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Abstract: In this paper, we propose a numerical scheme to solve generalized space fractional partial
differential equations (GFPDEs). Besides, the proposed GFPDEs represent a great generalization of a
significant type of FPDEs and their applications, which contain many previous reports as a special
case. Moreover, the proposed scheme uses shifted Chebyshev sixth-kind (SCSK) polynomials with
spectral collocation approach. The fractional differential derivatives are expressed in terms of the
Caputo’s definition. Furthermore, the Chebyshev collocation method together with the finite
difference method is used to reduce these types of differential equations to a system of algebraic
equations which can be solved numerically. In addition, the classical fourth-order Runge-Kotta
method is also used to treat the differential system with the collocation method which obtains a great
accuracy. Numerical approximations performed by the proposed method are presented and compared
with the results obtained by other numerical methods. The introduced numerical experiments are
fractional-order mathematical physics models, as advection-dispersion equation (FADE) and diffusion
equation (FDE). The results reveal that our method is a simple and effective numerical method.
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1. Introduction

Many phenomena such as biology, physics, and fluid mechanics can be modeled by certain
fractional order partial differential equations (FPDEs). For example not exclusively, Magin in [1]
presented fractional calculus models of complex dynamics in biological tissues, where, Kumar and
Baleanu presented applications in physics related to fractional calculus [2], and in [3] their authors
presented a real world applications of fractional calculus in science and engineering. So that,
fractional calculus becomes a major branch of mathematical and numerical analysis. The importance
of the numerical solution of FPDEs becomes a major, because of the difficulty of obtaining their
analytical solutions. Vanani and Aminataei propose numerical solutions of FPDEs see [4]. In
addition, the authors of [5] presented a numerical approach for FPDEs using Legendre functions,
also [6] presents a high-precision numerical approach to solving space fractional Gray-Scott model.
On the other hand, finite difference and finite element methods have received a great attention for
treating the FPDEs see [7–14].

Spectral methods have been developed through the past few decades by a huge number of
researchers, the most popular and widely used methods are: tau [15, 16], collocation [17–19],
Galerkin [20], kernel method and Legendre polynomial [21], Fourier spectral method [22] and many
others. The principal feature of these methods lies in their ability to reach acceptably accurate results
with substantially fewer degrees of freedom. In recent years, Chebyshev polynomials have become
increasingly important again in numerical analysis, when a new two classes of polynomials appear,
namely fifth and sixth kinds. In the Ph.D. thesis of Masjed-Jamei [23], 2006 he introduces a
generalized polynomials using an extended Sturm-Liouville problem. These generalized polynomials
generate Chebyshev polynomials of the first, second, third, and fourth kinds, in addition to the two
new classes fifth and sixth kinds at special values of the given parameters, some additional details are
also provided in [24] for fifth kind and in [25] for sixth kind. Therefore, many researchers recently
began to apply numerical methods to solve mathematical models using fifth and sixth kinds.
Abd-Elhameed et al, used the fifth-kind with spectral solution for convection-diffusion (CD)
equation [26], while in [27] the authors used fifth Chebyshev polynomials to fractional partial
integro-differential equations (FPIDEs). Additionally, very recently Sadri and Aminikhah presented
an algorithm based on fifth-kind to treat multi-term variable-order time-fractional diffusion-wave
(FDW) equation [28], however, the authors in [29] used the Galerkin approach with the fifth-kind for
a kind of PDEs.

The objective of this research paper is to present a spectral scheme according to the collocation
approach for the generalized space-fractional partial differential equations (GFPDEs) that we have
introduced. The proposed GFPDEs are chosen to be linear and the fractional derivatives are expressed
in terms of Caputo’s definition. The method of solution aims to apply shifted sixth-kind Chebyshev
polynomials using the collocation method to discretize the proposed equation, and then generate a
linear system of ordinary differential equations (SODEs), which reduces the proposed problem.
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Additionally, to treat the generated SODEs, the classical fourth-order Runge-Kotta method (RK4) and
the finite difference method (FDM) as well, are used. The proposed equation is presented as:

n∑
k=0

Qk(x)
∂γku(x, t)
∂γk x

+ P
∂u(x, t)
∂t

= f (x, t), (1.1)

defined on a finite domains 0 < x 6 H; 0 < t 6 T and the parameters γk refer to the fractional orders
of a special derivative with k < γk < (k + 1) 6 n. The function f (x, t) is the source term, the functions
Qk(x) are well defined and known, and P is a real constant. We also assume the initial condition (IC)
as:

u(x, 0) = h(x), 0 < x 6 H, (1.2)

and the boundary conditions (BCs):

u(0, t) = z1(t), u(H, t) = z2(t), 0 < t 6 T. (1.3)

In addition, the proposed GFPDEs (1.1) represent a great generalization of significant types of many
applications. As special cases: at γ1 , 0, γk = 0, equation (1.1) reduces to a space-fractional
order diffusion equation, and when γ0, γ1 , 0, γk = 0, then (1.1) becomes a space-fractional order
advection-dispersion equation, which they will be studied in the application section, and more.

The rest of the paper is organized as: section two contains some notations of Chebyshev sixth kind
and its properties; also, some properties of the Caputo’s derivative are briefly listed. While, in section
three the description of the solution process is presented. In section four, the numerical scheme based
on the collocation method is obtained. Finally, section five contains the numerical applications and
results, also comparisons with the previous works listed literately.

2. Main notations

In this section, some definitions and properties for the sixth kind Chebyshev polynomials [30] and
fractional derivative [31] are listed.

2.1. Sixth-kind Chebyshev polynomials

The basis polynomials used in this work are the Chebyshev polynomials of the sixth-kind Yn(x)
and they are defined as: an orthonormonal polynomials in x of degree n defined on the closed interval
[−1, 1]. The polynomials Yk(x), k = 0, 1, ..., n form an orthogonal system and the orthogonality
relation is:

∫ 1

−1
x2(1 − x2)

1
2 Yi(x)Y j(x)dx =

π

22i+3


1, if i=j, and i, j even,
(i+3)
(i+1) , if i=j, and i, j odd,
0, if j , i,

. (2.1)

By the usual transformation, which transforms the interval [−1, 1] to the interval [0, 1], the shifted
Chebyshev polynomials of the sixth-kind Y∗n(x) are defined as:

Y∗n(x) = Yn(2x − 1), f or all n. (2.2)
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The shifted Chebyshev polynomials of the sixth-kind Y∗n(x) are orthogonal on the closed interval [0, 1],
and are generated by using the following recurrence relation

Y∗i+1(x) = (2x − 1)Y∗i (x) − (i+1)(i+2)+(−1)i+1(2i+3)+1
(4i+4)(i+2) Y∗i−1,

Y∗0(x) = 1, Y∗1(x) = 2x − 1, i ≥ 1.
(2.3)

From (2.1), it is not difficult to note that Y∗n(x), n ≥ 0, form an orthonormal system on [0, 1], and they
have an orthogonality relation as:

∫ 1

0
(2x − 1)2(x − x2)

1
2 Y∗i (x)Y∗j (x)dx =

π

22i+5


1, if i=j, and i, j even,
(i+3)
(i+1) , if i=j, and i, j odd,
0, if j , i,

. (2.4)

Proposition 1. The shifted polynomials Y∗n(x) are defined through the shifted second kind U∗n(x) by the
following formula:

Y∗n(x) =

n∑
k=0

gn,kU∗k (x), (2.5)

where

gn,k =
(−1)

n+k
2

2n


1, if n and k even,
−(k+1)

n+1 , if n and k odd,
0, other ,

.

Proof. The complete proof is given in [30]. �

According to Proposition 1, the following corollary is easy to prove.

Corollary 2.1. Shifted Chebyshev polynomials of the sixth-kind Y∗n(x) are explicitly expressed in terms
of U∗n(x) in the following form:

Y∗2n(x) =
1

22n

n∑
k=0

(−1)n+kU∗2k(x), (2.6)

and

Y∗2n+1(x) =
1

22n+1(n + 1)

n∑
k=0

(−1)n+k(k + 1)U∗2k+1(x). (2.7)

Corollary 2.2. shifted Chebyshev polynomials of the sixth-kind Y∗n(x) are explicitly expressed in terms
of xn, or the analytic form in the following form:

Y∗n(x) =

n∑
k=0

ρk,nxk, (2.8)

where

ρk,n =
22k−n

(2k + 1)!


∑ n

2

j=b k+1
2 c

(−1)
n
2 + j+k(2 j+k+1)!

(2 j−k)! , if n even,

2
(n+1)

∑ n−1
2

j=b k
2 c

(−1)
n+1

2 + j+k( j+1)(2 j+k+2)!
(2 j−k+1)! , if n odd,

where b.c is the floor function.
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According to relations (2.3), (2.5), (2.6), (2.7) and (2.8), the first four terms of Y∗n(x) are:

Y∗2(x) = −
1
2

+ (−1 + 2x)2,

Y∗3(x) =
1
8

(1 − 2x) + (−1 + 2x)
(
−

1
2

+ (−1 + 2x)2
)
,

where Y∗0(x) and Y∗1(x) are defined before in the recurrence relation (2.3). Proposition 1 gives the
connection formulae of the sixth-kind Chebyshev polynomials and the second Chebyshev
polynomials. In Ref [25], the authors drive the connection formulae, that can be express the sixth-kind
Chebyshev polynomials in terms of ultraspherical polynomials functions. Moreover, the ultraspherical
polynomials are generalized polynomials which may give Chebyshev polynomials of the first,
second-kinds and Legendre polynomials as special ones of them. The connection formulas between
the sixth-kind polynomials and these polynomials can be deduced as special cases of ultraspherical
polynomials functions and by extension, the sixth-kind inherits from them its ability and convergence.

Lemma 2.1. Shifted Chebyshev polynomials of the sixth-kind Y∗n(x) are bounded according to the
following form:

|Y∗n(x)| <
n2

2n , f or all x ∈ [0, 1]. (2.9)

The full proof is in [30], and it directly given from the connection relation (2.5).

2.2. The Caputo’s fractional derivative

The Caputo’s fractional derivative operator Dγ
t (instead of C

0 Dγ
t for short) of order γ is characterized

in the following form:

Dγ
t Ψ (x) =

1
Γ(n − γ)

∫ x

0

Ψ (n)(t)
(x − t)γ−n+1 dt, γ > 0, (2.10)

where x > 0, n − 1 < γ ≤ n, n ∈ N0, and N0 = N − {0}.

• Property 1

Dγ
t
∑m

i=0 λi Ψi(x) =
∑m

i=0 λi Dγ
t Ψi(x), where λi and γ are constants.

• Property 2

The Caputo fractional differentiation of a constant is zero.
Such that: Dγ K = 0, where K is a constant,

• Property 3

Dγ
t xk =

 0, for k ∈ N0 and k < dγe
Γ(k+1) xk−γ

Γ(k+1−γ) , for k ∈ N0 and k ≥ dγe
,
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where dγe denotes to the smallest integer greater than or equal to γ. For more properties about the
Caputo’s derivative see [32, 33]

Remark 1. In this work, we write the fractional Caputo’s operator symbol Dγ instead of C
0 Dγ

x for short.

Remark 2. In this work, the shifted Chebyshev polynomials of the sixth-kind Y∗n(x) are considered,
which are defined on [0, 1] then upper limit of the space argument H in (1.1) becomes 1.

3. Process the solution

In the spectral method, in contrast, the function Ψ(x) may be expanded by shifted Chebyshev
polynomials of the sixth-kind series, which Ψ(x) is a square-integrable in [0, 1], [29, 30, 34]:

Ψ(x) =

∞∑
n=0

anY∗n(x). (3.1)

Lemma 3.1. The series in (3.1) uniformly converges to Ψ(x), where the following relation holds:

|an| <
L

2n3 , f or all n > 3, (3.2)

and L is some positive constant provided from:

|Ψ(x)(3)| ≤ L. (3.3)

Lemma 3.2. The global error eN(x) for the function Ψ(x) defined in (3.1), such that:
eN(x) =

∑∞
n=N+1 anY∗n(x), is bounded and the following relation is valid:

eN(x) <
L

2N . (3.4)

The proof of Lemma 3.2 is found in [30], and it refers to that the error almost tends to zero in the
case of a large N. By truncate series (3.1) to N < ∞, then the approximation of Ψ(x) is given by a finite
sum of (N + 1)−terms and expressed in the following form:

Ψ(x) �
N∑

n=0

anY∗n(x) = ΨN(x). (3.5)

The coefficients an in relation (3.5) are given by the following relation:

an =
1
εn

∫ 1

0
(2x − 1)2(x − x2)

1
2 Ψ(x)Y∗n(x)dx, (3.6)

and εn is given from:

εn =

{ π
22n+5 , if n even,
π(i+3)

22n+5(i+1) , if n odd. (3.7)

According to the definition of Caputo’s fractional derivative (2.10), property 1 and the analytic form
(2.8) the following theorem is introduced.
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Theorem 1. The fractional derivative of order γ for the polynomials Y∗n(x) is given by:

DγY∗n(x) =

{ ∑n
k=dγe %k,nxk−γ, when n ≥ dγe,

0, when n < dγe,
(3.8)

and
%k,n =

Γ(k + 1)ρk,n

Γ(k + 1 − γ)
, (3.9)

where, %k,n is defined in Corollary 2.2.

Proof. According to (2.10) (the Caputo’s operator) and the relation given in corollary 2.2 it is easy to
obtain the result, for more details see [24, 30, 35]. �

Theorem 2. Assume that, ΨN(x) is an approximated function of Ψ(x) in terms of shifted Chebyshev
polynomials of the fifth kind as (3.5), then the Caputo fractional derivative of order γ when operating
ΨN(x) is given by:

DγΨN(x) =

N∑
k=dγe

k∑
j=dγe

ak% j,kx j−γ, (3.10)

where, %k,n is defined in Corollary 2.2.

Proof. According to Theorem .1 and relation (3.5) one writes:

DγΨN(x) = Dγ
N∑

k=0

akY∗k (x)

=

N∑
k=dγe

akDγY∗k (x)

=

N∑
k=dγe

k∑
j=dγe

ak% j,kx j−γ,

(3.11)

then the result (3.10) is easily obtained. �

4. Numerical scheme

Consider the generalized space fractional partial differential equations of the type given in equation
(1.1) with their given conditions. In order to use the Chebyshev sixth-kind collocation method, let us
approximate u(x, t) as follows [36, 37]:

u(x, t) � uN(x, t) =

N∑
k=0

φk(t)Y∗k (x). (4.1)

Substituting (4.1) in (1.1), we obtain

n∑
k=0

Qk(x)
N∑

i=0

φi(t)
dγkY∗i (x)

dγk x
+ P

N∑
i=0

Y∗k (x)
dφi(t)

dt
= f (x, t), (4.2)
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with the help of Theorem 1, then
n∑

k=0

Qk(x)
N∑

i=0

φi(t)
i∑

j=dγke

% j,ix j−γk + P
N∑

i=0

Y∗k (x)
dφi(t)

dt
= f (x, t). (4.3)

Now, we turn to collocate equation (4.3) at (N + 1) points, the collocation points are defined in the
following form:

xl =
l
N
, l = 0, 1, 2, ...,N. (4.4)

By substituting the collocation points (4.4) in (4.3), we get
n∑

k=0

Qk(xl)
N∑

i=0

φi(t)
i∑

j=dγke

% j,ix
j−γk
l + P

N∑
i=0

Y∗k (xl)
dφi(t)

dt
= f (xl, t). (4.5)

Also, two additional equations may generate from the boundary conditions using relation (4.1) in (1.3)
as:

N∑
k=0

φk(t)Y∗k (0) = z1(t),
N∑

k=0

φk(t)Y∗k (L) = z2(t), 0 < t ≤ T. (4.6)

The collocated Eq (4.5), together with the generated equations of the boundary conditions (4.6), give
us an ordinary system of differential equations with φk(t) as the unknowns, which can be solved by a
suitable technique. Using the initial conditions (1.2) and by the help of relation (4.1) and the
orthogonality (2.4), we can generate initial conditions for the proposed system of differential
equations, the IC may take the form:

N∑
k=0

φk(0)Y∗k (x) = h(x), (4.7)

and by expanding h(x) in terms of Y∗k (x) and comparing the coefficients, then we get the constants φk

in the initial case at t = 0, (φk(0)). The produced system of ordinary differential equations according
to (4.5) is linear and generally has the following matrix form:

Q̄Φ + PYΦ′ = F, (4.8)

where

Y =



Y∗0(x0) Y∗0(x1) Y∗0(x2)... Y∗0(xN)
Y∗1(x0) Y∗1(x1) Y∗1(x2)... Y∗1(xN)
Y∗2(x0) Y∗2(x1) Y∗2(x2)... Y∗2(xN)
...

...
...

...

Y∗N(x0) Y∗N(x1) Y∗N(x2)... Y∗N(xN)


, Φ =



φ0(t)
φ1(t)
φ2(t)
...

φN(t)


, F =



f (x0, t)
f (x1, t)
f (x2, t)
...

f (xN , t)


,

and Q̄ is a square constant matrix representing the coefficients of the unknowns φk(t), which is featured
by the first column is null. Additionally, (4.8) may be written as:

Φ′ = −
1
P

(
Y−1Q̄Φ − Y−1F

)
, (4.9)

therefore, the system (4.9) is ready to be solved with a suitable solver technique, under the subjected
initial conditions (4.7).
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5. Numerical applications

In this section, several numerical applications (physical models) have been given to illustrate the
accuracy and effectiveness of the method.

Example 1:

Consider the following space fractional order PDE:

Q0(x)
∂γ0u(x, t)
∂γ0 x

+ P
∂u(x, t)
∂t

= f (x, t). (5.1)

The IC is:
u(x, 0) = x2, 0 < x ≤ 1, (5.2)

and the BCs:
u(0, t) = 0, u(1, t) = (t + 1), 0 < t ≤ T. (5.3)

Equation (5.1) is obtained when γ0 , 0, γk = 0, in Eq (1.1), and 0 < γ0 < 1 where the exact solution
of Eq (5.1) under conditions (5.2) and (5.3) is u(x, t) = x2(t + 1), with Q0(x) = P = 1 and the function
f (x, t) is (1.91116 + 1.91116t)x1.1 + x2 at γ0 = 0.9. At N = 3, according to (4.1) we have

u3(x, t) =

3∑
k=0

φk(t)Y∗k (x). (5.4)

By the same process, as Eqs (4.2)-(4.9), we have

Y =


1 −1 1

2 −3
8

1 −1
3 − 7

18
37

216
1 1

3 − 7
18 − 37

216
1 1 1

2
3
8

 , F =


0

−1
9 − 0.298653(1.91116 + 1.91116t)
−4

9 − 0.640176(1.91116 + 1.91116t)
−2.91116 − 1.91116t

 ,

Q̄ =


0 0 0 0
0 −1.88355018 1.48400923 0.20146920
0 −2.018739104 −0.85643477 0.56549455
0 −2.102274012 −3.4400847 −3.90081038

 ,
(5.5)

and by expanding h(x) = x2 (the IC) in terms of Y∗k (x) according to (2.4) and comparing the coefficients,
then we get the initial conditions of the differential system as:

(φ0(0), φ1(0), φ2(0), φ3(0)) =

(
3
8
,

1
2
,

1
4
, 0

)
. (5.6)

Two additional equations may generate from the boundary conditions (5.3) using relation (4.1) in (5.3),
then

φ0(t)Y∗0(0) + φ1(t)Y∗1(0) + φ2(t)Y∗2(0) + φ3(t)Y∗3(0) = 0,
φ0(t)Y∗0(1) + φ1(t)Y∗1(1) + φ2(t)Y∗2(1) + φ3(t)Y∗3(1) = (t + 1), 0 < t ≤ T.

(5.7)
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System (4.9) with matrices (5.5) and the initial conditions (5.6) is a system of differential equations,
(equations (5.7) may be replaced with the last two equations in (4.9)) the Runge-Cotta method of the
fourth-order (RK4) is used here with h step size equal to 0.01 with 100 iterations means that 0 ≤ t ≤ 1,
(the regular algorithm for RK4 is coded by the authors using Mathematica.10. package) the numerical
results obtained as:

(φ0(0.2), φ1(0.2), φ2(0.2), φ3(0.2)) =
(
0.45, 0.6, 0.3, −3.05311 × 10−17

)
,

(φ0(0.5), φ1(0.5), φ2(0.5), φ3(0.5)) =
(
0.5625, 0.75, 0.375, −3.7736 × 10−17

)
,

(φ0(1), φ1(1), φ2(1), φ3(1)) =
(
0.75, 1.0, 0.5, −1.42132 × 10−17

)
.

(5.8)

According to (5.4), one obtains the approximate solution u3(x, 1) (at t = 1 ) using the last row in (5.8)
as:

u3(x, 1) = 0.75 × Y∗0(x) + 1.0 × Y∗1(x) + 0.5 × Y∗2(x) − 1.42132 × 10−17 × Y∗3(x). (5.9)

As references [36–38], their numerical results were obtained using a finite difference method (FDM)
for the differential system. We turn to solve the system (4.9) with matrices (5.5) using FDM. Then,

φk(tn) = φn
k , φ

′n
k =

φn
k − φ

n−1
k

∆t
.

Therefore, the system in Eq (4.9) with matrices (5.5), is discretized in the time and has the following
form:

Φn = Φn−1 −
∆t
P

(
Y−1Q̄Φn − Y−1F

)
, (5.10)

or
Φn = MΦn−1 − OF, (5.11)

where

M =

(
I +

∆t
P

Y−1
)−1

,O =
∆t
P

(
I +

∆t
P

Y−1
)−1

Y−1.

Hence, a sample of the numerical results for FDM is obtained as:

(φ0(0.5), φ1(0.5), φ2(0.5), φ3(0.5)) =
(
0.5625, 0.75, 0.375, −1.23267 × 10−16

)
,

(φ0(1.5), φ1(1.5), φ2(1.5), φ3(1.5)) =
(
0.9375, 1.25, 0.625, −1.0017 × 10−15

)
,

(φ0(2), φ1(2), φ2(2), φ3(2)) =
(
1.125, 1.5, 0.749999, −6.04192 × 10−16

)
.

(5.12)

In Table 1, the comparison of the absolute errors for the present method with both RK4 and FDM at
N = 3, ∆t = 0.01 where γ0 = 0.9, also, shows the numerical values of the approximate solution using
the proposed method (using both RK4 and FDM) with the exact solution. Also, Table 2 shows the L2

error norm [39] at N = 3 at different values of T . In Figure 1 and Figure 2, the comparison of the
exact and the approximate solutions with both RK4 and FD methods for example.1 with N = 3 and
T = 1, 2. Additionally, the CPU time used for getting the approximate solution by using the present
schemes at N = 3 is listed in Table 3. Table 3 shows that the time used for calculating the approximate
solution by RK4 is less than that given by FDM. We note that: all of the examples are implemented
by the help of Mathematica 7.1 package and handled on a usual machine (Intel(R)-core(TM)-i3, CPU-
3.43 GHz).
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Table 1. Numerical results using present method of example 1 for N = 3 and the absolute
error.

xi Exact RK4 FDM RK4 FDM
solution absolute error absolute error

0.0 0.0 8.88178 × 10−16 −1.66533 × 10−16 8.88178 × 10−16 1.66533 × 10−16

0.2 0.08 0.08000 0.08000 9.71445 × 10−16 4.44089 × 10−16

0.4 0.32 0.32000 0.32000 9.99201 × 10−16 3.88578 × 10−16

0.6 0.72 0.72000 0.72000 1.22125 × 10−15 2.22045 × 10−16

0.8 1.28 1.28000 1.28000 1.11022 × 10−15 0.000000
1.0 2.0 2.0000 2.0000 1.77636 × 10−16 2.22045 × 10−16

Table 2. L2 error norm for example 1 at N = 3.

T RK4 FDM
0.5 5.16296 × 10−31 2.22487 × 10−32

1.0 4.92007 × 10−30 2.99948 × 10−31

1.5 2.67486 × 10−29 1.142817 × 10−30

2.0 1.82864 × 10−30 1.152788 × 10−30

Table 3. The CPU time used by seconds, for example 1 at N = 3.

RK4 FDM
T = 1.0 11.012 11.744
T = 2.0 11.341 12.536
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Figure 1. The exact and the approximate solutions with RK4 and FDM for example 1 with
N = 3 and T = 1.
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Figure 2. The exact and the approximate solutions with RK4 and FDM for example 1 with
N = 3 and T = 2.

Example 2:

Consider the following generalized space fractional order diffusion equation of the following type:

Q1(x)
∂γ1u(x, t)
∂γ1 x

+ P
∂u(x, t)
∂t

= f (x, t), (5.13)

if 1 < γ1 < 2, at Q1(x) = −Γ(1.2)x1.8, P = 1, f (x, t) = −3x2(−1 + 2x)e−t, then equation (5.13) has the
exact solution of the form u(x, t) = x2(1 − x)e−t at γ1 = 1.8, which is mentioned in [36–38]. The IC is:

u(x, 0) = x2(1 − x), 0 < x ≤ 1, (5.14)

and the BCs:
u(0, t) = u(1, t) = 0, 0 < t ≤ T. (5.15)

At N = 3, according to (4.1), (using same process (4.2)-(4.9)), we have

F =


0
e−t

9
−4e−t

9
−3e−t

 , Q̄ =


0 0 0 0
0 0 0.127087912 × (6.9942835) 0.127087912 × (−9.325711)
0 0 0.44254581 × (8.03432196) 0.44254581 × (2.6781073)
0 0 0.918168742 × (8.712995) 0.918168742 × (17.42599)

 , (5.16)

and C not changed for N = 3 as example 1. In addition, by expanding h(x) = x2(1− x) in terms of Ck(x)
according to (2.4) and comparing the coefficients, then we get the initial conditions of the differential
system as:

(φ0(0), φ1(0), φ2(0), φ3(0)) =

(
1
16
,

3
64
, −

1
8
, −

1
8

)
. (5.17)

The generated equations from the homogeneous boundary conditions (5.15) using relation (4.1) are:

φ0(t)C0(0) + φ1(t)C1(0) + φ2(t)C2(0) + φ3(t)C3(0) = 0,
φ0(t)C0(1) + φ1(t)C1(1) + φ2(t)C2(1) + φ3(t)C3(1) = 0, 0 < t ≤ T.

(5.18)
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System (4.9) with matrices (5.16) and the initial conditions (5.17) is a system of differential equations,
by replacing Eqs (5.18) with the last two equations in (4.9) the RK4 method used as example.1 with
0 ≤ t ≤ 2. The RK4 method’s numeric results at t = 1, t = 2, N = 3 are obtained as:

(φ0(1.0), φ1(1.0), φ2(1.0), φ3(1.0)) =

(0.0229925, 0.0172443, −0.0459849, −0.0459849),
(φ0(2.0), φ1(2.0), φ2(2.0), φ3(2.0)) =

(0.00845846, 0.00634384, −0.0169169, −0.0169169).

(5.19)

As example.1 we turn to solve the system (4.9) with matrices (5.16) using FDM. Then, using same
process as (5.10), (5.11) the results are obtained. The FDM method’s numeric results at t = 1, t = 2,
and N = 3 are obtained as:

(φ0(1.0), φ1(1.0), φ2(1.0), φ3(1.0)) =

(0.0229913, 0.017242685, −0.0459863702, −0.045985442),
(φ0(2.0), φ1(2.0), φ2(2.0), φ3(2.0)) =

(0.00826897, 0.006068955, −0.01714489, −0.01699315).

(5.20)

In Table 4 the comparison of the absolute errors for the present two schemes at N = 3, T = 2 with the
methods mentioned in [36–38]. Also, the numerical absolute errors are represented in Table 4 for the
collocation method with Chebyshev first [38] second [36] and third [37] kinds. These values show that
the sixth kind gives a more accurate approximate solution using the proposed method with RK4, but
less accuracy is given when using regular FDM with the present method. Additionally, Table 5 shows
the L2 error norm at N = 3 at two values of T . The CPU time used for getting the approximate solution
by using the present schemes at N = 3 is listed in Table 6. In Figure 3 and Figure 4 the comparison
of the exact and the approximate solutions with both RK4 and FD methods for example.2 with N = 3
and T = 1, 2.

Table 4. Comparing absolute errors for present technique at N = 3, T = 2 with different
methods in example 2.

xi 1st kind [38] 2nd kind [36] 3rd kind [37] RK4 FDM
0 2.74 × 10−5 0.0000 0.0000 2.60209 × 10−18 2.515 × 10−17

0.2 3.76 × 10−5 6.25 × 10−7 5.65 × 10−6 4.098 × 10−11 4.758 × 10−6

0.4 3.27 × 10−5 7.97 × 10−7 7.64 × 10−6 3.281 × 10−10 3.855 × 10−5

0.6 1.94 × 10−5 6.58 × 10−7 6.80 × 10−6 1.1078 × 10−9 1.3066 × 10−4

0.8 4.92 × 10−5 3.45 × 10−7 3.98 × 10−6 2.626 × 10−9 3.1037 × 10−4

1.0 7.73 × 10−5 0.0000 0.0000 5.1299 × 10−9 6.0695 × 10−4

Table 5. L2 error norme for example 2 at N = 3.

RK4 FDM
L2 at T = 1 7.32826 × 10−22 8.40768 × 10−13

L2 at T = 2 1.64627 × 10−17 2.302123 × 10−8
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Table 6. The CPU time used by seconds, for example 2 at N = 3.

RK4 FDM
T = 1.0 12.214 12.224
T = 2.0 12.301 12.481
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Figure 3. The exact and the approximate solutions with RK4 and FDM for example 2 with
N = 3 and T = 1.
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Figure 4. The exact and the approximate solutions with RK4 and FDM for example 2 with
N = 3 and T = 2.

Example 3:
Consider the following space fractional-order advection-dispersion equation of the following type:

Q1(x)
∂γ1u(x, t)
∂γ1 x

+ Q0(x)
∂γ0u(x, t)
∂γ0 x

+ P
∂u(x, t)
∂t

= f (x, t), (5.21)

if 1 < γ1 < 2 and 0 < γ0 < 1 at Q1(x) = −1, Q0(x) = 1, P = 1 and
f (x, t) = e−2t

(
−2 (xγ1 − xγ0) − (Γ(γ1 + 1) + Γ(γ0 + 1)) +

Γ(γ1+1)
Γ(1−γ0+γ1) xγ1−γ0

)
, then, Equation (5.21) has the

exact solution of the form u(x, t) = (xγ1 − xγ0)e−2t, this case mentioned in [40–42] with γ1 = 2, γ0 = 1,
where, the IC is:

u(x, 0) = xγ1 − xγ0 , 0 < x ≤ 1, (5.22)
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and the BCs are homogeneous as:

u(0, t) = u(1, t) = 0, 0 < t ≤ T. (5.23)

At N = 3, γ1 = 2, γ0 = 1, according to (4.1), (using same process (4.2)-(4.9)), we have:

F =


3e−2t

17e−2t

9
11e−2t

9
e−2t

 , Q̄ =


0 −2 12 −115

4
0 −2 28

3 −89
12

0 −2 20
3

103
12

0 −2 4 77
4

 , (5.24)

and C not changed for N = 3 as example 1 and example 2. In addition, by expanding h(x) = xγ1 − xγ0

in terms of Ck(x) according to (2.4) and comparing the coefficients, then we get the initial conditions
of the differential system at N = 3, γ1 = 2, γ0 = 1 as:

(φ0(0), φ1(0), φ2(0), φ3(0)) =

(
−

1
8
, 0,

1
4
, 0

)
. (5.25)

The generated equations from the homogeneous boundary conditions (5.23) are same as (5.18) using
relation (4.1) in example 2. The system (4.9) with matrices (5.24) and the initial conditions (5.25) is a
system of differential equations, by replacing the generated equations from the homogenous boundary
conditions with the last two equations in (4.9), the RK4 method will be used as examples 1 and 2
with 0 ≤ t ≤ 2. As references [41, 42] the numerical results are obtained using FDM except [40]
used the non-standard FDM for the differential system. As example 1 and example 2 we turn to
solve the system (4.9) with matrices (5.24) using FDM. Then we use same elements as example 2,
as system (5.10), (5.11) but using matrices (5.24). In Table 7 the comparison of the absolute errors
for the present method (using the two proposed schemes) at N = 3, where γ1 = 2, γ0 = 1, T = 2
with the methods mentioned in [40–42]. Also, it shows the numerical values of the proposed method
gives best approximate solution except [40] which uses a modified technique (the non-standard FDM
with Vieta-Lucas polynomials), where [41] uses Legendre polynomials FDM and [42] uses fourth kind
Chebyshev polynomials with FDM. Table 8 gives the L2 error norm along the interval [0, 1] at N = 3
with two values of T . The CPU time used for getting the approximate solution by using the present
schemes at N = 3 is listed in Table 9. In Figure 5 and Figure 6 the comparison of the exact and the
approximate solutions with both RK4 and FD methods for example.3 with N = 3 and T = 1, 2.

Table 7. Comparing absolute errors for present technique at N = 3, T = 2 with different
methods for example 3.

xi Vieta-Lucas [40] Legendre [41] 4th kind [42] RK4 FDM
0 2.553 × 10−19 2.726 × 10−5 2.198 × 10−5 1.468 × 10−13 4.670 × 10−6

0.2 5.664 × 10−17 3.810 × 10−5 2.606 × 10−5 1.373 × 10−13 4.164 × 10−6

0.4 8.651 × 10−17 3.514 × 10−5 2.865 × 10−5 1.282 × 10−13 3.711 × 10−6

0.6 8.814 × 10−17 2.387 × 10−5 2.915 × 10−5 1.196 × 10−13 3.309 × 10−6

0.8 5.849 × 10−17 1.120 × 10−5 2.704 × 10−5 1.114 × 10−13 2.960 × 10−6

1.0 2.553 × 10−19 7.257 × 10−7 2.489 × 10−5 1.036 × 10−13 2.664 × 10−6
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Table 8. L2 error norme for example 3 at N = 3.

RK4 FDM
L2 at T = 1 1.78181 × 10−26 3.3858907 × 10−12

L2 at T = 2 5.45304 × 10−26 4.572773 × 10−12

Table 9. The CPU time used by seconds, for example 3 at N = 3.

RK4 FDM
T = 1.0 7.520 7.601
T = 2.0 7.531 7.612

à

à

à

à

à

à

à

à

à
à à à

à

à

à

à

à

à

à

à

àæ

æ

æ

æ

æ

æ

æ

æ

æ
æ æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æÄ

Ä

Ä

Ä

Ä

Ä
Ä

Ä
ÄÄÄÄÄ

Ä
Ä

Ä

Ä

Ä

Ä

Ä

Ä

0.0 0.2 0.4 0.6 0.8 1.0

-0.030

-0.025

-0.020

-0.015

-0.010

-0.005

0.000

x

u 3
Hx,

1L Ä PM using FDM
æ PM using RC4
à exact solution

Figure 5. The exact and the approximate solutions with RK4 and FDM for example 3 with
N = 3 and T = 1.
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Example 4:

Consider the following space fractional-order advection-dispersion equation, similar to example 3, but
γ1 = 1.5, γ0 = 1 which is found at [40, 42, 43]:

Q1(x)
∂γ1u(x, t)
∂γ1 x

+ Q0(x)
∂γ0u(x, t)
∂γ0 x

+ P
∂u(x, t)
∂t

= f (x, t), (5.26)

with Q1(x) = −1, Q0(x) = 2, P = 1 and f (x, t) = −
4(−1+t)t

√
x

√
π

+ (−1 + 2t)(−1 + x)x + 2(−1 + t)t(−1 + 2x),

then, Equation (5.26) has the exact solution of of the form u(x, t) =
(
x2 − x

) (
t2 − t

)
, where, the IC is

homogeneous as:
u(x, 0) = 0, 0 < x ≤ 1, (5.27)

also, the BCs are homogeneous as:

u(0, t) = u(1, t) = 0, 0 < t ≤ T. (5.28)

Equation (5.26) according to (4.1), by using the same process (4.2)-(4.9) where C not changed for
N = 3 as the previous examples, we have

F =



2(−1 + t)t
2
9

(
−1 + 2t + 3(−1 + t)t + 6

√
3
π
(−1 + t)t

)
2
9

(
−1 + 2t − 3(−1 + t)t + 6

√
6
π
(−1 + t)t

)
2
(
−1 + 2

√
π

)
(−1 + t)t


, Q̄ =


0 −4 8 −19

2

0 −4
(

8
3 + 16

√
3π

) (
7
6 −

80
3
√

3π

)
0 −72

18
48
18

(
−1 + 2

√
6
π

)
1
18

(
21 − 32

√
6
π

)
0 −4

(
−8 + 16

√
π

)
1
2

(
−19 + 32

√
π

)

.

(5.29)

Additionally, by the homogeneity of the IC, then, we get zero initial conditions of the differential
system as:

(φ0(0), φ1(0), φ2(0), φ3(0)) = (0, 0, 0, 0) . (5.30)

The generated equations from the homogenous boundary conditions (5.28) are the same as given in
example 2 and example 3. The system (4.9) with matrices (5.29) has zero ICs, by replacing the
generated equations from the homogenous boundary conditions with the last two equations in (4.9),
the RK4 used as examples 2, 3 with 0 ≤ t ≤ 2. As ref [40] the numerical results were obtained using
the non-standard FDM for the differential system with the aid of Vieta-Lucas polynomials. Therefore,
as example 3 we turn to solve the system (4.9) with matrices (5.24) using FDM. Then we use same
elements as examples 2, 3, for system (5.10), (5.11) but using matrices (5.29). The numerical
comparisons will hold only with [40] because the results in [42, 43] (collocation method with fourth
and second Chebyshev kinds) are less than 10−5, it is much less accurate than indicated in our results.
In Table 10 the comparison of the absolute errors for the present two schemes (PM with RK4 and
FDM) at N = 3, where γ1 = 1.5, γ0 = 1, T = 0.5 with [40], while same comparison given in Table 11
but T = 0.5. Also, it shows the numerical values of the proposed method gives a highly accurate
approximate solution with RK4, and [40] which uses a modified technique gives accuracy near PM
with FDM. Table 12 gives the L2 error norm along the interval [0, 1] at N = 3 with three values of T .
The CPU time used for getting the approximate solution by using the present schemes at N = 3 is
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listed in Table 13. In Figure 7, Figure 8 and Figure 9 the comparison of the exact and the approximate
solutions with both RK4 and FD methods for example 1 with N = 3 and T = 0.3, 0.5, 0.9. In the end,
we conclude that the Chebyshev sixth-kind series approximation gives a great accuracy when using
high appropriate accurate methods, and the Runge-Kota method remains one of the best methods in
dealing with linear systems, as was shown in the last two examples.

Table 10. Comparing absolute errors for present technique at N = 3, T = 0.5 with different
methods for example 4.

xi Vieta-Lucas [40] RK4 FDM
0 3.4690 × 10−18 5.92920 × 10−14 2.85879 × 10−8

0.2 3.1650 × 10−9 6.09512 × 10−14 2.95956 × 10−8

0.4 6.1190 × 10−9 2.86715 × 10−14 2.15646 × 10−8

0.6 7.4900 × 10−9 1.64799 × 10−14 9.54384 × 10−9

0.8 5.9080 × 10−9 5.34989 × 10−14 1.41734 × 10−9

1.0 3.4690 × 10−18 6.12982 × 10−14 6.26983 × 10−9

Table 11. Comparing absolute errors for present technique at N = 3, T = 0.9 with different
methods for example 4.

xi Vieta-Lucas [40] RK4 FDM
0 0.00000 6.71147 × 10−14 1.24743 × 10−7

0.2 2.519 × 10−9 6.98087 × 10−14 1.23685 × 10−7

0.4 5.121 × 10−9 3.58776 × 10−14 5.40521 × 10−8

0.6 6.461 × 10−9 1.28612 × 10−14 3.72924 × 10−8

0.8 5.202 × 10−9 5.46074 × 10−14 1.03484 × 10−7

1.0 0.00000 6.7538 × 10−14 9.76583 × 10−8

Table 12. L2 error norme for example 4 at N = 3.

RK4 FDM
L2 at T = 0.3 5.9062 × 10−27 3.6098871 × 10−16

L2 at T = 0.5 8.49361 × 10−27 1.3296583 × 10−15

L2 at T = 0.9 1.03879 × 10−26 3.2045995 × 10−14

Table 13. The CPU time used by seconds, for example 4 at N = 3.

RK4 FDM
T = 0.3 4.494 4.399
T = 0.5 4.510 4.794
T = 0.9 4.521 5.012
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Figure 7. The exact and the approximate solutions with RK4 and FDM for example 4 with
N = 3 and T = 0.3.
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Figure 8. The exact and the approximate solutions with RK4 and FDM for example 4 with
N = 3 and T = 0.5.
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Figure 9. The exact and the approximate solutions with RK4 and FDM for example 4 with
N = 3 and T = 0.9.
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6. Conclusions

A numerical study for a generalized form of linear space-fractional partial differential equations
(GFPDEs) is introduced using the Chebyshev sixth-kind series. The suggested general form
represents many fractional-order mathematical physics models, as advection-dispersion equation
(FADE) and diffusion equation (FDE). Additionally, the proposed scheme uses the shifted Chebyshev
polynomials of the sixth-kind, where the fractional derivatives are expressed in terms of Caputo’s
definition. Therefore, the collocation method is used to reduce the GFPDE to a system of ordinary
differential equations which can be solved numerically. Moreover, the classical fourth-order
Runge-Kotta method is used to treat the differential system as well as the finite difference method
which obtains a great accuracy. We have presented many numerical examples, where represent
mathematical physical models, that greatly illustrate the accuracy of the presented study to the
proposed GFPDE, and also show how that the sixth-kind polynomials are very competitive than
others.
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