the solution was discussed.

The existence and uniqueness of the solution play an essential role in the study of fractional
differential equation [22–25]. Using Schauder and Tychonov fixed point theorems, Hadid [26]
obtained the local and global existing results of the solution of the differential equation involving
Riemann-Liouville fractional derivative. Li and Sarwar [27] presented the local, global existence, and
continuation theorems for Caputo-type fractional differential equations. Furthermore, some works
about the existing and unique studies of differential equations involving other fractional derivatives,
such as ψ-Caputo fractional derivative, Caputo-Hadamard fractional derivative, and multi-order
Erdélyi-Kober fractional derivative, have been found in [28–30]. On the basis of these studies, we
give the existence and uniqueness analyses of the generalized fractional differential equation.

Stability analysis is one of the main interests for the research of dynamic systems. There are
inevitably inestimable small disturbances in the process of establishing the fractional differential
model, which can essentially change the stability of the solution of the fractional differential equation.
Therefore, the discussion of stability has important theoretical significance and application
value [31–33]. In [34], the author analyzed the stability of the linear fractional differential equations
with the Caputo derivative. By using the Laplace transform, Deng et al. studied the stability of
n-dimensional linear fractional differential equation with time delays [35]. Qian et al. established
stability theorems of the zero solutions for the linear, perturbed, and time-delayed systems containing
the Riemann-Liouville fractional derivative [36]. In order to determine the stability of hyperbolic
equilibrium of the nonlinear system, the linearization theory was proposed in [37]. Recently, Li and
Li [38, 39] took into account the stability and decay rate of linear and nonlinear fractional differential
systems based on four different fractional derivatives. Besides, effective integral transformations were
also provided. In the paper, we discuss the stability of the zero solutions to the linear and nonlinear
generalized fractional differential systems.

The structure of the paper is as follows. In Section 2, we recall some basic definitions and
properties. In Section 3, the existence and uniqueness of the solution to the generalized fractional
differential equation with initial value are considered. In Section 4, we analyze the stability of the
linear and nonlinear generalized fractional differential equations. In Section 5, an example explaining
the theoretical result is given. The conclusion is showed in Section 6.

2. Preliminaries

In this section, we introduce some basic definitions and results which are needed throughout this
paper.
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Lemma 1. [2, 3] Suppose that x̃
(
t

1
σ

)
and f̃

(
t

1
σ , x̃

)
are continuous. The initial value problem with

Riemann-Liouville derivativeRLDα
aσ, t x̃

(
t

1
σ

)
= f̃

(
t

1
σ , x̃

)
, n − 1 < α < n ∈ Z+, t > aσ ≥ 0, σ > 0,[

RLDα− j
aσ, t x̃

(
t

1
σ

)] ∣∣∣∣
t=aσ
= x̃( j)

aσ , j = 1, 2, . . . , n,
(2.1)

is equivalent to the following Volterra integral equation

x̃(t) =
n∑

j=1

x̃( j)
aσ

Γ(α + 1 − j)
(t − aσ)α− j +

1
Γ(α)

∫ t

aσ
(t − τ)α−1 f̃

(
τ

1
σ , x̃

)
dτ. (2.2)

Lemma 2. Let f (t) ∈ C[a, ∞). Then

EKD
α
a, t; σ, ηEKD

−α
a, t; σ, η f (t) = f (t), t > a ≥ 0, (2.3)

where n − 1 < α < n ∈ Z+, σ > 0 and η ∈ R.

Lemma 3. [4] Let 0 < α < 2, β ∈ C, and µ ∈ R such that πα
2 < µ < min{π, πα}. Then, for any integer

p ≥ 1, the following asymptotic expansions hold, if | arg(z)| ≤ µ, then

Eα, β(z) =
1
α

z
1−β
α exp(z

1
α ) −

p∑
k=1

z−k

Γ(β − αk)
+ O(|z|−1−p), |z| → ∞; (2.4)

and if µ ≤ | arg(z)| ≤ π, then

Eα, β(z) = −
p∑

k=1

z−k

Γ(β − αk)
+ O(|z|−1−p), |z| → ∞, (2.5)

where Eα, β(z) is the Mittag-Leffler function.

Definition 1. The point xeq ∈ R
n is known as an equilibrium of the generalized fractional differential

system
EKD

α
a, t; σ, η x(t) = f (t, x), 0 < α < 1, σ > 0, η ∈ R, x(t) ∈ Rn, (2.6)

if f (t, xeq) ≡ 0 for all t > a ≥ 0.

Definition 2. The zero solution to system (2.6) with order α (0 < α < 1) is said to be:
(i) Stable, if for any initial value

[
tσηEKD

α−1
a, t; σ, η x(t)

] ∣∣∣
t=a
= xa, there exist ε > 0 and ã such that ∥x(t)∥ < ε

for all t ≥ ã > a ≥ 0;
(ii) Asymptotically stable, if lim

t→+∞
∥x(t)∥ = 0.

For the autonomous nonlinear generalized fractional differential system

EKD
α
a, t; σ, η x(t) = f (x), 0 < α < 1, t > a ≥ 0, σ > 0, η ∈ R, x(t) ∈ Rn (2.7)

with the initial value
[
tσηEKD

α−1
a, t; σ, η x(t)

] ∣∣∣
t=a
= xa. we can define its zero solution, i.e. equilibrium.

Definition 3. The origin is an equilibrium of system (2.7) iff f (0) ≡ 0 for all t > a ≥ 0.

AIMS Mathematics Volume 7, Issue 5, 8654–8684.
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Definition 4. Assume that the origin is an equilibrium of system (2.7), and all the eigenvalues λ( f ′(0))
of the linearized matrix f ′(0) satisfy |λ( f ′(0))| , 0 and | arg(λ( f ′(0)))| , πα

2 , then the origin is a
hyperbolic equilibrium of system (2.7).

Let V,W ⊆ Rn. If f (x) and g(y) are continuous vector fields defined on V andW, respectively,
and they generate flows ϕt, f : V → V and ϕt, g : W → W. Then the definition of topological
equivalence can be given as follows.

Definition 5. If there exists a homeomorphism h : V → W such that h ◦ ϕt, f (x) = ϕt, g ◦ h (x) for
x ∈ δ(xa) ⊂ V,∀xa ∈ V, then f (x) and g(y) are locally topologically equivalent.

3. Existence and uniqueness theorems

In this section, we give the solution of the generalized fractional differential equation by using the
transformation method proposed in [19]. Further, the local existence and uniqueness of solutions to
generalized fractional differential equations are carried out.

Motivated by [19], suppose that the linear transmutation operator T = t−η (η ∈ R). Then the
following transformation relations hold

(1) T RLD−αaσ, t· = EKD
−α
aσ, t; 1, η T ·; (3.1)

(2)Ω−1
EKD

α
aσ, t; 1, η· = EKD

α
a, t;σ, ηΩ

−1·, (3.2)

where the operator Ω−1 : f (t)→ f (tσ), σ > 0.
In order to get the solution to the generalized fractional differential equation, we introduce a lemma.

Lemma 4. In C[aσ, ∞) (aσ > 0), the following relation between two fractional derivative operators
RLDα

aσ, t· and EKD
α
aσ, t; 1, η· holds

(
T RLDα

aσ, t

)
x̃
(
t

1
σ

)
=

(
EKD

α
aσ, t; 1, η T

)
x̃
(
t

1
σ

)
−

n∑
j=1

x̃( j)
aσ

Γ(1 − j)
t−η(t − aσ)− j, j = 1, 2, . . . , n, (3.3)

for n − 1 < α < n ∈ Z+, t > aσ ≥ 0, σ > 0 and η ∈ R.

Proof. Using Lemma 2 and Eq (3.1), one can get that(
EKD

α
aσ, t; 1, η T RLD−αaσ, t RLDα

aσ, t

)
x̃
(
t

1
σ

)
=

(
EKD

α
aσ, t; 1, η EKD

−α
aσ, t; 1, η T RLDα

aσ, t

)
x̃
(
t

1
σ

)
=

(
T RLDα

aσ, t

)
x̃
(
t

1
σ

)
.

From [2], it’s true that

(
RLD−αaσ, t RLDα

aσ, t

)
x̃
(
t

1
σ

)
= x̃

(
t

1
σ

)
−

n∑
j=1

x̃( j)
aσ

Γ(α + 1 − j)
(t − aσ)α− j.
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Hence, (
T RLDα

aσ, t

)
x̃
(
t

1
σ

)
=

(
EKD

α
aσ, t; 1, η T

)
x̃
(
t

1
σ

)
−

n∑
j=1

x̃( j)
aσ

Γ(α + 1 − j)

(
EKD

α
aσ, t; 1, η T

)
(t − aσ)α− j

=
(

EKD
α
aσ, t; 1, η T

)
x̃
(
t

1
σ

)
−

n∑
j=1

x̃( j)
aσ

Γ(α + 1 − j)
t−ηRLDα

aσ, t (t − aσ)α− j

=
(

EKD
α
aσ, t; 1, η T

)
x̃
(
t

1
σ

)
−

n∑
j=1

x̃( j)
aσ

Γ(1 − j)
t−η(t − aσ)− j.

This completes the proof. □

With the help of Lemmas 1 and 4, the following theorem can be given.

Theorem 1. Suppose that x(t) and f (t, x) are continuous, then the initial value problem with the
generalized fractional derivativeEKD

α
a, t;σ, η x(t) = f (t, x) , n − 1 < α < n ∈ Z+, t > a ≥ 0, σ > 0, η ∈ R,[

tσηEKD
α− j
a, t;σ, η x(t)

] ∣∣∣
t=a
= x( j)

a , j = 1, 2, . . . , n,
(3.4)

is equivalent to the nonlinear Volterra integral equation

x(t) =
n∑

j=1

x( j)
a

Γ(α − j + 1)
t−ση(tσ − aσ)α− j +

t−ση

Γ(α)

∫ t

a
(tσ − τσ)α−1τση f (τ, x) dτσ. (3.5)

Proof. First, consider the solution of the following systemEKD
α
aσ, t; 1, η x̂

(
t

1
σ

)
= f̂

(
t

1
σ , x̂

)
, n − 1 < α < n ∈ Z+, t > aσ ≥ 0, σ > 0, η ∈ R,[

tηEKD
α− j
aσ, t; 1, η x̂

(
t

1
σ

)] ∣∣∣∣
t=aσ
= x̂( j)

aσ , j = 1, 2, . . . , n.
(3.6)

Applying the operator T on both sides of RLDα
aσ, t x̃

(
t

1
σ

)
= f̃

(
t

1
σ , x̃

)
, we have

EKD
α
aσ, t; 1, η x̂

(
t

1
σ

)
= T f̃

(
t

1
σ , x̃

)
+

n∑
j=1

x̃( j)
aσ

Γ(1 − j)
t−η(t − aσ)− j,

where x̂
(
t

1
σ

)
= T x̃

(
t

1
σ

)
. It’s clear that

f̃
(
t

1
σ , x̃

)
= T−1

 f̂
(
t

1
σ , x̂

)
−

n∑
j=1

x̃( j)
aσ

Γ(1 − j)
t−η(t − aσ)− j


= tη f̂

(
t

1
σ , x̂

)
−

n∑
j=1

x̃( j)
aσ

Γ(1 − j)
(t − aσ)− j.
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Because t > aσ, the function
n∑

j=1

x̃( j)
aσ

Γ(1− j) (t − aσ)− j is equal to zero, then

f̃
(
t

1
σ , x̃

)
= tη f̂

(
t

1
σ , x̂

)
.

From x̂
(
t

1
σ

)
= T x̃

(
t

1
σ

)
and Eq (2.2), the solution of system (3.6) is derived as

x̂
(
t

1
σ

)
=

n∑
j=1

x̂( j)
aσ

Γ(α − j + 1)
t−η(t − aσ)α− j +

t−η

Γ(α)

∫ t

aσ
(t − τ)α−1τη f̂

(
τ

1
σ , x̂

)
dτ.

Introducing the operator Ω−1, we can get the explicit solution of system (3.4) via using Eq (3.2)

x(t) =
n∑

j=1

x( j)
a

Γ(α − j + 1)
t−ση(tσ − aσ)α− j +

t−ση

Γ(α)

∫ t

a
(tσ − τσ)α−1τση f (τ, x) dτσ.

On the other hand, use Eq (3.5) to derive Eq (3.4). Since f (t, x) is continuous, then x(t) is a
differentiable function with regard to t. Utilizing the operator EKD

α
a, t;σ, η· to both sides of Eq (3.5), one

gets

EKD
α
a, t;σ, η

 n∑
j=1

x( j)
a

Γ(α − j + 1)
t−ση(tσ − aσ)α− j


=

n∑
j=1

x( j)
a

Γ(α − j + 1) EKD
α
a, t;σ, ηt

−ση(tσ − aσ)α− j

=

n∑
j=1

x( j)
a

Γ(n − α)Γ(α − j + 1)
t−ση

(
1

σtσ−1

d
dt

)n ∫ t

a
(tσ − τσ)n−α−1(τσ − aσ)α− j dτσ

= 0,

and

lim
t→ a

tσηEKD
α− j
a, t;σ, η

 n∑
k=1

x(k)
a

Γ(α − k + 1)
t−ση(tσ − aσ)α−k


= lim

t→ a

n∑
k=1

x(k)
a

Γ(α − k + 1)
tσηEKD

α− j
a+;σ, ηt

−ση(tσ − aσ)α−k

= lim
t→ a

n∑
k=1

x(k)
a

Γ( j − k + 1)
(tσ − aσ) j−k

= lim
t→ a

j−1∑
k=1

x(k)
a

Γ( j − k + 1)
(tσ − aσ) j−k + x( j)

a

+ lim
t→ a

n∑
k= j+1

x(k)
a

Γ( j − k + 1)
(tσ − aσ) j−k

= x( j)
a , j = 1, 2, . . . , n.

Combining the above discussion and Lemma 2, the proof of this theorem is completed. □

AIMS Mathematics Volume 7, Issue 5, 8654–8684.



8661

Remark 1. The initial condition of the initial value problem with the generalized fractional derivative
is not unique. Since limt→a tσηEKD

α− j
a, t;σ, η x(t) = limt→a Γ(1 − j + α) tση(tσ − aσ) j−αx(t) ( j = 1, 2, . . . , n).

Then the initial conditions
[
tσηEKD

α− j
a, t;σ, η x(t)

] ∣∣∣
t=a
= x( j)

a and
[
Γ(1 − j + α) tση(tσ − aσ) j−αx(t)

] ∣∣∣
t=a
= x( j)

a

can transform each other.

Before considering the existence and uniqueness, we first make the following hypothesis.
Hypothesis [H]: If f (t, x) : [a, ∞) × Ω → R is a continuous function, then f (t, x) is continuous

bounded map defined on [a, a + h∗] × Ω0, where Ω0 is a bounded subset of Ω ⊂ R. For convenience,

let Xa(t) =
n∑

j=1

x( j)
a

Γ(α− j+1) t
−ση(tσ − aσ)α− j, j = 1, 2, . . . , n.

Here, we only consider the case of η > 0, other cases can be obtained similarly.

Theorem 2. Postulate that the hypothesis [H] holds. Then there exits at least one solution x(t) ∈ Ω0 to
Eq (3.4). The constant h can be determined as follows

h :=

h∗, i f M∗ = 0,

min
{
h∗, (Γ(1 + α)K/M∗)

1
ασ − a

}
, i f M∗ , 0,

(3.7)

in which the positive constants M∗ and K satisfy M∗ := sup
t∈[a, a+h∗]

| f (t, x)| and ∥x − Xa∥C[a, a+h∗] ≤ K,

respectively.

Proof. If M∗ = 0, evidently x(t) = Xa(t) is the solution of Eq (3.4). Hence there is a solution in this
case.

For M∗ , 0, we first define a set U as

U := {x ∈ C[a, a + h] : ∥x − Xa∥C[a, a+h∗] ≤ K}. (3.8)

It is clear that U is a nonempty, bounded, closed, and convex subset. From Theorem 1, on the set U,
the operator B can be expressed as

(Bx)(t) = Xa(t) +
t−ση

Γ(α)

∫ t

a
(tσ − τσ)α−1τση f (τ, x) dτσ. (3.9)

In the following, we prove that B has a fixed point on U, the proof is divided into three steps.
Step 1: BU ⊂ U.
For every x ∈ C[a, a + h], one has

|(Bx)(t) − Xa(t)| ≤
M∗

Γ(α)

∫ x

a
(xσ − tσ)α−1 dtσ ≤

M∗

Γ(1 + α)
(a + h)σα,

which implies that

∥(Bx)(t) − Xa(t)∥C[a, a+h] ≤
M∗

Γ(1 + α)
(a + h)σα ≤ K.

Therefore, we have Bx ∈ U for every x ∈ U.
Step 2: B is continuous.
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Since f (t, x) is continuous, it is uniformly continuous on compact set [a, a + K] × U. For any
ε > 0, there exists δ0 (δ0 > 0), if ∥xm − x∥C[a, a+h] < δ0 with m→ ∞ such that the following result holds,

∥ f (t, xm) − f (t, x)∥C[a, a+h] <
ε

(a + h)σα
Γ(α + 1). (3.10)

Further, we can get that

|(Bxm)(t) − (Bx)(t)|

=

∣∣∣∣∣∣ t−ση

Γ(α)

∫ t

a
(tσ − τσ)α−1τση

[
f (τ, xm) − f (τ, x)

]
dτσ

∣∣∣∣∣∣
≤

t−ση

Γ(α)

∫ t

a
(tσ − τσ)α−1τση | f (τ, xm) − f (τ, x)| dτσ

≤
(a + h)σα

Γ(1 + α)
∥ f (τ, xm) − f (τ, x)∥C[a, a+h]

< ε,

(3.11)

which completes the proof of B ∈ C(U).
Step 3: BU is equicontinuous.
Let xm (m ∈ N) be a sequence on U, it gives that

|(Bxm)(t)| ≤ ∥Xa(t)∥C[a, a+h] +
t−ση

Γ(α)

∫ t

a
(tσ − τσ)α−1τσηg (τ, x) dτσ

≤ M + K.
(3.12)

So, BU is uniformly bounded.
Next, we complete the proof that BU is equicontinuous. If there are t1 and t2 such that a ≤ a + t1 ≤

a + t2 ≤ a + h, then

|(Bx)(a + t2) − (Bx)(a + t1)|
≤ |Xa(a + t2) − Xa(a + t1)|

+

∣∣∣∣∣∣ (a + t2)−ση

Γ(α)

∫ a+t2

a
[(a + t2)σ − τσ]α−1 τση f (τ, xn) dτσ

∣∣∣∣∣∣
−

∣∣∣∣∣∣ (a + t1)−ση

Γ(α)

∫ a+t1

a
[(a + t1)σ − τσ]α−1 τση f (τ, xn) dτσ

∣∣∣∣∣∣
≤ |Xa(a + t2) − Xa(a + t1)|

+

∣∣∣∣∣∣ (a + t2)−ση − (a + t1)−ση

Γ(α)

∫ a+t1

a
[(a + t2)σ − τσ]α−1 τση f (τ, xn) dτσ

∣∣∣∣∣∣
+

∣∣∣∣∣∣ (a + t1)−ση

Γ(α)

∫ a+t1

a

[
((a + t2)σ − τσ)α−1

− ((a + t1)σ − τσ)α−1
]
τση f (τ, xn) dτσ

∣∣∣∣∣∣
+

∣∣∣∣∣∣ (a + t2)−ση

Γ(α)

∫ a+t2

a+t1
[(a + t2)σ − τσ]α−1 τση f (τ, xn) dτσ

∣∣∣∣∣∣
:= |Xa(a + t2) − Xa(a + t1)| + I1 + I2 + I3.

(3.13)
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First, consider I1. It is clear that

I1 ≤

∣∣∣∣∣ (a + t2)−ση − (a + t1)−ση

Γ(α)

∣∣∣∣∣
∣∣∣∣∣∣
∫ a+t1

a
[(a + t2)σ − τσ]α−1 τση f (τ, x) dτσ

∣∣∣∣∣∣
≤

M∗(a + h)ασ

Γ(α + 1)

∣∣∣(a + t2)−ση − (a + t1)−ση
∣∣∣ . (3.14)

As far as I2, three cases need to be considered, i.e., α < 1, α = 1, α > 1. For α = 1, the value of I2 is
zero. In the case of α < 1, one has [(a + t1)σ − τσ]α−1 ≥ [(a + t2)σ − τσ]α−1. Thus

I2 ≤

∣∣∣∣∣ (a + t1)−ση

Γ(α)

∣∣∣∣∣
∣∣∣∣∣∣
∫ a+t1

a

[
((a + t1)σ − τσ)α−1

− ((a + t2)σ − τσ)α−1
]
τση f (τ, x) dτσ

∣∣∣∣∣∣
≤

M∗

Γ(α + 1)
{
[(a + t2)σ − (a + t1)σ]α + [(a + t1)σ − aσ]α − [(a + t2)σ − aσ]α

}
≤

M∗

Γ(α + 1)
[(a + t2)σ − (a + t1)σ]α .

(3.15)

If α > 1, it is valid that [(a + t2)σ − τσ]α−1 ≥ [(a + t1)σ − τσ]α−1. Then

I2 ≤

∣∣∣∣∣ (a + t1)−ση

Γ(α)

∣∣∣∣∣
∣∣∣∣∣∣
∫ a+t1

a

[
((a + t2)σ − τσ)α−1

− ((a + t1)σ − τσ)α−1
]
τση f (τ, x) dτσ

∣∣∣∣∣∣
≤

M∗

Γ(α + 1)
{
[(a + t2)σ − aσ]α − [(a + t1)σ − aσ]α − [(a + t2)σ − (a + t1)σ]α

}
≤

M∗

Γ(α + 1)
[
((a + t2)σ − aσ)α − ((a + t1)σ − aσ)α

]
.

(3.16)

Finally, we discuss I3. It can be got that

I3 ≤
(a + t2)−ση

Γ(α)

∫ a+t2

a+t1

∣∣∣[(a + t2)σ − τσ]α−1 τση f (τ, x)
∣∣∣ dτσ

≤
M∗

Γ(α + 1)
[(a + t2)σ − (a + t1)σ]α .

(3.17)

Thus, in the case of α ≤ 1, it can be deduced as

|(Bx)(a + t2) − (Bx)(a + t1)|

≤ |Xa(a + t2) − Xa(a + t1)| +
M∗(a + h)ασ

Γ(α + 1)

∣∣∣(a + t2)−ση − (a + t1)−ση
∣∣∣

+
2M∗

Γ(α + 1)
[(a + t2)σ − (a + t1)σ]α

≤ |Xa(a + t2) − Xa(a + t1)| +
σηM∗a−ση−1(a + h)ασ

Γ(α + 1)
(t2 − t1)

+
2σα M∗bασ

Γ(α + 1)
(t2 − t1)α.

Since Xa(t) is continuous and suppose that |t2 − t1| < δ0, we have

|(Bx)(a + t2) − (Bx)(a + t1)| ≤ M1δ0 +
2σα M∗bασ

Γ(α + 1)
δα0 , (3.18)
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in which M1 is a positive constant and independent of x, t1, t2, and the right-hand side of inequality
(3.18) has no relevance to x. Hence, BU is equicontinuous. Similarly, in the case of α > 1, the
conclusion still holds. In accordance with the Arzelà-Ascoli theorem [29], BU is precompact.
Therefore, B is complete. From the Schauder Fixed Point theorem [29], it can come to the conclusion
that B has at least a fixed point. Then the fixed point is the required solution of Eq (3.4). Thereby, the
theorem is proved. □

Theorem 3. Suppose that the hypothesis [H] is satisfied. The function f : [a, ∞)×Ω→ R is continuous
and fulfills the Lipschitz condition with respect to the second variable, i.e.,

| f (t, x2) − f (t, x1)| ≤ L |x2 − x1| , (3.19)

where the constant L > 0 is uncorrelated with t, x1, and x2. Then, there exists a unique solution
x(t) ∈ C[a, a + h] for the initial value problem with the generalized fractional derivative Eq (3.4).

Proof. Inspired by [23], we first complete the proof that B has a unique fixed point. For x1, x2 ∈ U,
one has

∥ Bm(x2) − Bm(x1)∥C[a, a+t] ≤
Lm[(a + t)σ − aσ]mα

Γ(mα + 1)
∥x2 − x1∥C[a, a+t], (3.20)

where m ∈ N, a+ t ∈ [a, a+h]. This can be seen by induction. When m = 0, the result is true. Assume
that Eq (3.20) holds for m − 1. Then, it can be arrived at

∥Bm(x2) − Bm(x1)∥C[a, a+t]

= ∥B[Bm−1(x2)] − B[Bm−1(x1)]∥C[a, a+t]

≤
L
Γ(α)

sup
a≤ω≤ a+t

∣∣∣∣∣ω−ση ∫ ω

a
(ωσ − τσ)α−1τση

∣∣∣Bm−1x2(τ) − Bm−1x1(τ)
∣∣∣ dτσ

∣∣∣∣∣
≤

L
Γ(α)

(a + t)−ση
∫ a+t

a
[(a + t)σ − τσ])α−1τση sup

a≤ω≤ τ

∣∣∣Bm−1x2(ω) − Bm−1x1(ω)
∣∣∣ dτσ

≤
Lm∥x2 − x1∥C[a, a+t]

Γ(α)Γ(mα + 1)

∫ a+t

a
[(a + t)σ − τσ]α−1(τσ − aσ)mα dτσ

=
Lm[(a + t)σ − aσ]mα

Γ(mα + 1)
∥x2 − x1∥C[a, a+t].

Since
∞∑

k=0

Lk+1[(a + h)σ − aσ](k+1)α

Γ((k + 1)α + 1)
= Eα (L[(a + h)σ − aσ]α) ,

in accordance with the Banach Fixed Point Theorem [29], the proof is accomplished. □

Remark 2. Theorems 1–3 only deal with the one-dimensional generalized fractional differential
equation, one could extend such results to the n-dimensional case (n > 1), which can be verified
similarly.

4. Stability analysis

By applying Lyapunov’s stability criterion and linearization theory, the present section provides the
stability analysis of the generalized fractional differential systems.
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4.1. The linear fractional differential system

4.1.1. One-dimensional case

Consider the one-dimensional generalized fractional differential system as followsEKD
α
a, t;σ, η x(t) = λx(t), 0 < α < 1, t > a ≥ 0, λ ∈ R, σ > 0, η ∈ R,[

tσηEKD
α−1
a, t;σ, η x(t)

] ∣∣∣
t=a
= xa.

(4.1)

In order to obtain its solution, we give the lemma below.

Lemma 5. [4] The initial value problem of the one-dimensional fractional differential system with
Riemann-Liouville derivativeRL Dα

aσ, t x̃
(
t

1
σ

)
= λx̃

(
t

1
σ

)
, 0 < α < 1, t > aσ ≥ 0, λ ∈ R,[

RL Dα−1
aσ, t x̃

(
t

1
σ

)] ∣∣∣∣
t=aσ
= x̃aσ ,

(4.2)

is equivalent to
x̃
(
t

1
σ

)
= x̃aσ (t − aσ)α−1Eα, α (λ(t − aσ)α) . (4.3)

Theorem 4. The solution of system (4.1) is

x(t) = xa t−ση(tσ − aσ)α−1Eα, α (λ(tσ − aσ)α) . (4.4)

Proof. Introduce operator T in Lemma 5. The following system can be derivedEKD
α
aσ, t; 1, η x̂

(
t

1
σ

)
= λx̂

(
t

1
σ

)
, 0 < α < 1, t > aσ ≥ 0, σ > 0, η ∈ R,[

tηEKD
α−1
aσ, t; 1, η x̂

(
t

1
σ

)] ∣∣∣∣
t=aσ
= x̂aσ .

(4.5)

From Theorem 1, the solution of system (4.5) is expressed as

x(t) = xa t−η(t − aσ)α−1Eα, α (λ(t − aσ)α) . (4.6)

With the help of Eq (3.2), we obtain the solution of system (4.1). Therefore, the proof is completed. □

Theorem 5. Suppose that 0 < α < 1, t > a ≥ 0 and σ > 0. The following statements hold:
(1) Let λ < 0. Under the condition of η > −α − 1, the zero solution of system (4.1) is asymptotically
stable, and the decay rate is O

(
t−ση(tσ − aσ)−α−1

)
. Under the condition of η = −α−1, the zero solution

of system (4.1) is stable but not asymptotically stable. In residual conditions, the zero solution of system
(4.1) is unstable.
(2) Let λ = 0. Under the condition of η > α − 1, the zero solution of system (4.1) is asymptotically
stable, and the decay rate is O

(
t−ση(tσ − aσ)α−1

)
. Under the condition of η = α−1, the zero solution of

system (4.1) is stable but not asymptotically stable. In residual conditions, the zero solution of system
(4.1) is unstable.
(3) If λ > 0, then the zero solution of system (4.1) is unstable.
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Proof. (1) If λ < 0, one has

Eα, α (λ(tσ − aσ)α) = −
p∑

k=2

1
Γ(α − αk)

[λ(tσ − aσ)α]−k + O
((
λ(tσ − aσ)α

)−1−p
)

= −
1

λ2Γ(−α)
(tσ − aσ)−2α + O

((
λ(tσ − aσ)α

)−3
)
.

It is clear that

x(t) = −
xa

λ2Γ(−α)
t−ση(tσ − aσ)−α−1 + xaO

(
λ−3t−ση(tσ − aσ)−2α−1

)
.

Hence,

lim
t→+∞
|x(t)| =


0, η > −α − 1,

xa

λ2Γ(−α)
, η = −α − 1,

∞, η < −α − 1,

according to Definition 2, the expected results are obtained.
(2) When λ = 0, there holds

lim
t→+∞
|x(t)| = lim

t→+∞

∣∣∣∣∣ xa

Γ(α)
t−ση(tσ − aσ)α−1

∣∣∣∣∣ =


0, η > α − 1,
xa

Γ(α)
, η = α − 1,

∞, η < α − 1.

Thus, when η > α − 1, the zero solution of system (4.1) is asymptotically stable, and the decay rate is
O

(
t−ση(tσ − aσ)α−1

)
. When η = α − 1, the zero solution is stable but not asymptotically stable. When

η < α − 1, the zero solution is unstable.
(3) For λ > 0, we can show that

Eα, α (λ(tσ − aσ)α) =
1
α
λ

1−α
α (tσ − aσ)1−α exp

[
λ

1
α (tσ − aσ)

]
−

p∑
k=2

[λ(tσ − aσ)α]−k

Γ(α − α k)
+ O((λ(tσ − aσ)α)−1−p)

=
1
α
λ

1−α
α (tσ − aσ)1−α exp

[
λ

1
α (tσ − aσ)

]
−

1
λ2Γ(−α)

(tσ − aσ)−2α + O((λ(tσ − aσ)α)−3).

Then,
lim

t→+∞
|x(t)| = lim

t→+∞

∣∣∣xa t−ση(tσ − aσ)α−1Eα, α (λ(tσ − aσ)α)
∣∣∣ = ∞,

which yields that the zero solution of system (4.1) is unstable.
Thus, the proof is completed. □
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4.1.2. Two-dimensional case

Consider the following two-dimensional generalized fractional differential system

EKD
α
a, t;σ, η x(t) = Ax(t), 0 < α < 1, t > a ≥ 0, A ∈ R2×2, σ > 0, η ∈ R,[

tσηEKD
α−1
a, t;σ, η x(t)

] ∣∣∣
t=a
= xa,

(4.7)

where x(t) = (x1(t), x2(t))T and xa = (xa1, xa2)T .
Case 1: If the matrix A is diagonalizable, then there exists an invertible matrix T satisfying

T−1AT =
(
λ1

λ2

)
, in which λi (i = 1, 2) are the eigenvalues of matrix A. Because nonsingular

transformation does not change stability, then we can directly write A =
(
λ1

λ2

)
. Following

Theorem 4, we get the solution of system (4.7)

x1(t) = xa1 t−ση(tσ − aσ)α−1Eα, α (λ1(tσ − aσ)α) ,
x2(t) = xa2 t−ση(tσ − aσ)α−1Eα, α (λ2(tσ − aσ)α) .

(4.8)

Next, we give the stability theorems of the zero solution to system (4.7).

Theorem 6. Let 0 < α < 1, t > a ≥ 0, σ > 0 and λ1, λ2 ∈ R. Then
(1) If λ j < 0 ( j = 1, 2), then, in the case of η > −α−1, the zero solution of system (4.7) is asymptotically
stable, and the decay rate is O

(
t−ση(tσ − aσ)−α−1

)
. In the case of η = −α− 1, the zero solution is stable

but not asymptotically stable. Otherwise, the zero solution is unstable.
(2) If at least one of λ j ( j = 1, 2) is equal to 0, and the rest is less than 0, then, in the case of η > α− 1,
the zero solution of system (4.7) is asymptotically stable, and the decay rate is O

(
t−ση(tσ − aσ)α−1

)
. In

the case of η = α − 1, the zero solution is stable but not asymptotically stable. Otherwise, the zero
solution is unstable.
(3) If at least one of λ j ( j = 1, 2) is greater than 0, then the zero solution of system (4.7) is unstable.

Theorem 7. Let 0 < α < 1, t > a ≥ 0, σ > 0 and λ1 = λ2 ∈ C. Then one gets
(1) If | arg λ1| >

πα
2 , then, under the circumstance of η > −α − 1, the zero solution is asymptotically

stable, and the decay rate is O
(
t−ση(tσ − aσ)−α−1

)
. Under the circumstance of η = −α − 1, the zero

solution is stable but not asymptotically stable. In other circumstances, the zero solution is unstable.
(2) If | arg λ1| =

πα
2 , then, under the circumstance of η > 0, the zero solution is asymptotically stable,

and the decay rate is O (t−ση). Under the circumstance of η = 0, the zero solution is stable but not
asymptotically stable. In other circumstances, the zero solution is unstable.
(3) If | arg λ1| <

πα
2 , then the zero solution is unstable.

Proof. (1) For | arg λ1| >
πα
2 , the proof of the result can be given in the same way as the result (1) of

Theorem 5.
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(2) When | arg λ1| =
πα
2 , assume that λ1 = r exp

(
±iπα2

)
(r > 0). One has

(tσ − aσ)α−1Eα, α (λ(tσ − aσ)α)

=
1
α

r
1−α
α exp

[
±i

(
1 − α

2
π + r

1
α (tσ − aσ)

)]
−

p∑
k=2

r−k(tσ − aσ)α(1−k)−1

Γ(α − α k)
exp

(
±i
αkπ

2

)
+ O

(
r−1−p(tσ − aσ)−1−αp

)
.

Consequently,

lim
t→+∞
|x(t)| = lim

t→+∞

∣∣∣xa1 t−ση(tσ − aσ)α−1Eα, α (λ(tσ − aσ)α)
∣∣∣

=


0, η > 0,
1
α

r
1−α
α xa1, η = 0,

∞, η < 0,

which shows that, for η > 0, the zero solution is asymptotically stable, and the decay rate is O (t−ση).
For η = 0, the zero solution is stable but not asymptotically stable. While the zero solution is not stable
for η < 0.

(3) For | arg λ1| <
πα
2 , let λ1 = r exp(iθ) (r > 0, |θ| < α

2 ). One has

(tσ − aσ)α−1Eα, α (λ1(tσ − aσ)α)

=
1
α

r
1−α
α exp

[
r

1
α (tσ − aσ) cos

(
θ

α

)]
exp

[
i
(
1 − α
α

θ + r
1
α (tσ − aσ) sin

(
θ

α

))]
−

p∑
k=2

r−k(tσ − aσ)α(1−k)−1

Γ(α − α k)
exp(−ikθ) + O

(
r−1−p(tσ − aσ)−1−αp

)
.

Then,
lim

t→+∞
|x(t)| = lim

t→+∞

∣∣∣xa1 t−ση(tσ − aσ)α−1Eα, α (λ(tσ − aσ)α)
∣∣∣ = ∞,

in accordance with Definition 2, the zero solution is unstable.
Consequently, this theorem is finished. □

Case 2: Suppose the matrix A is similar to a Jordan canonical form, i.e. T−1AT =
(
λ 1

λ

)
, where λ

and T are a real number and an invertible matrix, respectively. Without affecting the stability, we can

also consider A =
(
λ 1

λ

)
. Correspondingly, the solution of the system (4.7) has the following form


x1(t) = xa1 t−ση(tσ − aσ)α−1Eα, α (λ(tσ − aσ)α) +

xa2

α
t−ση(tσ − aσ)2α−1

×
[
Eα, 2α−1 (λ(tσ − aσ)α) − (α − 1)Eα, 2α (λ(tσ − aσ)α)

]
,

x2(t) = xa2 t−ση(tσ − aσ)α−1Eα, α (λ(tσ − aσ)α) .

(4.9)
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Theorem 8. Let 0 < α < 1, t > a ≥ 0, σ > 0 and λ ∈ R. Then
(1) If λ < 0, then, when η > −α − 1, the zero solution is asymptotically stable, and the decay rate is
O

(
t−ση(tσ − aσ)−α−1

)
. When η = −α−1, the zero solution is stable but not asymptotically stable. When

η < −α − 1, the zero solution is unstable.
(2) If λ = 0, then, when η > 2α − 1, the zero solution is asymptotically stable, and the decay rate is
O

(
t−ση(tσ − aσ)2α−1

)
. When η = 2α − 1, the zero solution is stable but not asymptotically stable. When

η < −α − 1, the zero solution is unstable.
(3) If λ > 0, then the zero solution is unstable.

Proof. (1) If λ < 0, it can be deduced that

1
α

(tσ − aσ)2α−1 [
Eα, 2α−1 (λ(tσ − aσ)α) − (α − 1)Eα, 2α (λ(tσ − aσ)α)

]
=

2
λ3Γ(−α)

(tσ − aσ)−α−1 + O
(
|λ|−4(tσ − aσ)−2α−1

)
.

Combining the result (1) of Theorem 5, we have

lim
t→+∞
|x1(t)| =


0, η > −α − 1,

xa1

λ2Γ(−α)
+

2 xa2

λ3Γ(−α)
, η = −α − 1,

∞, η < −α − 1.

By Definition 2, a direct calculation can be seen that, as far as η > −α − 1, the zero solution is
asymptotically stable, and the decay rate is O

(
t−ση(tσ − aσ)−α−1

)
. As far as η = −α − 1, the zero

solution is stable but not asymptotically stable. However, the zero solution is not stable for η < −α−1.
(2) When λ = 0, the solution of system (4.7) can be rewritten as

x1(t) =
xa1

Γ(α)
t−ση(tσ − aσ)α−1 +

xa2

Γ(2α)
t−ση(tσ − aσ)2α−1,

x2(t) =
xa2

Γ(α)
t−ση(tσ − aσ)α−1,

which means that, if η > 2α − 1 meets, then the zero solution is asymptotically stable, and the decay
rate is O

(
x−ση(tσ − aσ)2α−1

)
. If η = 2α−1 meets, then the zero solution is stable but not asymptotically

stable. If η < 2α − 1 meets, the zero solution is not stable.
(3) For λ > 0, from Eq (4.9) and the result (3) of Theorem 5, it yields that the solution is unstable.
The proof of the theorem is now fulfilled. □

4.1.3. n-dimensional case (n ≥ 3)

In accordance with the stability analyses of one-dimensional and two-dimensional cases, we extend
the content to the n-dimensional case (n ≥ 3). Here, we focus on the linear fractional differential
system with the generalized fractional derivativeEKD

α
a, t;σ, η x(t) = Ax(t), 0 < α < 1, t > a ≥ 0, A ∈ Rn×n, σ > 0, η ∈ R,[

tσηEKD
α−1
a, t;σ, η x(t)

] ∣∣∣
t=a
= xa,

(4.10)
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where x(t) = (x1(t), x2(t), · · · , xn(t))T and xa = (xa1, xa2, · · · , xan)T .
Case 1: If the matrix A is diagonalizable, then we can find an invertible matrix P fulfilling P−1AP =

J, where

J =


λ1

λ2
. . .

λn

. (4.11)

Without affecting the stability, we consider the matrix A = J in order to simplify the calculation.
Theorem 4 implies that the solution of system (4.10) in the case is

x1(t) = xa1 t−ση(tσ − aσ)α−1Eα, α (λ1(tσ − aσ)α) ,
x2(t) = xa2 t−ση(tσ − aσ)α−1Eα, α (λ2(tσ − aσ)α) ,

...

xn(t) = xan t−ση(tσ − aσ)α−1Eα, α (λn(tσ − aσ)α) .

(4.12)

Theorem 9. Let 0 < α < 1, t > a ≥ 0 and σ > 0. Suppose that λ j ∈ R, j = 1, 2, . . . , n. Then there
hold
(1) If λ j < 0 ( j = 1, 2, . . . , n), then, under the condition of η > −α − 1, the zero solution is
asymptotically stable, and the decay rate is O

(
t−ση(tσ − aσ)−α−1

)
. Under the condition of η = −α − 1,

the zero solution is stable but not asymptotically stable. In residual condition, the zero solution is
unstable.
(2) If at least one of λ j ( j = 1, 2, . . . , n) is equal to 0, and the rest are less than 0, then, under the
condition of η > α − 1, the zero solution is asymptotically stable, and the decay rate is
O

(
t−ση(tσ − aσ)α−1

)
. Under the condition of η > α − 1, the zero solution is stable but not

asymptotically stable. In residual condition, the zero solution is unstable.
(3) If at least one of λ j ( j = 1, 2, . . . , n) is greater than 0, then the zero solution is unstable.

When the eigenvalues λ′js are complex numbers, we assume that λl ∈ C, l = 1, 2, . . . , 2k and
λm ∈ R, m = 2k + 1, . . . , n, where k is from 1 to

[
n
2

]
at most and λ1 = λ2, . . . , λ2k−1 = λ2k.

Theorem 10. Let 0 < α < 1, t > a ≥ 0 and σ > 0. If λl ∈ C, λm ∈ R and λ1 = λ2, . . . , λ2k−1 = λ2k,
then
(1) If | arg λl| >

πα
2 (l = 1, 2, . . . , 2k) and λm < 0 (m = 2k + 1, . . . , n), then, in the case of η > −α − 1,

the zero solution is asymptotically stable, and the decay rate is O
(
t−ση(tσ − aσ)−α−1

)
. In the case of

η = −α − 1, the zero solution is stable but not asymptotically stable. Otherwise, the zero solution is
unstable.
(2) If at least one of | arg λl| (l = 1, 2, . . . , 2k) is equivalent to πα

2 and others are smaller than απ
2 , and

the rest eigenvalues satisfy λm ≤ 0 (m = 2k + 1, . . . , n), then, in the case of η > 0, the zero solution is
asymptotically stable, and the decay rate is O (t−ση). In the case of η = 0, the zero solution is stable
but not asymptotically stable. Otherwise, the zero solution is unstable.
(3) If at least one of λm (m = 2k + 1, . . . , n) is equivalent to 0 and others are smaller than 0, and the
rest eigenvalues satisfy | arg λl| >

πα
2 (l = 1, 2, . . . , 2k), then, in the case of η > α − 1, the zero solution

is asymptotically stable, and the decay rate is O
(
t−ση(tσ − aσ)α−1

)
. In the case of η = α − 1, the zero
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solution is stable but not asymptotically stable. Otherwise, the zero solution is unstable.
(4) If at least one of λm < 0 (m = 2k + 1, . . . , n) or | arg λl| <

πα
2 (l = 1, 2, . . . , 2k), then the zero

solution is unstable.

Case 2: Let the matrix A be similar to a Jordan canonical form, i.e., there exists an invertible matrix
T such that

T−1AT = J = diag(J1, J2, . . . , Jν), (4.13)

here Ji (i = 1, 2, . . . , ν) have the following form

Ji =


λi 1

λi
. . .
. . . 1

λi


ni×ni

, λi ∈ C, ni ≥ 2, (4.14)

and
∑ν

i=1 ni = n.
The following theorem considers the stability of the n-dimensional linear system (4.10).

Theorem 11. Let 0 < α < 1, t > a ≥ 0,σ > 0 and λi ∈ C (i = 1, 2, . . . , ν). Then
(1) If | arg λi| >

πα
2 (i = 1, 2, . . . , ν), then, under the circumstance of η > −α − 1, the zero solution

is asymptotically stable, and the decay rate is O
(
t−ση(tσ − aσ)−α−1

)
. Under the circumstance of η =

−α − 1, the zero solution is stable but not asymptotically stable. In the remaining circumstance, the
zero solution is unstable.
(2) If at least one of | arg λi| (i = 1, 2, . . . , ν) is equivalent to πα

2 and others are smaller than απ
2 , then,

under the circumstance of η > ni − 1, the zero solution is asymptotically stable, and the decay rate
is O

(
t−ση(tσ − aσ)ni−1

)
. Under the circumstance of η = ni − 1, the zero solution is stable but not

asymptotically stable. In the remaining circumstance, the zero solution is unstable.
(3) If there are some λ j = 0, and all other eigenvalues have | arg λi| >

πα
2 (i = 1, 2, . . . , j − 1, j +

1, . . . , ν), then, under the circumstance of η > n jα − 1, the zero solution is asymptotically stable, and
the decay rate is O

(
t−ση(tσ − aσ)n jα−1

)
. under the circumstance of η = n jα − 1, the zero solution is

stable but not asymptotically stable. In the remaining circumstance, the zero solution is unstable.
(4) If at least one of | arg λi| (i = 1, 2, . . . , ν) is less than πα

2 , then the zero solution is unstable.

Proof. Without loss of generality, we suppose that A = J1. Then the solution has the following
representation 

x1(t) = xa1 t−ση(tσ − aσ)α−1Eα, α (λ1(tσ − aσ)α)

+ xa2 t−ση(tσ − aσ)α−1 ∂

∂λ1
Eα, α (λ1(tσ − aσ)α)

+
xa3

2!
t−ση(tσ − aσ)α−1 ∂

2

∂λ2
1

Eα, α (λ1(tσ − aσ)α) + · · ·

+
xan1

(n1 − 1)!
t−ση(tσ − aσ)α−1 ∂

n1−1

∂λn1−1
1

Eα, α (λ1(tσ − aσ)α) ,
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x2(t) = xa2 t−ση(tσ − aσ)α−1Eα, α (λ1(tσ − aσ)α)

+ xa3 t−ση(tσ − aσ)α−1 ∂

∂λ1
Eα, α (λ1(tσ − aσ)α) + · · ·

+
xan1

(n1 − 2)!
t−ση(tσ − aσ)α−1 ∂

n1−2

∂λn1−2
1

Eα, α (λ1(tσ − aσ)α) ,

...

xn1−1(t) = xa(n1−1) t−ση(tσ − aσ)α−1Eα, α (λ1(tσ − aσ)α)

+ xan1 t−ση(tσ − aσ)α−1 ∂

∂λ1
Eα, α (λ1(tσ − aσ)α) ,

xn1(t) = xan1 t−ση(tσ − aσ)α−1Eα, α (λ1(tσ − aσ)α) .

(4.15)

(1) Suppose that | arg λ1| >
πα
2 and m = 0, 1, . . . , n1 − 1. We have

1
m!

(tσ − aσ)α−1 ∂
m

∂λm
1

Eα, α (λ1(tσ − aσ)α)

=
(−1)m+1(m + 1)
λ2+m

1 Γ(−α)
(tσ − aσ)−α−1 + O

(
|λ1|
−3−m(tσ − aσ)−2α−1

)
,

which leads to

lim
t→+∞

∣∣∣∣ 1
m!

t−ση(tσ − aσ)α−1 ∂
m

∂λm
1

Eα, α (λ1(tσ − aσ)α)
∣∣∣∣

=


0, η > −α − 1,

(−1)m+1(m + 1)
λ2+m

1 Γ(−α)
, η = −α − 1,

∞, η < −α − 1.

Thus, when η > −α − 1, the zero solution is asymptotically stable, and the decay rate is
O

(
t−ση(tσ − aσ)−α−1

)
. When η = −α − 1, the zero solution is stable but not asymptotically stable.

When η < −α − 1, the zero solution is not stable.
(2) For

∣∣∣ arg(λ1)
∣∣∣ = πα

2 , it can be deduced as

(tσ − aσ)α−1 1
m!

∂m

∂λm
1

Eα, α (λ1(tσ − aσ)α)

=
1

m!
exp

(
λ

1
α

1 (tσ − aσ)
) { (1 − α)(1 − 2α) · · · (1 − mα)

αm+1 λ
1−(m+1)α

α

i + · · ·

+
Cm−1

m+1(1 − α)
αm+1 λ

m−(m+1)α
α

1 (tσ − aσ)m−1 +
1

αm+1λ
(m+1)(1−α)

α

1 (tσ − aσ)m

}
−

p∑
k=2

(−1)m(k + m − 1)!
m!(k − 1)!Γ(α − αk)

λ−k−m+1
i (tσ − aσ)−α k

+ O
(
|λ1|
−1−p−m|(tσ − aσ)α|−1−p

)
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=
1

m!
exp

(
λ

1
α

1 (tσ − aσ)
) { (1 − α)(1 − 2α) · · · (1 − mα)

αm+1 λ
1−(m+1)α

α

i + · · ·

+
Cm−1

m+1(1 − α)
αm+1 λ

m−(m+1)α
α

1 (tσ − aσ)m−1 +
1

αm+1λ
(m+1)(1−α)

α

1 (tσ − aσ)m

}
+

(−1)m+1(m + 1)
λ2+m

1 Γ(−α)
(tσ − aσ)−α−1 + O

(
|λ1|
−3−m(tσ − aσ)−2α−1

)
,

(4.16)

where m = 0, 1, . . . , n1 − 1. Substitute λ1 = r exp
(
±iπα2

)
(r > 0) into Eq (4.16), then there exists

lim
t→+∞

∣∣∣∣∣ 1
m!

t−ση(tσ − aσ)α−1 ∂
m

∂λm
1

Eα, α

(
r exp

(
±i
απ

2

)
(tσ − aσ)α

) ∣∣∣∣∣
=


0, η > n1 − 1,

1
αn1(n1 − 1)!

λ
(n1)(1−α)

α

1 , η = n1 − 1,

∞, η < n1 − 1,

which means that, for η > n1 − 1, the zero solution is asymptotically stable, and the decay rate is
O

(
t−ση(tσ − aσ)n1−1

)
. For η = n1 − 1, the zero solution is stable but not asymptotically stable. For

η < n1 − 1, the zero solution is unstable.
(3) If λ1 = 0, for m = 0, 1, . . . , n1 − 1, we find that

(tσ − aσ)α−1 1
m!

∂m

∂λm
1

Eα, α (λ1(tσ − aσ)α) =
1

Γ(α + αm)
(tσ − aσ)αm+α−1.

The solution of the system (4.10) takes the form

x1(t) =
xa1

Γ(α)
t−ση(tσ − aσ)α−1 + · · · +

xan1

Γ(αn1)
t−ση(tσ − aσ)αn1−1,

x2(t) =
xa2

Γ(α)
t−ση(tσ − aσ)α−1 + · · · +

xan1

Γ(α(n1 − 1))
t−ση(tσ − aσ)α(n1−1)−1,

...

xn1(t) =
xan1

Γ(α)
t−ση(tσ − aσ)α−1.

It indicates that, if η > n1α − 1, then the zero solution is asymptotically stable, and the decay rate
is O

(
x−ση(tσ − aσ)n1α−1

)
. if η = n1α − 1, the zero solution is stable but not asymptotically stable.

Otherwise, the zero solution is unstable.
(4) Using Eqs (4.15) and (4.16), the desired result can be achieved.
Thus, the proof of this theorem is completed. □

From the above discussion, we can get the general theorem.

Theorem 12. Let 0 < α < 1 and t > a ≥ 0. Then
(1) If all the eigenvalues λ(A) of A meet | arg λ(A)| > πα

2 , then, in the case of η > −α − 1, the zero
solution is asymptotically stable, and the decay rate is O

(
t−ση(tσ − aσ)−α−1

)
. In the case of

η = −α − 1, the zero solution is stable but not asymptotically stable. Otherwise, the zero solution is
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unstable.
(2) If the zero eigenvalues of A have the same algebraic and geometric multiplicities, and the rest
eigenvalues meet | arg λ(A)| > πα

2 , then, in the case of η > α − 1, the zero solution is asymptotically
stable, and the decay rate is O

(
t−ση(tσ − aσ)α−1

)
. In the case of η = α − 1, the zero solution is stable

but not asymptotically stable. Otherwise, the zero solution is unstable.
(3) If at least one of the eigenvalues of A meeting | arg λ(A)| = πα

2 has the same algebraic and
geometric multiplicities, and the rest eigenvalues are less than 0, then, in the case of η > 0, the zero
solution is asymptotically stable, and the decay rate is O (t−ση). In the case of η = 0, the zero solution
is stable but not asymptotically stable. Otherwise, the zero solution is unstable.
(4) If the eigenvalues of A subject to | arg λ(A)| = πα

2 have the different algebraic and geometric
multiplicities, and others are greater than πα

2 , then, in the case of η > nk − 1, the zero solution is
asymptotically stable, and the decay rate is O

(
t−ση(tσ − aσ)nk−1

)
. In the case of η = nk − 1, the zero

solution is stable but not asymptotically stable. Otherwise, the zero solution is unstable, where
nk (2 ≤ nk < n, n ∈ Z+) is the algebraic multiplicities.
(5) If the zero eigenvalues of A have the different algebraic and geometric multiplicities, and other
eigenvalues have | arg λi| >

πα
2 , then, in the case of η > nkα − 1, the zero solution is asymptotically

stable, and the decay rate is O
(
x−ση(tσ − aσ)nkα−1

)
. In the case of η = nkα − 1, the zero solution is

stable but not asymptotically stable. Otherwise, the zero solution is unstable for η < nkα − 1, where
nk ∈ Z

+ (2 ≤ nk < n, n ∈ Z+) is the algebraic multiplicities of the zero eigenvalues.
(6) If at least one of the eigenvalues of A is less than πα

2 , then the zero solution is unstable.

4.2. The autonomous nonlinear fractional differential system

We restrict our attention to the following n-dimensional nonlinear generalized fractional differential
system EKD

α
a, t;σ, η x(t) = f (x), 0 < α < 1, t > a ≥ 0, σ > 0, η ∈ R,[

tσηEKD
α−1
a, t;σ, η x(t)

] ∣∣∣
t=a
= xa,

(4.17)

where x(t) ∈ Rn and f (x) ∈ Rn satisfies the Lipschitz condition. Next, we will discuss the stability of
the zero solution to system (4.17) with f (0) ≡ 0.

Lemma 6. The function f (x) is continuous and the solution x(t) is also continuous in system (4.17).
Then φt has the following properties

(1) φa =
t−ση(tσ−aσ)α−1

Γ(α) xa.
(2) φt+s = φt ◦ θt ◦ φs, t > a ≥ 0, s > a ≥ 0, there exists a linear map θt satisfying

θt ◦ φs(xa) =
t−ση(tσ − aσ)α−1

Γ(α)
xa +

(tσ + sσ − aσ)−η

Γ(α)

×

∫ s

a
(tσ + sσ − τσ − aσ)α−1τση f (φτ(xa))) dτσ,

(4.18)

and when s = a, θt

(
t−ση(tσ−aσ)α−1

Γ(α) xa

)
=

t−ση(tσ−aσ)α−1

Γ(α) xa.
(3) (t, xa)→ φt (xa) is a continuous map from [a, +∞) × R onto R.
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Proof. From Theorem 1, we know that system (4.17) has a solution

x(t) =
t−ση(tσ − aσ)α−1

Γ(α)
xa +

t−ση

Γ(α)

∫ t

a
(tσ − τσ)α−1τση f (x(τ)) dτσ. (4.19)

Suppose that the operator φt has the following expression

φt(xa) =
t−ση(tσ − aσ)α−1

Γ(α)
xa +

t−ση

Γ(α)

∫ t

a
(tσ − τσ)α−1τση f (φτ(xa)) dτσ. (4.20)

Obviously, properties (1) and (3) hold.
Next, we consider the property (2). Assume that y = θt ◦φs(xa) = t−ση(tσ−aσ)α−1

Γ(α) xa +
(tσ+sσ−aσ)−η

Γ(α)

∫ s

a
(tσ +

sσ − τσ − aσ)α−1(τσ + sσ − aσ)η f (φτ(xa))) dτσ. Then it leads to

φt ◦ θt ◦ φs(xa)

=
t−ση(tσ − aσ)α−1

Γ(α)
xa +

t−ση

Γ(α)

∫ t

a
(tσ − τσ)α−1τση f (φτ(θτ(φs(xa)))) dτσ

+
(tσ + sσ − aσ)−η

Γ(α)

∫ s

a
(tσ + sσ − τσ − aσ)α−1τση f (φτ(xa))) dτσ

=
t−ση(tσ − aσ)α−1

Γ(α)
xa

+
(tσ + sσ − aσ)−η

Γ(α)

∫ s

a
(tσ + sσ − τσ − aσ)α−1τση f (φτ(xa))) dτσ

+
(tσ + sσ − aσ)−η

Γ(α)

∫ (tσ+sσ−aσ)1/σ

a
(tσ + sσ − τσ − aσ)α−1τση

× f
(
φ(τσ+sσ−aσ)1/σ(θ(τσ+sσ−aσ)1/σ(φs(xa)))

)
dτσ.

Let vτ(xa) = φτ(xa), τ ≤ s,

vτ(xa) = φ(τσ+sσ−aσ)1/σ(θ(τσ+sσ−aσ)1/σ(φs(xa))), τ > s.
(4.21)

Since vτ(xa) is continuous with respect to τ, then,

vt+s(xa) = φt ◦ θt ◦ φs(xa) =
t−ση(tσ − aσ)α−1

Γ(α)
xa

+
(tσ + sσ − aσ)−η

Γ(α)

∫ (τσ+sσ−aσ)1/σ

a
(tσ + sσ − τσ − aσ)α−1τση f (vτ(xa))) dτσ.

(4.22)

From Theorem 3, we know that the solution is unique, then

φt+s(xa) = vt+s(xa) = φt ◦ θt ◦ φs(xa). (4.23)

All these yield the Lemma. □

Inspired by [37, 39], we establish the following linearization theorem of the nonlinear generalized
fractional differential system.
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Theorem 13. If the origin is a hyperbolic equilibrium of system (4.17), then vector field f (x) is locally
topologically equivalent with its linearization vector field Ax = f ′(0)x in the neighborhood δ(0) of the
origin.

Proof. Let λi (i = 1, 2, . . . , n) be the eigenvalues of the linearization matrix f ′(0) and satisfy | arg(λi)| >
πα
2 (i = 1, 2, . . . , n1) and | arg(λi)| < πα

2 (i = n1 + 1, n1 + 2, . . . , n). To linearize system (4.17), we
introduce a nonsingular linear transformation operator T0 : Rn → Rn1 × Rn2 to system (4.17), and
T0 : x(t)→ y(t) = (y1(t), y2(t)) (y1(t) ∈ Rn1 , y2 ∈ R

n2 , n2 = n − n1). Then system (4.17) can be changed
into EKD

α
a, t;σ, η y1(t) = Ay1(t) + F1(y1(t), y2(t)),

EKD
α
a, t;σ, η y2(t) = By2(t) + F2(y1(t), y2(t)),

(4.24)

in which A has the eigenvalues λ1, λ2 . . . λn1 , B has the eigenvalues λn1+1, λn1+2 . . . λn, Fi = o(∥y1(t)∥+
∥y2(t))∥) as yi(t) → 0 (i = 1, 2). Excited by Theorems (1) and (4), the solution φt(y) = (y1(t), y2(t)) of
the system (4.24) takes the form below

y1(t) = ya1 t−ση(tσ − aσ)α−1Eα, α [A(tσ − aσ)α]

+
t−ση

Γ(α)

∫ t

a
(tσ − τσ)α−1τσηEα, α [A(tσ − aσ)α] F1 (y1(τ), y2(τ)) dτσ

= ya1 t−ση(tσ − aσ)α−1Eα, α [A(tσ − aσ)α] + P1(t, ya1, ya2),

and

y2(t) = ya2 t−ση(tσ − aσ)α−1Eα, α [B(tσ − aσ)α]

+
t−ση

Γ(α)

∫ t

a
(tσ − τσ)α−1τσηEα, α [B(tσ − aσ)α] F2 (y1(τ), y2(τ)) dτσ

= ya2 t−ση(tσ − aσ)α−1Eα, α [A(tσ − aσ)α] + P2(t, ya1, ya2),

where yai = yi(a) = EKD
α−1
a, t;σ, η yi(t)

∣∣∣
t=a

and Pi = o(∥ya1∥+ |ya2∥) as yi(t)→ 0 (i = 1, 2). Thus we can find
a constant c > 0 such that ∥Pi∥ < c(∥ya1∥ + ∥ya2∥) (i = 1, 2) when (ya1, ya2) ∈ δ(0). If (ya1, ya2) < δ(0),
there are Pi ≡ 0 due to Fi(ya1, ya2) ≡ 0 (i = 1, 2).

Consider the homogeneous linear system of the system (4.24)EKD
α
a, t;σ, η u1(t) = Au1(t),

EKD
α
a, t;σ, η u2(t) = Bu2(t),

(4.25)

where u(t) = (u1(t), u2(t)), u1(t) ∈ Rn1 and u2(t) ∈ Rn2 . From Theorem (4), the solution Lt(u) =
(u1(t), u2(t)) of the system (4.25) can be expressed asu1(t) = ua1 t−ση(tσ − aσ)α−1Eα, α (A(tσ − aσ)α) ,

u2(t) = ua2 t−ση(tσ − aσ)α−1Eα, α (B(tσ − aσ)α) ,

in which uai = ui(a) = EKD
α−1
a, t;σ, η ui(t)

∣∣∣
t=a

(i = 1, 2).
By Definition 5, we need to find a homeomorphism h : Rn → Rn satisfying h ◦ φt = Lt ◦ h. In order

to achieve it, the proof shall be divided into three steps.
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Step 1: Let t = (aσ + 1)1/σ. There is a continuous map ha : Rn → Rn such that

θs ◦ L(aσ+1)1/σ ◦ ha = ha ◦ θs ◦ φ(aσ+1)1/σ , s ∈ (a, (aσ + 1)1/σ). (4.26)

And ha can be represented by the following coordinate transformationsua1 = U(ya1, ya2),
ua2 = V(ya1, ya2).

(4.27)

According to Eqs (4.26) and (4.27), there are

θs(aσ + 1)−ηEα, α(A)U(ya1, ya2)
= U(θs((aσ + 1)−ηEα, α(A) ya1 + P1((aσ + 1)1/σ, ya1, ya2)),
θs((aσ + 1)−ηEα, α(B)ya2 + P2((aσ + 1)1/σ, ya1, ya2))),
θs(aσ + 1)−ηEα, α(B)V(ya1, ya2)

= V(θs((aσ + 1)−ηEα, α(A) ya1 + P1((aσ + 1)1/σ, ya1, ya2)),
θs((aσ + 1)−ηEα, α(B) ya2 + P2((aσ + 1)1/σ, ya1, ya2))).

(4.28)

From Eqs (4.28), it is clear that

V(ya1, ya2)
= (Eα, α(B))−1θ−1

s V(θs(Eα, α(A) ya1 + (aσ + 1)ηP1((aσ + 1)1/σ, ya1, ya2)),
θs(Eα, α(B) ya2 + (aσ + 1)ηP2((aσ + 1)1/σ, ya1, ya2))).

(4.29)

The solution of Eq (4.29) can be got by using successive approximations. Assume that the following
result holds

V0(ya1, ya2) = ya2,

Vk(ya1, ya2) = (Eα, α(B))−1θ−1
s Vk−1(θs(Eα, α(A) ya1 + (aσ + 1)ηP1((aσ + 1)1/σ, ya1, ya2)),

θs(Eα, α(B) ya2 + (aσ + 1)ηP2((aσ + 1)1/σ, ya1, ya2))),
(4.30)

where k = 1, 2, . . . . Then

V1(ya1, ya2) = ya2 + (Eα, α(B))−1(aσ + 1)ηP2((aσ + 1)1/σ, ya1, ya2). (4.31)

Presume that ∥Eα, α(A)∥ = ι and ∥Eα, α(B)∥−1 = κ. First, we consider the case of κ < 1
ι
. For small enough

ρ (ρ > 0), we can get

r = b∥θs∥
−1(2 max{ι∥θs∥, 2c(aσ + 1)η∥θs∥, κ

−1∥θs∥})ρ < 1.

Since P2 = o(∥ya1∥ + |ya2∥) as yai → 0 (i = 1, 2), then for a constant M > 0, one has

∥V1(ya1, ya2) − V0(ya1, ya2)∥ < Mr(∥ya1∥ + ∥ya2∥)ρ.
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If ∥Vk(ya1, ya2) − Vk−1(ya1, ya2)∥ < Mrk(∥ya1∥ + ∥ya2∥)ρ, then

∥Vk+1(ya1, ya2) − Vk(ya1, ya2)∥
≤ ∥Eα, α(B)∥−1∥θs∥

−1Mrk(∥θs(Eα, α(A) ya1 + (aσ + 1)ηP1((aσ + 1)1/σ, ya1, ya2))∥
+ ∥θs(Eα, α(B) ya2 + (aσ + 1)ηP2((aσ + 1)1/σ, ya1, ya2))∥)ρ

≤ Mκrk∥θs∥
−1(∥θs∥(ι∥ya1∥ + κ

−1∥ya2∥) + c(aσ + 1)η(∥ya1∥ + ∥ya2∥))ρ

≤ Mκrk∥θs∥
−1(2 max{ι∥θs∥, 2c(aσ + 1)η∥θs∥, κ

−1∥θs∥})ρ(∥ya1∥ + ∥ya2∥)ρ

≤ Mrk+1(∥ya1∥ + ∥ya2∥)ρ,

where κ < ∥θs∥ <
1
ι
. Thus, the sequence Vk(ya1, ya2) uniformly converges to a continuous function

V(ya1, ya2) and

V(ya1, ya2) = V0(ya1, ya1) +
∞∑

k=1

[Vk(ya1, ya2) − Vk−1(ya1, ya2)]

= ya2 + o(∥ya1∥ + ∥ya2∥).

In the same way, the following result can be achieved at

U(ya1, ya2) = ya1 + o(∥ya1∥ + ∥ya2∥).

Similar to κ < 1
σ

, the case κ ≥ 1
σ

can get the identical conclusion. In accordance with the above
discussion, we find the continuous map ha which satisfies ha(0, 0) = (0, 0) and ha(ya1, ya2) = (ya1, ya2)
when (ya1, ya2) < δ(0). Moreover, the uniqueness is obvious.

Step 2: We prove that ha is a homeomorphism. From Step 1, we can find a continuous map h∗a
satisfying

h∗a ◦ θs ◦ L(aσ+1)1/σ = θs ◦ φ(aσ+1)1/σ ◦ h∗a, s ∈ (a, (aσ + 1)1/σ).

Therefore, it can be deduced as

ha ◦ h∗a ◦ θs ◦ L(aσ+1)1/σ = ha ◦ θs ◦ φ(aσ+1)1/σ ◦ h∗a = θs ◦ L(aσ+1)1/σ ◦ ha ◦ h∗a, s ∈ (a, (aσ + 1)1/σ),

and

θs ◦ L(aσ+1)1/σ ◦ h∗a ◦ ha = h∗a ◦ θs ◦ φ(aσ+1)1/σ ◦ ha = h∗a ◦ ha ◦ θs ◦ φ(aσ+1)1/σ , s ∈ (a, (aσ + 1)1/σ).

Because ha and h∗a are unique, one has

ha ◦ h∗a = Id, h∗a ◦ ha = Id,

which signifies that h−1
a = h∗a, and h−1

a is continuous. Thus, ha is a homeomorphism.
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Step 3: Let h =
∫ a+(aσ+1)1/σ

a
Ls ◦ ha ◦ φ

−1
s ds. Then

Lt ◦ θt ◦ h =
∫ a+(aσ+1)1/σ+t

a+t
Lt ◦ θt ◦ Ls−t ◦ ha ◦ φ

−1
s−tds

=

∫ a+(aσ+1)1/σ

a+t
Ls ◦ ha ◦ φ

−1
s ds ◦ φt ◦ θt

+

∫ a+t

a
Ls ◦ θs ◦ L(aσ+1)1/σ ◦ ha ◦ φ

−1
(aσ+1)1/σ ◦ θ

−1
s ◦ φ

−1
s ds ◦ φt ◦ θt

=

∫ a+(aσ+1)1/σ

a
Ls ◦ ha ◦ φ

−1
s ds ◦ φt ◦ θt.

= h ◦ φt ◦ θt.

By Step 2, it can be got that h is a homeomorphism. Now, we consider

Lt ◦ θt ◦ h(xa) = h ◦ φt ◦ θt(xa).

Since θt(xa) = xa, θt ◦ h(xa) = h(xa), one gets

Lt ◦ h(xa) = h ◦ φt(xa).

Hence, the proof is completed. □

With the help of Theorems 12 and 13, we get the following stability theorem about hyperbolic
equilibrium represented by zero solution of the nonlinear generalized fractional differential system.

Theorem 14. Let 0 < α < 1, t > a ≥ 0 and σ > 0. Then
(1) If all the eigenvalues λ( f ′(0)) of the Jacobian matrix f ′(0) satisfy | arg(λ( f ′(0)))| > πα

2 , then, when
η > −α − 1, the zero solution of system (4.17) is locally asymptotically stable, and the decay rate is
O

(
t−ση(tσ − aσ)−α−1

)
. When η = −α − 1, the zero solution of system (4.17) is stable but not

asymptotically stable. When η < −α − 1, the zero solution of system (4.17) is unstable.
(2) If at least one of the eigenvalues λ( f ′(0)) of the Jacobian matrix f ′(0) satisfy | arg(λ( f ′(0)))| < πα

2 ,
then the zero solution of system (4.17) is unstable.

Remark 3. If the Jacobian matrix f ′(0) has critical values, i.e., λ( f ′(0)) = 0 and / or | arg(λ( f ′(0)))| =
πα
2 , which indicates that the origin is non-hyperbolic. Then the stability of the zero solution of system

(4.17) cannot be judged by Theorem 14.

5. Stability of the generalized fractional Chen system

In the section, we deal with the stability of the generalized fractional Chen system, which is
described by the following autonomous fractional differential system

EKD
α
a, t;σ, η x1(t) = ā(x2(t) − x1(t)),

EKD
α
a, t;σ, η x2(t) = (c̄ − ā)x1(t) + c̄x2(t) − x1(t)x3(t),

EKD
α
a, t;σ, η x3(t) = x1(t)x2(t) − b̄x3(t),[

Γ(α) tση(tσ − aσ)1−αxi(t)
] ∣∣∣

t=a
= xai, i = 1, 2, 3,

(5.1)

where 0 < α < 1, t > a ≥ 0, σ > 0, η ∈ R and ā, b̄, c̄ are positive real numbers.
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Theorem 15. System (5.1) can be written in the formEKD
α
a, t;σ, η X̄(t) = Ā X̄(t) + B̄X̄(t), 0 < α < 1, t > a ≥ 0, σ > 0, η ∈ R,[

Γ(α) tση(tσ − aσ)1−αX̄(t)
] ∣∣∣

t=a
= X̄a,

(5.2)

in which

X̄(t) =


x1(t)
x2(t)
x3(t)

, X̄a =


xa1

xa2

xa3

, Ā =


−ā ā 0

c̄ − ā c̄ 0
0 0 −b̄

 and B̄ =


0 0 0
0 0 −1
0 1 0

.
Then it possesses the unique solution.

Proof. Let Ω0 :=
{
X̄(t) ∈ R3 :

∣∣∣X̄ − X̄a

∣∣∣ ≤ K
}

and f
(
X̄(t)

)
= Ā X̄(t) + B̄X̄(t). Then∣∣∣∣ f (

X̄(t)
)
− f

(
Ȳ(t)

) ∣∣∣∣ ≤ L
∣∣∣X̄(t) − Ȳ(t)

∣∣∣ (5.3)

where L =
∥∥∥Ā

∥∥∥ + ∥∥∥B̄
∥∥∥ (

2
∣∣∣X̄a

∣∣∣ + K
)
. It implies that f

(
X̄(t)

)
satisfies Lipschitz condition. In accordance

with Theorem 3, this proof is realized. □

Theorem 16. System (5.1) with the equilibrium xeq = (xeq1
, xeq2

, xeq3
) can be linearized into

EKD
α
a, t;σ, η ε1 = ā (ε2 − ε1),

EKD
α
a, t;σ, η ε2 = (c̄ − ā − xeq3

)ε1 + c̄ε2 − xeq1
ε3,

EKD
α
a, t;σ, η ε3 = (xeq1

ε2 + xeq2
ε1) − b̄ε3,[

Γ(α) tση(tσ − aσ)1−α (xeqi
+ εi)

] ∣∣∣
t=a
= xai, i = 1, 2, 3.

(5.4)

Proof. Let xi(t) = xeqi
+ εi(t) (i = 1, 2, 3). One has

EKD
α
a, t;σ, η (xeq1

+ ε1) = ā (xeq2
− xeq1

+ ε2 − ε1),

EKD
α
a, t;σ, η (xeq2

+ ε2) = (c̄ − ā)(xeq1
+ ε1) + c̄(xeq2

+ ε2) − (xeq1
+ ε1)(xeq3

+ ε3),

EKD
α
a, t;σ, η (xeq3

+ ε3) = (xeq1
+ ε1)(xeq2

+ ε2) − b̄(xeq3
+ ε3),[

Γ(α) tση(tσ − aσ)1−α (xeqi
+ εi)

] ∣∣∣
t=a
= xai, i = 1, 2, 3.

Furthermore, 
EKD

α
a, t;σ, η ε1 = ā (ε2 − ε1),

EKD
α
a, t;σ, η ε2 = (c̄ − ā − xeq3

)ε1 + c̄ε2 − xeq1
ε3,

EKD
α
a, t;σ, η ε3 = (xeq1

ε2 + xeq2
ε1) − b̄ε3,[

Γ(α) tση(tσ − aσ)1−α (xeqi
+ εi)

] ∣∣∣
t=a
= xai, i = 1, 2, 3.

(5.5)

From Theorem 13, system (5.5) is the linearized system of system (5.1), which completes the proof. □

Theorem 17. (1) If ā > 2c̄ and η > −α − 1, all the eigenvalues λi satisfy | arg(λi)| > πα
2 (i = 1, 2, 3),

then, the equilibrium (0, 0, 0) of system (5.1) is locally asymptotically stable.
(2) If ā < 2c̄, the equilibrium (0, 0, 0) of system (5.1) is unstable.
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To illustrate the theoretical analysis, we give the phase diagrams applying the fractional
Adams-Bashforth-Moulton method. The details of fractional Adams-Bashforth-Moulton method can
be found in [9]. Some system parameters are chosen as (ā, b̄, α, σ, η, ã, a) = (35, 3, 0.87, 2, 0.2, 2, 0.5)
and t ∈ [ã, 25]. From Theorem 14, we take c̄ = 16 and the initial value
(xa1, xa2, xa3) = (17.1428, 8.5714, 1.7143), the phase diagram is shown in Figure 1. Obviously, the
equilibrium (0, 0, 0) of system (5.1) is asymptotically stable. For c̄ = 20 and the initial value
(xa1, xa2, xa3) = (0.0171, 0.0171, 0.0171), Figure 2 signifies the equilibrium (0, 0, 0) of system (5.1) is
unstable. In Figure 3, increase the value of c̄ to 27, there is a chaotic phenomenon with
(xa1, xa2, xa3) = (1.716, 3.4286, 5.1428).
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Figure 1. The phase diagrams for c̄ = 16.
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Figure 2. The phase diagrams for c̄ = 20.
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Figure 3. The phase diagrams for c̄ = 27.
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6. Conclusions

The paper discusses the existence, uniqueness, and stability of solutions for generalized fractional
differential equations. Using the transformation method, the solution to the generalized fractional
differential equation is obtained, which shows that the initial value problem of the generalized
fractional differential equation is equivalent to the nonlinear Volterra integral equation. Furthermore,
we explain the solution is existing and unique by the fixed point theorems. In addition, via stability
analysis, it can be concluded that the stability condition of generalized fractional differential systems
is determined by the argument of eigenvalues and η. Finally, the generalized fractional Chen system is
taken as an example to illustrate the theoretical results.
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