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Abstract: Let k, l,m1,m2 be positive integers and let both p and q be odd primes such that pk =

2m1 − am2 and ql = 2m1 + am2 where a is odd prime with a ≡ 5 (mod 8) and a . 1 (mod 5). In
this paper, using only the elementary methods of factorization, congruence methods and the quadratic
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has only the positive integer solution (x, y, z) = (2, 2, 2).
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1. Introduction

Let a, b, c be fixed positive integers. Consider the exponential Diophantine equation

ax + by = cz. (1.1)

The following problem proposed by Jeśmanowicz [5] has been actively studied in the field of Eq (1.1).

Conjecture 1.1. Assume that a2 + b2 = c2. Then the Eq (1.1) has no positive integer solution (x, y, z)
other than x = y = z = 2.

The pioneering work related to Conjecture 1.1 was given by Sierpinśki [11], he showed that (2, 2, 2)
is the unique positive solution of the equation 3x + 4y = 5z. In the same journal, Jeśmanowicz [5]
obtained the same conclusion for the following cases:

(a, b, c) = (5, 12, 13), (7, 24, 25), (9, 40, 41), (11, 60, 61);

and furthermore he proposed Conjecture 1.1. After these works, Conjecture 1.1 has been proved to be
true for various particular cases. For recent results, we only refer to the papers of Deng et al. [3], Hu
and Le [4], Miyazaki [8,10], Miyazaki et al. [9], Terai [12], Yuan and Han [16] and the references given
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there. Most of the existing works on Conjecture 1.1 concern the coprimality case, that is, gcd(a, b) = 1.
Indeed, all of the above mentioned results treat the coprimality case, and such a case is essential in the
study of the Eq (1.1). Actually, the non-coprimalty case, i.e. gcd(a, b) > 1, is a degenerate one in the
sense that Eq (1.1) can be often solved only by local arguments using the prime factors of gcd(a, b).
Recently, several authors actively studied the non-coprimality case about Conjecture 1.1. For any
primitive Pythagorean triple (a, b, c), we can write

A = aN, B = bN,C = cN,

where N is a positive integer. Without loss of generality, we may assume b is even. Then, (1.1) becomes

(aN)x + (bN)y = (cN)z. (1.2)

This equation has been solved for some special triples (a, b, c), without assuming any conditions
on N. For some results in this direction, we refer to the papers of Deng and Cohen [2], Yang and
Tang [14, 15], Deng [1], Ma and Chen [7], and the references given there. In particular, Tang and
Weng [13] very recently solved Eq (1.2) for the case where (a, b, c) is expressed as

a = 22r
− 1, b = 22r−1+1, c = 22r

+ 1,

where r is any positive integer. Note that this is the first result dealing with (1.2) for infinitely many
triples (a, b, c). Miyazaki [10] extend this result as follows: If b is a power of 2, then Conjecture 1.1 is
true. It is well known that any primitive Pythagorean triple (a, b, c) is parameterized as follows:

a = u2 − v2, b = 2uv, c = u2 + v2,

where u, v are co-prime positive integers of different parities with u > v. In this notation, the mentioned
result of Tang and Weng corresponds to (u, v) = (22r−1

, 1) with r ≥ 1, and the result of Miyazaki [10]
corresponds to (u, v) = (2r, 1) with r ≥ 1. In this paper we consider the exponential Diophantine
equation (

q2l − p2k

2
n
)x

+ (pkqln)y =

(
q2l + p2k

2
n
)z

, (1.3)

where k, l, n are positive integers and both p and q are odd primes such that pk = 2m1 − am2 and
ql = 2m1 + am2 , where a is odd prime with a ≡ 5 (mod 8) and a . 1 (mod 5), m1 and m2 are positive
integers. We obtain the following:

Theorem 1.1. Let k, l,m1,m2 be positive integers and let both p and q be odd primes such that pk =

2m1 − am2 and ql = 2m1 + am2 , where a is odd prime with a ≡ 5 (mod 8) and a . 1 (mod 5). Then the
Eq (1.3) has only the positive integer solution (x, y, z) = (2, 2, 2).

This paper is organized as follows. First of all, in Section 2, we show some preliminary lemmas
which are needed in the proof of Theorems 1.1. Then in Section 3, we give the proof of Theorem 1.1.
Finally in Section 4, we give some examples of applications of Theorems 1.1.
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2. Preliminaries

In this section, we present some lemmas that will be used later.

Lemma 2.1. ( [6]) If (x, y, z) is a solution of (1.2) with (x, y, z) , (2, 2, 2), then one of the following
conditions is satisfied

(i) max{x, y} > min{x, y} > z;
(ii) x > z > y;
(iii) y > z > x.

Lemma 2.2. ( [2, 10]) Assume that n > 1, then (1.2) has no solution (x, y, z) with
max{x, y} > min{x, y} > z.

Lemma 2.3. Let k, l,m1,m2 be positive integers and let both p and q be odd primes such that pk =

2m1 − am2 and ql = 2m1 + am2 , where a is odd prime with a ≡ 5 (mod 8). Then m2 ≡ 1 (mod 2).

Proof. On the contrary suppose that m2 is even. If m1 is also even, then we get from the condition

pk = 2m1 − am2 = (2
m1
2 + a

m2
2 )(2

m1
2 − a

m2
2 )

that
2

m1
2 + a

m2
2 = pk1 , 2

m1
2 − a

m2
2 = pk2 , k1 > k2 ≥ 0.

So
2

m1
2 +1 = pk2(pk1−k2 + 1),

thus would give k2 = 0 and 2
m1
2 − a

m2
2 = 1. If m1 > 2, then taking the equation 2

m1
2 − a

m2
2 = 1 modulo

4 yields −1 ≡ 1 (mod 4), which leads to a contradiction. Hence m1 = 2,m2 = 0, which contradicts the
condition that m2 is a positive integer. If m1 is odd, then we get from the condition

ql ≡ 2m1 + am2 ≡ 2 + 1 ≡ 0 (mod 3)

that q = 3 since q is prime. Taking modulo 4 for the equation 3l = 2m1 +am2 would give 3l ≡ 1 (mod 4).
It follows that l is even and

1 =

(
3l

a

)
=

(
2
a

)
= −1,

which leads to a contradiction. This completes the proof. �

Lemma 2.4. Assume that n = 1. If (x, y, z) is a solution of the Eq (1.3) with x ≡ y ≡ z ≡ 0 (mod 2),
then (x, y, z) = (2, 2, 2).

Proof. It is easy to find that m1 ≥ 3 by the condition pk = 2m1−am2 . We may write x = 2x1, y = 2y1, z =

2z1 by the assumption x ≡ y ≡ z ≡ 0 (mod 2). It follows from (1.3) that(
(22m1 + a2m2)z1 + (22m1 − a2m2)y1

) (
(22m1 + a2m2)z1 − (22m1 − a2m2)y1

)
= a2m1 x122(m1+1)x1 .

Since
gcd((22m1 + a2m2)z1 + (22m1 − a2m2)y1 , (22m1 + a2m2)z1 − (22m1 − a2m2)y1) = 2,
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then

(22m1 + a2m2)z1 + (22m1 − a2m2)y1 = 22(m1+1)x1−1,

(22m1 + a2m2)z1 − (22m1 − a2m2)y1 = 2 · a2m2 x1; (2.1)

or

(22m1 + a2m2)z1 + (22m1 − a2m2)y1 = 22(m1+1)x1−1 · a2m2 x1 ,

(22m1 + a2m2)z1 − (22m1 − a2m2)y1 = 2; (2.2)

or

(22m1 + a2m2)z1 + (22m1 − a2m2)y1 = 2 · a2m2 x1 ,

(22m1 + a2m2)z1 − (22m1 − a2m2)y1 = 22(m1+1)x1−1. (2.3)

If (2.1) holds, then taking modulo 4 for the former equation we get that

1 + (−1)y1 ≡ 0 (mod 4).

It follows that y1 is odd. On the other hand, subtracting the right equation from the left one yields

(2(m1+1)x1−1 + am2 x1)(2(m1+1)x1−1 − am2 x1) = (2m1 + am2)y1(2m1 − am2)y1 .

As
gcd(2(m1+1)x1−1 + am2 x1 , (2(m1+1)x1−1 − am2 x1)) = 1

and
2m1 + am2 = ql, 2m1 − am2 = pk,

we get
2(m1+1)x1−1 + am2 x1 = (2m1 + am2)y1 ,

2(m1+1)x1−1 − am2 x1 = (2m1 − am2)y1 .

Adding the two equations gives

2(m1+1)x1 = (2m1 + am2)y1 + (2m1 − am2)y1 . (2.4)

We claim that y1 = 1. On the contrary suppose y1 > 1. Note that y1 is odd, Eq (2.4) would give that

2(m1+1)(x1−1) =

(y1−1)/2∑
r=0

(
y1

2r

)
2m1(y1−2r−1)a2rm2 .

Thus y1am2(y1−1) ≡ 0 (mod 2), which is a contradiction. Therefore y1 = 1 and 2(m1+1)x1 = 2m1+1 yields
that x1 = 1. Substituting these values x = y = 2 and n = 1 into Eq (1.3) gives z = 2.

If (2.2) holds, then taking modulo 4 for the former equation we get that

1 + (−1)y1 ≡ 0 (mod 4).

AIMS Mathematics Volume 7, Issue 5, 8609–8621.
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It follows that y1 is odd. We then get taking modulo a for the former equation that

(−1)m1z1 ≡
(
2

a−1
2
)m1z1

≡ −
(
2

a−1
2
)m1y1

≡ −(−1)m1 (mod a).

It follows that z1 is even. Finally adding the two equations and then dividing it by 2 gives that

(22m1 + a2m2)z1 = 22(m1+1)x1−2 · a2m2 x1 + 1, (2.5)

which is impossible. Hence the Eq (2.2) is not true.
The Eq (2.3) is obviously not true since

22(m1+1)x1−1 ≥ 2 · 22m1 x1 > 2 · a2m2 x1 .

This completes the proof. �

Lemma 2.5. Assume that n = 1. Then the Eq (1.3) has only the positive integer solution (x, y, z) =

(2, 2, 2).

Proof. It is easy to find that is enough to prove that x ≡ y ≡ z ≡ 0 (mod 2) by Lemma 2.4. Substituting
the conditions pk = 2m1 − am2 and ql = 2m1 + am2 into the Eq (1.3) gives

am2 x2(m1+1)x + (22m1 − a2m2)y = (22m1 + a2m2)z. (2.6)

Taking modulo 4 for the above equation we get that

(−1)y ≡ 1 (mod 4).

It follows that y ≡ 0 (mod 2). We now prove that z is even. Taking modulo a for the Eq (2.6) gives

1 ≡ (−1)m1y ≡
(
2

a−1
2
)m1y
≡

(
2

a−1
2
)m1z
≡ (−1)m1z (mod a).

It follows that m1z ≡ 0 (mod 2). We claim that z ≡ 0 (mod 2). On the contrary suppose that z is odd,
then we must have that m1 is an even. Hence m2 is odd by Lemmas 2.3. On the other hand, since(

2
2m1 − am2

)
= −1,

( a
2m1 − am2

)
=

(
2m1

a

)
= 1,

(
22m1 + a2m2

2m1 − am2

)
=

(
2 · a2m2

2m1 − am2

)
= −1,

then (−1)x = (−1)z would give x is odd. Again taking the Eq (2.6) modulo 3 will lead to am2 x ≡ 1
(mod 3). Since m2 and x are both odd, this means that a ≡ 1 (mod 3). Therefore, ql ≡ 0 (mod 3), so
that q = 3. This gives

1 =

(a
3

)
=

(
3
a

)
=

(
2
a

)m1

= (−1)m1 = −1,

a contradiction. Therefore z is even. Finally we prove x is also even. The congruence modulo 2m1 −am2

of the Eq (2.6) gives
am2 x2(m1+1)x ≡ (22m1 + a2m2)z (mod 2m1 − am2).

Notice that ( a
2m1 − am2

)
=

(
2m1

a

)
= (−1)m1 ,

we have that

(−1)x = (−1)(2m1+1)x =

( a
2m1 − am2

)m2 x
(

2
2m1 − am2

)(m1+1)x

=

(
2

2m1 − am2

)z

= (−1)z.

This means that x is also even. This completes the proof. �
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3. Proof of Theorem 1.1

Assume that (x, y, z) is a positive integer solution with (x, y, z) , (2, 2, 2). Then we have by
Lemmas 2.1, 2.2 and 2.5 that n > 1 and either x > z > y or y > z > x. We shall discuss separately
two cases.

The case x > z > y. Then dividing Eq (1.3) by ny yields

(pkql)y = nz−y

((
q2l + p2k

2

)z

−

(
q2l − p2k

2

)x

nx−z

)
. (3.1)

Since gcd
(
(pkql)y,

(
q2l+p2k

2

)z)
= 1, we can observe that the two factors on the right-hand side are co-

prime. Hence then Eq (3.1) yields n = pu for some positive integer u and

qly =

(
q2l + p2k

2

)z

−

(
q2l − p2k

2

)x

pu(x−z), (3.2)

or n = qv for some positive integer v and

pky =

(
q2l + p2k

2

)z

−

(
q2l − p2k

2

)x

qv(x−z), (3.3)

or n = puqv for some positive integers u and v and

1 =

(
q2l + p2k

2

)z

−

(
q2l − p2k

2

)x

pu(x−z)qv(x−z). (3.4)

If (3.2) holds, then substituting the conditions pk = 2m1 − am2 and ql = 2m1 + am2 into Eq (3.2) would
give

2(m1+1)xam2 x pu(x−z) = (22m1 + a2m2)z − (2m1 + am2)y. (3.5)

Taking modulo 8 for Eq (3.5) leads to am2y ≡ 1 (mod 8). It follows that y is even since m2 is odd by
Lemma 2.3. Taking modulo 8 for equation pk = 2m1 − am2 leads to p ≡ −a ≡ 3 (mod 8). Again taking
modulo p for Eq (3.5) leads to

(2 · a2m2)z ≡ (2m1 + am2)y (mod p).

It follows that

(−1)z =

(
2
p

)z

=

(
2m1 + am2

p

)y

= 1.

Therefore z is even. Then we get from Eq (3.5) that

2(m1+1)xam2 x pu(x−z) = ((22m1 + a2m2)z/2 + (2m1 + am2)y/2)((22m1 + a2m2)z/2 − (2m1 + am2)y/2).

Since
(22m1 + a2m2)z/2 + (2m1 + am2)y/2 ≡ 2 (mod 4),

so it follows that
2(m1+1)x−1|(22m1 + a2m2)z/2 − (2m1 + am2)y/2,
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however, this is impossible since

2(m1+1)x−1 ≥ 2(m1+1)z = (4 · 22m1)z/2 > (22m1 + a2m2)z/2 − (2m1 + am2)y/2.

If (3.3) holds, then substituting the conditions pk = 2m1 − am2 and ql = 2m1 + am2 into Eq (3.3) would
give

2(m1+1)xam2 xqv(x−z) = (22m1 + a2m2)z − (2m1 − am2)y. (3.6)

Then taking modulo 4 for Eq (3.6) leads to (−1)y ≡ 1 (mod 4). It follows that y is even. Taking modulo
8 for equation qk = 2m1 + am2 leads to q ≡ a ≡ 5 (mod 8). Again taking modulo q for Eq (3.6) leads to

(2 · a2m2)z ≡ (2m1 − am2)y (mod q).

It follows that

(−1)z =

(
2
q

)z

=

(
2m1 − am2

q

)y

= 1.

Therefore z is even. Then similarly we get from Eq (3.6) that

2(m1+1)x−1|(22m1 + a2m2)z/2 − (2m1 + am2)y/2,

which is impossible by the above result that has been proved.
If (3.4) holds, then substituting the conditions pk = 2m1 − am2 and ql = 2m1 + am2 into Eq (3.4) would

give
2(m1+1)xam2 x pu(x−z)qv(x−z) = (22m1 + a2m2)z − 1. (3.7)

Taking modulo 8 for equation qk = 2m1 + am2 leads to q ≡ a ≡ 5 (mod 8). Again taking modulo q for
Eq (3.6) leads to

(2 · a2m2)z ≡ 1 (mod q).

It follows that (−1)z =
(

2
q

)z
=

(
1
q

)
= 1. Therefore z is even. Then similarly we get from Eq (3.7) that

2(m1+1)x−1|(22m1 + a2m2)z/2 − 1,

which is impossible by the above result that has been proved.
The case y > z > x. Then dividing Eq (1.3) by nx yields

am2 x2(m1+1)x = nz−x((22m1 + a2m2)z − (22m1 − a2m2)yny−z). (3.8)

It is easy to see that the two factors on the right-hand side are co-prime. Thus, Eq (3.8) yields n = as

for some positive integer s and

2(m1+1)x = (22m1 + a2m2)z − (22m1 − a2m2)yas(y−z), (3.9)

or n = 2r for some positive integer r with (m1 + 1)x = r(z − x) and

am2 x = (22m1 + a2m2)z − (22m1 − a2m2)y2r(y−z), (3.10)

or n = 2ras for some positive integers r and s and

1 = (22m1 + a2m2)z − (22m1 − a2m2)y2r(y−z)as(y−z). (3.11)

AIMS Mathematics Volume 7, Issue 5, 8609–8621.
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If (3.9) holds, taking modulo 4 for Eq (3.9) leads to (−1)y ≡ 1 (mod 4). It follows that y is even.
Taking modulo a for Eq (3.9) leads to

2(m1+1)x ≡ 22m1z (mod a).

It follows that

(−1)(m1+1)x =

(
2
a

)(m1+1)x

=

(
2
a

)2m1z

= 1.

It follows that (m1 + 1)x is even. Then we get from Eq (3.9) that

(2m1 + am2)y|((22m1 + a2m2)z/2 + 2(m1+1)x/2)((22m1 + a2m2)z/2 − 2(m1+1)x/2).

It follows either
(2m1 + am2)y|(22m1 + a2m2)z/2 + 2(m1+1)x/2,

or
(2m1 + am2)y|(22m1 + a2m2)z/2 − 2(m1+1)x/2.

Hence
(2m1 + am2)y ≤ (22m1 + a2m2)z/2 + 2(m1+1)x/2,

which is impossible since

(2m1 + am2)y > (22m1 + a2m2 + 2m1+1 · am2)z/2 > (22m1 + a2m2)z/2 + 2(m1+1)x/2.

If (3.10) holds, we first prove that r(y − z) = 2. In fact, taking modulo 4 for Eq (3.10) yields
2r(y−z) ≡ 0 (mod 4). Therefore r(y − z) ≥ 2. On the other hand, if r(y − z) ≥ 3, then taking modulo 8
for Eq (3.10) leads to am2 x ≡ 1 (mod 8). It follows that m2x is even. Taking modulo 3 for Eq (3.10)
leads to 1 ≡ am2 x ≡ 2z ≡ (−1)z (mod 3), which implies that z is even. Then we get from Eq (3.10) that

(2m1 + am2)y|((22m1 + a2m2)z/2 + am2 x/2)((22m1 + a2m2)z/2 − am2 x/2).

It follows either
(2m1 + am2)y|(22m1 + a2m2)z/2 + am2 x/2,

or
(2m1 + am2)y|(22m1 + a2m2)z/2 − am2 x/2.

Hence
(2m1 + am2)y ≤ (22m1 + a2m2)z/2 + am2 x/2,

which is impossible since

(2m1 + am2)y > (22m1 + a2m2 + 2m1+1 · am2)z/2 > (22m1 + a2m2)z/2 + am2 x/2.

So r(y − z) ≤ 2 and r(y − z) = 2. We now prove that

m1 ≡ m2 ≡ x ≡ z ≡ 1 (mod 2), y ≡ 0 (mod 2).

AIMS Mathematics Volume 7, Issue 5, 8609–8621.
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First taking modulo 8 for Eq (3.10) we get that

am2 x ≡ 1 − 4 ≡ 5 (mod 8).

It follows that m2x is odd. Again taking modulo 2m1 − am2 for Eq (3.10) leads to

am2 x ≡ (2 · a2m2)z (mod 2m1 − am2).

It follows that

(−1)m1m2 x =

( a
2m1 − am2

)m2 x
=

(
2

2m1 − am2

)z

= (−1)z

since ( a
2m1 − am2

)
=

(
2
a

)m1

= (−1)m1 .

Thus m1m2x ≡ z (mod 2). If z is even, then we get that m1 is also even. Finally taking modulo a for
Eq (3.10) leads to 22m1z ≡ 22m1y+2 (mod a). It follows that

1 ≡ (−1)m1z ≡ (2
a−1

2 )m1z ≡ (2
a−1

2 )m1y+1 ≡ (−1)m1y+1 = −1 (mod a),

which leads to a contradiction. Therefore we must have

m1 ≡ m2 ≡ x ≡ z ≡ 1 (mod 2), y ≡ 0 (mod 2).

Notice that (m1 + 1)x = r(z − x) and r(y − z) = 2, we must have that

z =
(m1 + 3)x

2
, y =

(m1 + 3)x
2

+ 1, m1 ≡ 3 (mod 4), m2 ≡ x ≡ 1 (mod 2). (3.12)

Taking modulo 3 for Eq (3.10) leads to a ≡ am2 x ≡ 2z ≡ 2 (mod 3). Taking modulo 3 for equation
pk = 2m1 − am2 leads to pk ≡ 0 (mod 3). It follows that p = 3 and taking modulo 4 for equation
3k = 2m1 − am2 we get that k is odd. If k ≡ 3 (mod 4) , we then get taking modulo 5 for equation
3k = 2m1 − am2 that a ≡ 1 (mod 5), which contradicts to the condition a . 1 (mod 5). If k ≡ 1
(mod 4) , then taking modulo 5 for equation 3k = 2m1 − am2 leads to

am2 ≡ 0 (mod 5).

It follows that a = 5 since a is prime. Substituting the Eq (3.12) and a = 5 into the Eq (3.10), we get
that

5m2 x = (22m1 + 52m2)
(m1+3)x

2 − 4 · (22m1 − 52m2)
(m1+3)x

2 +1. (3.13)

If m1 ≡ m2 (mod 3), say m1 ≡ m2 ≡ λ (mod 3). Then applying Fermat’s little theorem to Eq (3.13)
yields

22m1 − 52m2 ≡ 22λ − (−2)2λ ≡ 0 (mod 7),

which implies that 5m2 x ≡ 2(2λ+1)z (mod 7). This leads to −1 =
(

5
7

)
=

(
2
7

)
= 1, a contradiction. So in

the following discussion we will assume that m1 . m2 (mod 3). We now distinguish three cases.

Case 1: m1 ≡ 0 (mod 3). Then m1 ≡ 3 (mod 12).
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Subcase 1.1: m2 ≡ 1 (mod 3). Then m2 ≡ 1 (mod 6). Applying Fermat’s little theorem to Eq (3.13),
we get that 2x ≡ 3 (mod 7). It follows that

1 =

(
2
7

)
=

(
3
7

)
= −

(
7
3

)
= −1,

which is a contradiction.

Subcase 1.2: m2 ≡ 2 (mod 3). Then m2 ≡ 5 (mod 6). Applying Fermat’s little theorem to Eq (3.13),
we get that 4x ≡ 5 (mod 7). It follows that

1 =

(
4x

7

)
=

(
5
7

)
=

(
2
5

)
= −1,

which is a contradiction.

Case 2: m1 ≡ 1 (mod 3). Then m1 ≡ 7 (mod 12).

Subcase 2.1: m2 ≡ 0 (mod 3). Then m2 ≡ 3 (mod 6). Applying Fermat’s little theorem to Eq (3.13),
we get that 2x+1 + 22x ≡ 1 (mod 7). If x ≡ 0 (mod 3), then x ≡ 3 (mod 6), which yields to 3 ≡ 1
(mod 7), a contradiction. If x ≡ 2 (mod 3), then x ≡ 5 (mod 6), which yields to 3 ≡ 1 (mod 7), a
contradiction again. Therefore x ≡ 1 (mod 3), then x ≡ 1 (mod 6). Again applying Euler’s theorem
to Eq (3.13), we have that −1 ≡ 55 ≡ −7 (mod 9), which is also impossible.

Subcase 2.2: m2 ≡ 2 (mod 3). Then m2 ≡ 5 (mod 6). Applying Fermat’s little theorem to Eq (3.13),
we get that −1 ≡ 0 (mod 7), which is a contradiction.

Case 3: m1 ≡ 2 (mod 3). Then m1+3
2 ≡ 7 (mod 12) or m1+3

2 ≡ 1 (mod 12).

Subcase 3.1: m2 ≡ 0 (mod 3). Then m2 ≡ 3 (mod 6). Applying Fermat’s little theorem to Eq (3.13),
we get that 3x−1 ≡ 1 (mod 7). It follows that x ≡ 1 (mod 6), which implies either x ≡ 1 (mod 12)
or x ≡ 7 (mod 12). If the first case holds, then applying Fermat’s little theorem to Eq (3.13), we get
either

5, 8 ≡ 5m2 ≡ (222 + 56)7 − 4(222 − 56)8 ≡ 12 (mod 13),

or
5, 8 ≡ 5m2 ≡ (222 + 56) − 4(222 − 56)2 ≡ 6 (mod 13),

which leads to a contradiction. If the last case holds, then using Fermat’s little theorem to Eq (3.13),
we get either

5, 8 ≡ 57m2 ≡ (222 + 56) − 4(222 − 56)2 ≡ 6 (mod 13),

or
5, 8 ≡ 57m2 ≡ (222 + 56)7 − 4(222 − 56)8 ≡ 12 (mod 13),

which leads to a contradiction again.

Subcase 3.2: m2 ≡ 1 (mod 3). Then m2 ≡ 1 (mod 6). Using Fermat’s little theorem to Eq (3.13), we
get that

5x ≡ (222 + 52)7x − 4(222 − 52)7x+1 ≡ −1 − 2x ≡ −1 + 5x (mod 7).

This leads to 0 ≡ 1 (mod 7), a contradiction.
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If (3.11) holds, taking modulo 2m1 − am2 for Eq (3.11) leads to

(2 · a2m2)z ≡ 1 (mod 2m1 − am2).

It follows that

(−1)z =

(
2

2m1 − am2

)z

=

(
1

2m1 − am2

)
= 1.

Thus z is even. Then we get from Eq (3.11) that

(2m1 + am2)y|((22m1 + a2m2)z/2 + 1)((22m1 + a2m2)z/2 − 1).

It follows either
(2m1 + am2)y|(22m1 + a2m2)z/2 + 1

or
(2m1 + am2)y|(22m1 + a2m2)z/2 − 1.

Hence
(2m1 + am2)y ≤ (22m1 + a2m2)z/2 + 1,

which is impossible since

(2m1 + am2)y > (22m1 + a2m2 + 2m1+1 · am2)z/2 > (22m1 + a2m2)z/2 + 1.

This completes the proof.

4. Applications

In this section, we give some examples of applications of the result (see Table 1).

Table 1. Some examples of applications of the Theorem1.1.

pk ql m1 m2 a
3 13 3 1 5
3 29 4 1 13
33 37 5 1 5
3 61 5 1 29
33 101 6 1 37
35 269 8 1 13
3 1021 9 1 509
35 7949 12 1 3853
35 16141 13 1 7949

From the Table 1, one can easily see that the Conjecture 1.1 is true for the following cases:

(a, b, c) = (80n, 39n, 89n), (416n, 87n, 425n), (320n, 999n, 1049n), (1856n, 183n, 1865n),

(4736n, 2727n, 5465n), (6656n, 65367n, 65705n), (521216n, 3063n, 521225n),

(31563776n, 1931607n, 31622825n), (130236416n, 3922263n, 130295465n).

AIMS Mathematics Volume 7, Issue 5, 8609–8621.



8620

5. Conclusions

Jeśmanowicz’ conjecture is true for the following set of Pythagorean numbers:

q2l − p2k

2
n, pkqln,

q2l + p2k

2
n,

where p and q are odd primes such that pk = 2m1 − am2 and ql = 2m1 + am2 , a is odd prime with a ≡ 5
(mod 8) and a . 1 (mod 5).
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