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1. Introduction 

The COVID-19 belongs to a large class of deadly viruses that have infected millions of people 
around the world and seriously challenged not only their lifestyles but also the economies and GDP of 
countries themselves. It was first identified as the cause of many pneumonia cases in December 2019, 
when the first case of respiratory infection was reported in Wuhan, China [1]. Transmission of the 
coronavirus typically occurs when an exposed person catches infected droplets released by infected 
people while sneezing, exhaling, or coughing. In general, 80 to 85% of infected people recover from 
the COVID-19 pandemic without specific treatment [2]. Confirmed cases of COVID-19 infection 
worldwide have risen to nearly 110 million, with more than 2.4 million deaths due to the disease. 
According to Worldometers [3], the total number of active cases in the world on March 19, 2020, 
was 32,129 and the total number of deaths worldwide was recorded as 4.6 million. The maximum 
number of deaths due to COVID-19 in the United States, Brazil, India, Russia, Mexico, and Pero 
were recorded as 0.6, 0.58, 0.44, 0.26, and 0.19 million, respectively. Worldometers data shows that 
on Jan 17, 2022, the total number of cases in the world was 328,677,751, a total number of deaths 
were recorded as 5.5 million and deaths due to COVID-19 in the United States, Brazil, India, Russia, 
Mexico, and Pero were recorded as 0.87, 0.62, 0.48, 0.30 and 0.20 million, respectively. 

Like many other research questions regarding COVID-19 disease, reliable estimation of 
transmission dynamics is an important part of the research. The novel COVID-19 is still causing 
great panic among people around the world. The world is facing the fifth wave of this new epidemic. 
Various approaches are being considered to combat this deadly disease. These approaches have been 
offered in the form of modeling, data analysis, control of disease spread and clinical insights. Saif 
Ullah and Khan developed a mathematical model to study the transmission dynamics and potential 
control of the COVID-19 pandemic in Pakistan by formulating a mathematical model without 
optimal control and time-dependent control variables [4]. It was concluded that the implementation 
of strict social distancing and contact tracing for those exposed to quarantine is the most effective 
strategy to minimize the disease burden. Naveed et al. studied the mathematical analysis of the 
coronavirus model with time delay effect by analyzing the reproduction number of the model. Social 
distancing, travel restrictions, quarantine, isolation, and hospitalization were seen as delaying factors 
and it was concluded that more delaying tactics ultimately led to control of the pandemic [5]. 
Shatanawi et al. studied the stochastic coronavirus model by developing Euler Maruyama, stochastic 
Euler and stochastic RK methods respectively [6]. A non-standard finite difference approach has 
been developed which preserves dynamic consistency, boundedness and positivity. Moreover, the 
results were compared with the deterministic model. N. Shahid et al. have developed a 
Spatio-temporal epidemic model of the COVID-19 with advection and diffusion process and 
discussed the consistency, stability, and positivity of the developed model [7]. Naveed et al. have 
developed a mathematical model for the transmission of COVID-19 [8]. Routh Hurwitz criteria and 
the Lasalle invariance principle were used for showing the stability of the model. The effect of the 
delay factor on the reproduction number was also discussed. Naveed et al. have proposed a 
fractional-order mathematical model for COVID-19 and explained that the fractional epidemic 
model provides a better understanding and biologically more information about disease dynamics [9]. 
Gao et al. studied the 2019-nCoV infection system with a Caputo-defined non-local operator and 
obtained results using the fractional natural decomposition method [10]. Khan et al. studied the 
interaction between bats and unknown hosts, between humans and the reservoir of infection in detail [11]. 

AIMS Mathematics  Volume 7, Issue 5, 8449–8470. 



8451 

The mathematical results are presented and a fractional model is formulated. Rafiq et al. proposed a 
susceptible infected treatment and recovered (SITR) dynamical model of COVID-19 [12]. The model 
is studied numerically and convergence and dynamical consistency of the model is discussed. The 
effect of treatment on the basic reproduction number is also examined. 

The concepts of susceptible, exposed, infectious, quarantined and recovered are uncertain due to 
varying degrees of susceptibility, exposure, infectivity, quarantine and recovery among individuals of 
the population. Differences may arise if considered population groups with different habits, customs 
and age brackets have different resistances, etc. More realistic models are needed to account for these 
different levels of individuals. According to Mishra et al. epidemic systems, especially those dealing 
with infectious diseases, need to be treated differently due to high uncertainties. These uncertainties 
are due to the fact that the epidemic strength of an infectious agent depends, among other things, on the 
proportion of susceptible nodes and the proportion of infectious nodes. Sensitivity and infectivity are 
inherently fuzzy terms and therefore ideal arguments for discussing fuzzy logic [13]. Since the 
parameters used in epidemic models are uncertain. This uncertainty can be described by introducing 
the fuzzy theory. The use of fuzzy logic in biological systems has great potential but is used less 
frequently. Zadeh introduced the fuzzy theory in 1965 [14]. Barros et al. proposed an SI model using 
fuzzy theory and considering the transmission coefficient as a fuzzy set [15]. The average number of 
people infected is compared to the average change in virus load and the basic reproduction value is 
analyzed. Mondal et al. have concentrated on the plague models having the transmission coefficient as 
a fuzzy set and formulated an SIS model [16]. The fuzzy basic reproduction number is examined and a 
pathogenic threshold state is achieved when the system undergoes transcritical branching. Verma et al. 
studied a fuzzy SIR model by introducing new parameters [17]. In addition, a comparative study of 
equilibrium points for classical and fuzzy models is performed. The fuzzy reproduction number was 
also examined for groups of people with different viral loads. Ortega et al. [18] employed the fuzzy 
logic for the prediction in the epidemiology related problems in the infectious disease. A model of 
rabies among the partially vaccinated dogs was discussed. A comparison between the fuzzy linguistic 
rules and the classical differential equation was also done. Renu Verma et al. [19] have studied the 
dynamics of Ebola virus disease by employing fuzziness in all biological parameters. SEIR and 
SEIRHD models were prosed for the transmission trajectories of the Ebola outbreak. The existence of 
the equilibria and their stability was studied by employing triangular fuzzy numbers. The stability of 
the equilibria was related to the basic reproduction number which was calculated with the help of the 
next-generation matrix and the numerical methods were used to support theoretical work. Das and Pal 
developed a SIR model with imprecise biological parameters [20]. The existence of equilibrium points was 
discussed and the numerical simulation was done to support the analytical results. Sadhukhan et al. [21] 
studied about food chain model with optimal harvesting in a fuzzy environment. The stability of the system 
is studied using the Lyapunov function and the existence of a bioeconomic equilibrium is discussed. 
Jafelice et al. introduced a model for the development of the HIV positive population and the 
manifestation of AIDS focusing on the mode of transmission from HIV to AIDS [22]. Due to its 
uncertain nature, the transmission rate is considered a fuzzy set of viral load. Allaoui et al. [23] 
presented a fuzzy model to giving up smoking. Moreover, the results obtained with the fuzzy theory 
are compared with those of the classical case. Jessica and Filipe suggested a method of dermoscopy 
images using fuzzy numbers and concluded that fuzzy numbers could be applied to slide images of 
skin lesions. The use of pre-processing steps to minimize potential artwork or noise effects in the 
image was also important in increasing the result rate [24]. Boventura and Gonzaga proposed edge 
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detection in grayscale images based on fuzzy number theory to remove uncertainties about the shades 
of gray that make up the image and then calculate the suitability of pixels to an area homogeneous 
around the image. Pixels that do not belong to the region are classified as edge pixels [25]. Al-Amin et al. 
discussed techniques for solving non-homogeneous linear fuzzy difference equations [26]. Moreover, 
the equilibrium and stability analysis has been performed. Mishra and Prajapati developed a fuzzy 
SEIQRS model for the transmission of malicious codes in computer networks by simulating the results 
for different parameters and analyzed the model’s stability [27]. The effectiveness of antivirus 
software and node blocking due to malicious code attacks has also been analyzed. Lefevre et al. 
introduced a fuzzy application of epidemiological models related to the prevalence of HIV in a sample 
of individuals with injectable drugs and different fuzzy scenarios were analyzed for a different number 
of users and a different number of HIV test samples per year for the samples used in trials varied from 
case to case [28]. 

Since each community changes with the evolution of the environment, even the biological 
parameters used in mathematical models are not always fixed [29]. Global warming is the main cause 
of the many problems attributed to the increase in the earth’s average temperature. The change in 
temperature also affects the rate of transmission of the virus in the population. David et al. studied the 
relationship between average temperatures and confirmed cases of COVID-19 in Brazil [30]. The 
results showed that temperatures were in a negative linear relationship with the number of confirmed 
cases. Irfan et al. investigated the relationship between temperature and COVID-19 transmission in 
different provinces of Pakistan [31]. Low-temperature provinces were found to have strong 
associations between temperature and COVID-19 transmissibility. In this sense, fuzzy mathematical 
models are more meaningful than crisp models. 

The above models are insufficient in connection to the development of fuzzy numerical and 
mathematical techniques. Keeping this in mind, we have studied an SEIQR model with fuzzy 
parameters. The use of fuzzy theory helps us to deal with issues of uncertainty quantification in 
mathematical disease modeling. Consequently, the use of fuzzy parameters helps us to explain the 
transmission of the COVID-19 virus more accurately. We calculated the fuzzy reproduction number 
and fuzzy equilibrium points for the studied model. In addition, a fuzzy NSFD method for the model 
is developed which is a fuzzy extension of Micken’s NSFD scheme [32]. The fuzzy stability of the 
proposed method is also discussed. 

The rest of this study is structured as the basic definitions are presented in Section 2 which will be 
used in this study and the fuzzy model formulation is discussed. Fuzzy reproduction number and fuzzy 
equilibrium points have also been discussed in this section. The numerical solution and the resulting 
simulation results are presented in Sections 3 and 4, respectively. Concluding remarks and future 
directions relevant to this research are summarized in Section 5. 

2. SEIQR model with Fuzzy Parameters 

In this section, we introduce the extended SEIQR model with fuzzy parameters. First, let’s 
mention some basic definitions which will be useful for this study. 

2.1. Fuzzy subset 

A fuzzy subset A of the universal set X is represented symbolically by the membership function 

AIMS Mathematics  Volume 7, Issue 5, 8449–8470. 



8453 

A: X →  [0, 1], where A(x) indicates the degree of membership of x in the fuzzy set A [33]. 

2.2. Fuzzy number 

A fuzzy subset 𝐴𝐴 in ℝ is called fuzzy number when [33]: 
• All 𝛿𝛿-levels of 𝐴𝐴 are non-empty, with 0 ≤ 𝛿𝛿 ≤ 1, that is, 𝐴𝐴 must be normal. 

• All 𝛿𝛿-levels of 𝐴𝐴 are closed intervals of ℝ. 

• The support of 𝐴𝐴, that is, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = {𝑥𝑥 ∈ ℝ:𝐴𝐴(𝑥𝑥) > 0} is bounded. 

2.3. Triangular fuzzy number (TFN) 

A fuzzy number 𝐴𝐴 = (𝑎𝑎, 𝑏𝑏, 𝑐𝑐) is said to be triangular [33] if its membership function is given by  

𝜇𝜇𝐴𝐴(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧

0,                    𝑥𝑥 < 𝑎𝑎
𝑥𝑥−𝑎𝑎
𝑏𝑏−𝑎𝑎

,          𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏
𝑐𝑐−𝑥𝑥
𝑐𝑐−𝑏𝑏

,              𝑏𝑏 ≤ 𝑥𝑥 ≤ 𝑐𝑐
0,                      𝑥𝑥 > 𝑐𝑐

                                         (1) 

where 𝑎𝑎 ≤ 𝑏𝑏 ≤ 𝑐𝑐. 

2.4. Expected value of a fuzzy number 

The expected value of a fuzzy number was introduced by B. Liu and Y. Liu [34]. It is denoted 
by 𝐸𝐸[𝜁𝜁] and is defined by 

𝐸𝐸[𝜁𝜁] = � 𝐶𝐶𝐶𝐶{𝜁𝜁 ≥ 𝑟𝑟}
+∞

0

𝑑𝑑𝑑𝑑 − �𝐶𝐶𝐶𝐶{𝜁𝜁 ≥ 𝑟𝑟}
0

−∞

𝑑𝑑𝑑𝑑 

where 𝐶𝐶𝐶𝐶 is the credibility measure and for any real number 𝑟𝑟, it can be defined as 

𝐶𝐶𝐶𝐶{𝜁𝜁 ≥ 𝑟𝑟} =
1
2
�𝑆𝑆𝑆𝑆𝑆𝑆
𝑡𝑡≤𝑟𝑟

𝜇𝜇(𝑡𝑡) + 1 − 𝑆𝑆𝑆𝑆𝑆𝑆
𝑡𝑡>𝑟𝑟

𝜇𝜇(𝑡𝑡)� ∈ [0,1] 

2.5. Expected value of a TFN 

The expected value of a TFN 𝐴𝐴 = (𝑎𝑎, 𝑏𝑏, 𝑐𝑐) is given by [35] 

𝐸𝐸[𝐴𝐴] = ∫ 𝐶𝐶𝐶𝐶{𝐴𝐴 ≥ 𝑟𝑟}+∞
0 𝑑𝑑𝑑𝑑 − ∫ 𝐶𝐶𝐶𝐶{𝐴𝐴 ≥ 𝑟𝑟}0

−∞ 𝑑𝑑𝑑𝑑 = 𝑎𝑎+2𝑏𝑏+𝑐𝑐
4

                                    (2) 

2.6. Fuzzy basic reproductive number 𝑅𝑅𝑐𝑐𝑓𝑓  

The fuzzy basic reproductive number 𝑅𝑅𝑐𝑐𝑓𝑓 is defined as [35] 

𝑅𝑅𝑐𝑐𝑓𝑓 = 𝐸𝐸[𝑅𝑅𝑐𝑐(𝜐𝜐)]                                                (3) 
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where 𝑅𝑅𝑐𝑐(𝜐𝜐) is the reproduction number and 𝐸𝐸[𝑅𝑅𝑐𝑐(𝜐𝜐)] is the expected value of a TFN defined in 
formula 2. 

The SEIQR model consists of 5 segments, i.e., susceptible, exposed, infected, quarantined and 
recovered subpopulations respectively. Consider the following system of 5 differential equations 
describing the SEIQR model proposed by Hussain et al. [36]. 

⎩
⎪
⎨

⎪
⎧

𝑆𝑆′ = Λ − 𝛽𝛽𝛽𝛽𝛽𝛽 − 𝜇𝜇𝜇𝜇
𝐸𝐸′ = 𝛽𝛽𝛽𝛽𝛽𝛽 − 𝛼𝛼𝛼𝛼 − 𝜇𝜇𝜇𝜇
𝐼𝐼′ = 𝛼𝛼𝛼𝛼 − (𝜇𝜇 + 𝛾𝛾 + 𝜉𝜉)𝐼𝐼

  𝑄𝑄′ = −𝜑𝜑𝜑𝜑 − 𝜇𝜇𝜇𝜇 + 𝛾𝛾(1 − Δ)𝐼𝐼
 𝑅𝑅′ = 𝜑𝜑𝜑𝜑 + Δ𝛾𝛾𝛾𝛾 − 𝜇𝜇𝜇𝜇

        (4) 

The corresponding fuzzy SEIQR model can be written as  

⎩
⎪
⎨

⎪
⎧

𝑆𝑆′ = Λ − 𝛽𝛽(𝜐𝜐)𝐼𝐼𝐼𝐼 − 𝜇𝜇𝜇𝜇
𝐸𝐸′ = 𝛽𝛽(𝜐𝜐)𝐼𝐼𝐼𝐼 − 𝛼𝛼𝛼𝛼 − 𝜇𝜇𝜇𝜇

𝐼𝐼′ = 𝛼𝛼𝛼𝛼 − (𝜇𝜇 + 𝛾𝛾(𝜐𝜐) + 𝜉𝜉(𝜐𝜐))𝐼𝐼
  𝑄𝑄′ = −𝜑𝜑𝜑𝜑 − 𝜇𝜇𝜇𝜇 + 𝛾𝛾(𝜐𝜐)(1 − Δ)𝐼𝐼

 𝑅𝑅′ = 𝜑𝜑𝜑𝜑 + Δ𝛾𝛾(𝜐𝜐)𝐼𝐼 − 𝜇𝜇𝜇𝜇

       (5) 

The detail of the model parameters is given in Table 1. 

Table 1. Detail of the model parameters. 

Symbol Description 
𝜇𝜇 Natural death rate 

𝛽𝛽(𝜐𝜐) Infection rate 
𝛾𝛾(𝜐𝜐) Recovery rate 

𝛼𝛼 
The rate of exposed individuals 
becoming infectious 

Δ 
Infected individuals who are 
quarantined 

𝜑𝜑 Quarantine rate of infections 
𝜉𝜉(𝜐𝜐) Disease induced death rate 

We suppose that the infection rate 𝛽𝛽(𝜐𝜐), the recovery rate 𝛾𝛾(𝜐𝜐) and the mortality rate 𝜉𝜉(𝜐𝜐) due 
to COVID-19 are fuzzy numbers that depend on the individual virus load. Let 𝛽𝛽 = 𝛽𝛽(𝜐𝜐) be the 
possibility that virus transmission occurs during an encounter between a susceptible person and an 
infected person. It was introduced by Barros et al. [15] and can be defined as 

𝛽𝛽(𝜐𝜐) = �
0,                      𝜐𝜐 ≤ 𝜐𝜐𝑚𝑚𝑚𝑚𝑚𝑚

𝜐𝜐−𝜐𝜐𝑚𝑚𝑚𝑚𝑚𝑚
𝜐𝜐𝑀𝑀−𝜐𝜐𝑚𝑚𝑚𝑚𝑚𝑚

,          𝜐𝜐𝑚𝑚𝑚𝑚𝑚𝑚 < 𝜐𝜐 ≤ 𝜐𝜐𝑀𝑀
1,                          < 𝜐𝜐

                            (6) 

The 𝛽𝛽(𝜐𝜐) will be maximum if the 𝜐𝜐 is maximum and it will be negligible when the 𝜐𝜐 is 
minimum. 𝜐𝜐𝑚𝑚𝑚𝑚𝑚𝑚 is the minimum virus load needed for disease transmission and the disease transmission 
is maximum at 𝜐𝜐𝑀𝑀, where it is equal to 1. The membership function of 𝛽𝛽(𝜐𝜐) is shown in Figure 1. 
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Figure 1. The membership functions of 𝛽𝛽(𝜐𝜐). 

The recovery rate 𝛾𝛾 = 𝛾𝛾(𝜐𝜐) introduced by Verma et al [17] is also a fuzzy number and can be 
defined as  

𝛾𝛾(𝜐𝜐) = 𝛾𝛾0−1
𝜐𝜐𝑀𝑀

𝜐𝜐 + 1,                     0 ≤ 𝜐𝜐 ≤ 𝜐𝜐𝑚𝑚𝑚𝑚𝑚𝑚                             (7) 

The minimum recovery rate is 𝛾𝛾0 > 0. 
The death rate 𝜉𝜉 = 𝜉𝜉(𝜐𝜐) introduced by Verma et al [17] can also be considered as a fuzzy 

number as it increases due to the increase of the infection of the disease and can be defined as 

𝜉𝜉(𝜐𝜐) = �
(1−𝜁𝜁)−𝜖𝜖0
𝜐𝜐𝑚𝑚𝑚𝑚𝑚𝑚

𝜐𝜐 + 𝜖𝜖0,        0 ≤ 𝜐𝜐 ≤ 𝜐𝜐𝑚𝑚𝑚𝑚𝑚𝑚
1 − 𝜁𝜁,                      𝜐𝜐𝑚𝑚𝑚𝑚𝑚𝑚 < 𝜐𝜐

                        (8) 

The death rate 𝜉𝜉(𝜐𝜐) will be higher when the amount of virus 𝜐𝜐 is the highest i.e., 𝜐𝜐0 < 𝜐𝜐 and 
the maximum death is 1 − 𝜁𝜁, (𝜁𝜁 ≥ 0).  

Because the amount of virus is different for each group of people. To make the model more 
realistic, we only consider human individuals from a given group 𝑁𝑁 with a classification (weak, 
medium and strong) given by an expert, which can be seen as a linguistic variable with a 
membership function Γ(𝜐𝜐) and is given by 

Γ(𝜐𝜐) =

⎩
⎪
⎨

⎪
⎧

0,                           𝜐𝜐 < 𝜐𝜐0 − 𝛿𝛿
𝛿𝛿+𝜐𝜐−𝜐𝜐0

𝛿𝛿
,                𝜐𝜐0 − 𝛿𝛿 ≤ 𝜐𝜐 ≤ 𝜐𝜐0

𝛿𝛿+𝜐𝜐0−𝜐𝜐
𝛿𝛿

,                 𝜐𝜐0 ≤ 𝜐𝜐 ≤ 𝜐𝜐0 + 𝛿𝛿
0,                           𝜐𝜐 > 𝜐𝜐0 + 𝛿𝛿

                                  (9) 

The membership functions of 𝛽𝛽(𝜐𝜐) , 𝛾𝛾(𝜐𝜐) , 𝜉𝜉(𝜐𝜐)  and Γ(𝜐𝜐)  are shown in Figures 1–4 
respectively. 
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Figure 2. The membership functions of 𝛾𝛾(𝜐𝜐). 

 

Figure 3. The membership functions of 𝜉𝜉(𝜐𝜐). 

 

Figure 4. The membership functions of Γ(𝜐𝜐). 

2.7. The fuzzy basic reproductive number 𝑅𝑅𝒄𝒄𝒇𝒇 

We find 𝑅𝑅𝑐𝑐 by incorporating the next generation matrix approach [37] and it is given by 

𝑅𝑅𝑐𝑐 = 𝛼𝛼𝛼𝛼Λ
𝜇𝜇(𝜇𝜇+𝛼𝛼)(𝜇𝜇+𝛾𝛾+𝜉𝜉)

 .                                 (10) 
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Since 𝑅𝑅𝑐𝑐 is a function of the amount of virus 𝜐𝜐 and we analyze it for different amounts of virus. 
Case 1: If 𝜐𝜐 < 𝜐𝜐𝑚𝑚𝑚𝑚𝑚𝑚, then from Eq (6), we have 𝛽𝛽(𝜐𝜐) = 0 and consequently from Eq (10) we 
obtain, 

𝑅𝑅𝑐𝑐(𝜐𝜐) = 0.                                   (11) 

Case 2: If 𝜐𝜐𝑚𝑚𝑚𝑚𝑚𝑚 < 𝜐𝜐 ≤ 𝜐𝜐𝑀𝑀, then from Eq (6), we have 𝛽𝛽(𝜐𝜐) =  𝜐𝜐−𝜐𝜐𝑚𝑚𝑚𝑚𝑚𝑚
 𝜐𝜐𝑀𝑀−𝜐𝜐𝑚𝑚𝑚𝑚𝑚𝑚

 and consequently from Eq (10) 

we obtain, 

𝑅𝑅𝑐𝑐(𝜐𝜐) = 𝛼𝛼Λ(𝜐𝜐−𝜐𝜐𝑚𝑚𝑚𝑚𝑚𝑚)
𝜇𝜇(𝜇𝜇+𝛼𝛼)(𝜇𝜇+𝛾𝛾+𝜉𝜉)(𝜐𝜐𝑀𝑀−𝜐𝜐𝑚𝑚𝑚𝑚𝑚𝑚)

 .                               (12) 

Case 3: If 𝜐𝜐𝑀𝑀 < 𝜐𝜐 < 𝜐𝜐𝑚𝑚𝑚𝑚𝑚𝑚, then from Eq (6), we have 𝛽𝛽(𝜐𝜐) = 1 and consequently from Eq (10) we 
obtain, 

𝑅𝑅𝑐𝑐(𝜐𝜐) = 𝛼𝛼Λ
𝜇𝜇(𝜇𝜇+𝛼𝛼)(𝜇𝜇+𝛾𝛾+𝜉𝜉)

.                                  (13) 

The basic reproduction number 𝑅𝑅𝑐𝑐(𝜐𝜐) is an increasing function of the parasitic virus load 𝜐𝜐 and it 
is well-defined as a fuzzy variable. Consequently, the expected value of 𝑅𝑅𝑐𝑐(𝜐𝜐) is well-defined and it 
can be expressed as a triangular fuzzy number as: 

𝑅𝑅𝑐𝑐(𝜐𝜐) = �0, 𝛼𝛼Λ(𝜐𝜐−𝜐𝜐𝑚𝑚𝑚𝑚𝑚𝑚)
𝜇𝜇(𝜇𝜇+𝛼𝛼)(𝜇𝜇+𝛾𝛾+𝜉𝜉)(𝜐𝜐𝑀𝑀−𝜐𝜐𝑚𝑚𝑚𝑚𝑚𝑚)

, 𝛼𝛼Λ
𝜇𝜇(𝜇𝜇+𝛼𝛼)(𝜇𝜇+𝛾𝛾+𝜉𝜉)

 �.                          (14) 

Now by using formulas (2) and (3), we find the fuzzy reproduction number as follows: 

 𝑅𝑅𝑐𝑐𝑓𝑓 = 𝐸𝐸[𝑅𝑅𝑐𝑐(𝜐𝜐)]                                   (15) 

= 𝛼𝛼Λ(2𝜐𝜐−3𝜐𝜐𝑚𝑚𝑚𝑚𝑚𝑚+𝜐𝜐𝑀𝑀)
4𝜇𝜇(𝜇𝜇+𝛼𝛼)(𝜇𝜇+𝛾𝛾+𝜉𝜉)(𝜐𝜐𝑀𝑀−𝜐𝜐𝑚𝑚𝑚𝑚𝑚𝑚)

.                                 (16) 

2.8. Fuzzy equilibrium analysis 

Case 1: If 𝜐𝜐 < 𝜐𝜐𝑚𝑚𝑚𝑚𝑚𝑚, then from Eq (6), we have 𝛽𝛽(𝜐𝜐) = 0, Substituting it the in system (5), we get 
𝑆𝑆 = Λ

𝜇𝜇
, 𝐸𝐸 = 0, 𝐼𝐼 = 0, 𝑄𝑄 = 0 and 𝑅𝑅 = 0. Therefore, we obtain: 

𝐸𝐸0( 𝑆𝑆0,𝐸𝐸0, 𝐼𝐼0,𝑄𝑄0,𝑅𝑅0) = �Λ
𝜇𝜇

, 0, 0, 0, 0�, 

which is the DFE point. This is the situation where there is no virus in the population. Biologically, 
the disease is eradicated when the virus level is below the minimum level required in the population 
for disease transmission. 
Case 2: If 𝜐𝜐𝑚𝑚𝑚𝑚𝑚𝑚 < 𝜐𝜐 ≤ 𝜐𝜐𝑀𝑀, then from Eq (6), we have 𝛽𝛽(𝜐𝜐) = 𝜐𝜐−𝜐𝜐𝑚𝑚𝑚𝑚𝑚𝑚

𝜐𝜐𝑀𝑀−𝜐𝜐𝑚𝑚𝑚𝑚𝑚𝑚
. In this case, we obtain the 

equilibrium point 

𝐸𝐸∗( 𝑆𝑆∗,𝐸𝐸∗, 𝐼𝐼∗,𝑄𝑄∗,𝑅𝑅∗) 

= � Λ
𝛽𝛽𝛽𝛽∗+𝜇𝜇

, 𝛽𝛽𝛽𝛽∗Λ
(𝛽𝛽𝛽𝛽∗+𝜇𝜇)(𝜇𝜇+𝛼𝛼)

, Λ𝛼𝛼
(𝜇𝜇+𝛼𝛼)(𝜇𝜇+𝛾𝛾+𝜉𝜉)

− 1, 𝛾𝛾(1−Δ)𝐼𝐼∗

(𝜇𝜇+𝜑𝜑)
, [𝜑𝜑(1−Δ)+(𝜇𝜇+𝜑𝜑)Δ]𝛾𝛾𝐼𝐼∗

𝜇𝜇(𝜇𝜇+𝜑𝜑)
�. 

AIMS Mathematics  Volume 7, Issue 5, 8449–8470. 



8458 

Case 3: If 𝜐𝜐𝑀𝑀 < 𝜐𝜐 < 𝜐𝜐𝑚𝑚𝑚𝑚𝑚𝑚, then from Eq (6), we have 𝛽𝛽(𝜐𝜐) = 1. In this case, we obtain the 
equilibrium point 

𝐸𝐸∗∗( 𝑆𝑆∗∗,𝐸𝐸∗∗, 𝐼𝐼∗∗,𝑄𝑄∗∗,𝑅𝑅∗∗) 

= � Λ
𝐼𝐼∗∗+𝜇𝜇

, 𝐼𝐼∗∗Λ
(𝐼𝐼∗∗+𝜇𝜇)(𝜇𝜇+𝛼𝛼)

, Λ𝛼𝛼
(𝜇𝜇+𝛼𝛼)(𝜇𝜇+𝛾𝛾+𝜉𝜉)

− 1, 𝛾𝛾(1−Δ)𝐼𝐼∗∗

(𝜇𝜇+𝜑𝜑)
, [𝜑𝜑(1−Δ)+(𝜇𝜇+𝜑𝜑)Δ]𝛾𝛾𝐼𝐼∗∗

𝜇𝜇(𝜇𝜇+𝜑𝜑)
�. 

The equilibrium points 𝐸𝐸∗( 𝑆𝑆∗,𝐸𝐸∗, 𝐼𝐼∗,𝑄𝑄∗,𝑅𝑅∗)  and 𝐸𝐸∗∗( 𝑆𝑆∗∗,𝐸𝐸∗∗, 𝐼𝐼∗∗,𝑄𝑄∗∗,𝑅𝑅∗∗)  are called 
endemic equilibrium points. These equilibria occur when the virus is larger than the minimum 
required and persists in the population. 

3. Numerical modeling of fuzzy SEIQR model 

In this segment, we will examine a fuzzy nonstandard finite difference method (FNSFD) based 
on Micken’s theory [32] to solve the dynamical system 5. 

3.1. Fuzzy NSFD scheme 

To develop a fuzzy NSFD scheme for the studied model, first-order time derivatives are 
described by using forward difference approximation i.e., 𝑓𝑓̇(𝑡𝑡) can be approximated as 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝑡𝑡+ℎ)−𝑓𝑓(𝑡𝑡)
ℎ

+ 𝑂𝑂(ℎ) as ℎ → 0. 

𝑠𝑠𝑛𝑛, 𝑒𝑒𝑛𝑛, 𝑖𝑖𝑛𝑛, 𝑞𝑞𝑛𝑛 and 𝑟𝑟𝑛𝑛 are the approximations of 𝑆𝑆(𝑛𝑛ℎ), 𝐸𝐸(𝑛𝑛ℎ), 𝐼𝐼(𝑛𝑛ℎ), 𝑄𝑄(𝑛𝑛ℎ) and 𝑅𝑅(𝑛𝑛ℎ) for 
𝑛𝑛 = 0,1,2,3, …., where ℎ is the time step size. Thus the FNSFD scheme for system 5 can be written as 

𝑠𝑠𝑛𝑛+1−𝑠𝑠𝑛𝑛

ℎ
= Λ − 𝛽𝛽(𝜐𝜐)𝑖𝑖𝑛𝑛𝑠𝑠𝑛𝑛+1 − 𝜇𝜇𝑠𝑠𝑛𝑛+1,                                    (17) 

𝑒𝑒𝑛𝑛+1−𝑒𝑒𝑛𝑛

ℎ
= 𝛽𝛽(𝜐𝜐)𝑖𝑖𝑛𝑛𝑠𝑠𝑛𝑛+1 − 𝛼𝛼𝑒𝑒𝑛𝑛+1 − 𝜇𝜇𝑒𝑒𝑛𝑛+1,                             (18) 

𝑖𝑖𝑛𝑛+1−𝑖𝑖𝑛𝑛

ℎ
= 𝛼𝛼𝑒𝑒𝑛𝑛+1 − �𝜇𝜇 + 𝛾𝛾(𝜐𝜐) + 𝜉𝜉(𝜐𝜐)�𝑖𝑖𝑛𝑛+1,                            (19) 

𝑞𝑞𝑛𝑛+1−𝑞𝑞𝑛𝑛

ℎ
= −𝜑𝜑𝑞𝑞𝑛𝑛+1 − 𝜇𝜇𝑞𝑞𝑛𝑛+1 + 𝛾𝛾(𝜐𝜐)(1 − Δ)𝑖𝑖𝑛𝑛+1,                  (20) 

𝑟𝑟𝑛𝑛+1−𝑟𝑟𝑛𝑛

ℎ
= 𝜑𝜑𝑞𝑞𝑛𝑛+1 + Δ𝛾𝛾(𝜐𝜐)𝑖𝑖𝑛𝑛+1 − 𝜇𝜇𝑟𝑟𝑛𝑛+1.                               (21) 

On simplification the Eqs (17)–(21), we obtain 

𝑠𝑠𝑛𝑛+1 =  𝑠𝑠𝑛𝑛+ℎΛ
1+ℎ𝛽𝛽+ℎ𝜇𝜇

 ,                                    (22) 

𝑒𝑒𝑛𝑛+1 =  𝑒𝑒
𝑛𝑛+ℎ𝛽𝛽𝑠𝑠𝑛𝑛+1𝑖𝑖𝑛𝑛

1+ℎ𝛼𝛼+ℎ𝜇𝜇
 ,                                 (23) 
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𝑖𝑖𝑛𝑛+1 = 𝑖𝑖𝑛𝑛+ℎ𝛼𝛼𝛼𝛼𝑛𝑛+1

1+ℎ(𝜇𝜇+𝛾𝛾(𝜐𝜐)+𝜉𝜉(𝜐𝜐))
 ,                             (24) 

𝑞𝑞𝑛𝑛+1 = 𝑞𝑞𝑛𝑛+ℎ𝛾𝛾(𝜐𝜐)(1−Δ)𝑖𝑖𝑛𝑛+1

1+ℎ𝜑𝜑+ℎ𝜇𝜇
 ,                         (25) 

𝑟𝑟𝑛𝑛+1 = 𝑟𝑟𝑛𝑛+ℎ𝜑𝜑𝑞𝑞𝑛𝑛+1+ℎ𝛾𝛾(𝜐𝜐)Δ𝑖𝑖𝑛𝑛+1

1++ℎ𝜇𝜇
 .                    (26) 

3.2. Fuzzy stability and convergence analysis of the NSFD scheme 

In this part, the stability and convergence of the developed FNSFD scheme at DFE point 
𝐸𝐸0( 𝑆𝑆0,𝐸𝐸0, 𝐼𝐼0,𝑄𝑄0,𝑅𝑅0)  and endemic equilibrium points 𝐸𝐸∗( 𝑆𝑆∗,𝐸𝐸∗, 𝐼𝐼∗,𝑄𝑄∗,𝑅𝑅∗)  and 
𝐸𝐸∗∗( 𝑆𝑆∗∗,𝐸𝐸∗∗, 𝐼𝐼∗∗,𝑄𝑄∗∗,𝑅𝑅∗∗) respectively are discussed here. 

The systems (22)–(26) can be written as: 

𝐴𝐴1 =  𝑠𝑠𝑛𝑛+ℎΛ
1+ℎ𝛽𝛽+ℎ𝜇𝜇

 ,                                        (27) 

𝐴𝐴2 =  𝑒𝑒
𝑛𝑛+ℎ𝛽𝛽𝑠𝑠𝑛𝑛+1𝑖𝑖𝑛𝑛

1+ℎ𝛼𝛼+ℎ𝜇𝜇
 ,                                  (28) 

𝐴𝐴3 = 𝑖𝑖𝑛𝑛+ℎ𝛼𝛼𝛼𝛼𝑛𝑛+1

1+ℎ(𝜇𝜇+𝛾𝛾(𝜐𝜐)+𝜉𝜉(𝜐𝜐))
 ,                     (29) 

𝐴𝐴4 = 𝑞𝑞𝑛𝑛+ℎ𝛾𝛾(𝜐𝜐)(1−Δ)𝑖𝑖𝑛𝑛+1

1+ℎ𝜑𝜑+ℎ𝜇𝜇
,                          (30) 

𝐴𝐴5 = 𝑟𝑟𝑛𝑛+ℎ𝜑𝜑𝑞𝑞𝑛𝑛+1+ℎ𝛾𝛾(𝜐𝜐)Δ𝑖𝑖𝑛𝑛+1

1++ℎ𝜇𝜇
.                    (31) 

The Jacobean matrix corresponding to the systems (27)–(31) is 

𝐽𝐽 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝐴𝐴1
𝜕𝜕𝑆𝑆

𝜕𝜕𝐴𝐴1
𝜕𝜕𝐸𝐸

𝜕𝜕𝐴𝐴1
𝜕𝜕𝐼𝐼

𝜕𝜕𝐴𝐴1
𝜕𝜕𝑄𝑄 

𝜕𝜕𝐹𝐹𝐹𝐹1
𝜕𝜕𝑅𝑅

𝜕𝜕𝐴𝐴2
𝜕𝜕𝑆𝑆

𝜕𝜕𝐴𝐴2
𝜕𝜕𝐸𝐸

𝜕𝜕𝐴𝐴2
𝜕𝜕𝐼𝐼

𝜕𝜕𝐴𝐴2
𝜕𝜕𝑄𝑄 

𝜕𝜕𝐴𝐴2
𝜕𝜕𝑅𝑅

𝜕𝜕𝐴𝐴3
𝜕𝜕𝑆𝑆

𝜕𝜕𝐴𝐴3
𝜕𝜕𝐸𝐸

𝜕𝜕𝐴𝐴3
𝜕𝜕𝐼𝐼

𝜕𝜕𝐴𝐴3
𝜕𝜕𝑄𝑄 

𝜕𝜕𝐴𝐴3
𝜕𝜕𝑅𝑅

𝜕𝜕𝐴𝐴4
𝜕𝜕𝑆𝑆

𝜕𝜕𝐴𝐴4
𝜕𝜕𝐸𝐸

𝜕𝜕𝐴𝐴4
𝜕𝜕𝐼𝐼

𝜕𝜕𝐴𝐴4
𝜕𝜕𝑄𝑄 

𝜕𝜕𝐴𝐴4
𝜕𝜕𝑅𝑅

𝜕𝜕𝐴𝐴5
𝜕𝜕𝑆𝑆

𝜕𝜕𝐴𝐴5
𝜕𝜕𝐸𝐸

𝜕𝜕𝐴𝐴5
𝜕𝜕𝐼𝐼

𝜕𝜕𝐴𝐴5
𝜕𝜕𝑄𝑄 

𝜕𝜕𝐴𝐴5
𝜕𝜕𝑅𝑅 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

The Jacobean at the DFE 𝐸𝐸0( 𝑆𝑆0,𝐸𝐸0, 𝐼𝐼0,𝑄𝑄0,𝑅𝑅0) = �Λ
𝜇𝜇

, 0, 0, 0, 0� is 
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𝐽𝐽(𝐸𝐸0) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
1 + ℎ𝜇𝜇

0 0 0 0

0
1

1 + ℎ𝛼𝛼 + ℎ𝜇𝜇
0 0 0

0
ℎ𝛼𝛼

1 + ℎ(𝜇𝜇 + 𝛾𝛾(𝜐𝜐) + 𝜉𝜉(𝜐𝜐))
1

1 + ℎ(𝜇𝜇 + 𝛾𝛾(𝜐𝜐) + 𝜉𝜉(𝜐𝜐))
0 0

0 0
ℎ𝛾𝛾(𝜐𝜐)(1 − Δ)
1 + ℎ𝜑𝜑 + ℎ𝜇𝜇

1
1 + ℎ𝜑𝜑 + ℎ𝜇𝜇

0

0 0
ℎ𝛾𝛾(𝜐𝜐)Δ
1 + ℎ𝜇𝜇

ℎ𝜑𝜑
1 + ℎ𝜇𝜇

1
1 + ℎ𝜇𝜇⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

The FNSFD scheme will be unconditionally convergent iff absolute eigenvalues of the above 
Jacobean matrices at the DFE point 𝐸𝐸0( 𝑆𝑆0,𝐸𝐸0, 𝐼𝐼0,𝑄𝑄0,𝑅𝑅0) are less than unity, i.e., |λi| < 1, i =
1, 2, 3, 4, 5.  

Eigenvalues of the above Jacobean matrix are 𝜆𝜆1 = 𝜆𝜆2 = 1
1+ℎ𝜇𝜇

< 1 , 𝜆𝜆3 = 1
1+ℎ𝛼𝛼+ℎ𝜇𝜇

< 1 , 

𝜆𝜆4 = 1
1+ℎ𝜑𝜑+ℎ𝜇𝜇

< 1 and 𝜆𝜆5 = 1
1+ℎ(𝜇𝜇+𝛾𝛾(𝜐𝜐)+𝜉𝜉(𝜐𝜐))

< 1. Since all eigenvalues are less than one which 

proves the desired result.  
The Jacobean at the first endemic equilibrium 𝐸𝐸∗( 𝑆𝑆∗,𝐸𝐸∗, 𝐼𝐼∗,𝑄𝑄∗,𝑅𝑅∗) is given by  

𝐽𝐽(𝐸𝐸∗) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
1 + ℎ𝛽𝛽 + ℎ𝜇𝜇

0 0 0 0

ℎ𝛽𝛽𝛽𝛽
1 + ℎ𝛼𝛼 + ℎ𝜇𝜇

1
1 + ℎ𝛼𝛼 + ℎ𝜇𝜇

ℎ𝛽𝛽𝛽𝛽
1 + ℎ𝛼𝛼 + ℎ𝜇𝜇

0 0

0
ℎ𝛼𝛼

1 + ℎ(𝜇𝜇 + 𝛾𝛾(𝜐𝜐) + 𝜉𝜉(𝜐𝜐))
1

1 + ℎ(𝜇𝜇 + 𝛾𝛾(𝜐𝜐) + 𝜉𝜉(𝜐𝜐))
0 0

0 0
ℎ𝛾𝛾(𝜐𝜐)(1 − Δ)
1 + ℎ𝜑𝜑 + ℎ𝜇𝜇

1
1 + ℎ𝜑𝜑 + ℎ𝜇𝜇

0

0 0
ℎ𝛾𝛾(𝜐𝜐)Δ
1 + ℎ𝜇𝜇

ℎ𝜑𝜑
1 + ℎ𝜇𝜇

1
1 + ℎ𝜇𝜇⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

The Jacobean at the second endemic equilibrium point 𝐸𝐸∗∗( 𝑆𝑆∗∗,𝐸𝐸∗∗, 𝐼𝐼∗∗,𝑄𝑄∗∗,𝑅𝑅∗∗) is given by  

𝐽𝐽(𝐸𝐸∗∗) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
1 + ℎ + ℎ𝜇𝜇

0 0 0 0

ℎ𝑖𝑖
1 + ℎ𝛼𝛼 + ℎ𝜇𝜇

1
1 + ℎ𝛼𝛼 + ℎ𝜇𝜇

ℎ𝑠𝑠
1 + ℎ𝛼𝛼 + ℎ𝜇𝜇

0 0

0
ℎ𝛼𝛼

1 + ℎ(𝜇𝜇 + 𝛾𝛾(𝜐𝜐) + 𝜉𝜉(𝜐𝜐))
1

1 + ℎ(𝜇𝜇 + 𝛾𝛾(𝜐𝜐) + 𝜉𝜉(𝜐𝜐))
0 0

0 0
ℎ𝛾𝛾(𝜐𝜐)(1 − Δ)
1 + ℎ𝜑𝜑 + ℎ𝜇𝜇

1
1 + ℎ𝜑𝜑 + ℎ𝜇𝜇

0

0 0
ℎ𝛾𝛾(𝜐𝜐)Δ
1 + ℎ𝜇𝜇

ℎ𝜑𝜑
1 + ℎ𝜇𝜇

1
1 + ℎ𝜇𝜇⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

Again the FNSFD scheme will be unconditionally convergent iff absolute eigenvalues of the 
above Jacobean matrices at the EE points 𝐸𝐸∗( 𝑆𝑆∗,𝐸𝐸∗, 𝐼𝐼∗,𝑄𝑄∗,𝑅𝑅∗) and 𝐸𝐸∗∗( 𝑆𝑆∗∗,𝐸𝐸∗∗, 𝐼𝐼∗∗,𝑄𝑄∗∗,𝑅𝑅∗∗) are 
less than unity, i.e., |λi| < 1, i = 1, 2, 3, 4, 5.  

The largest eigenvalues of the Jacobeans 𝐽𝐽(𝐸𝐸∗) and 𝐽𝐽(𝐸𝐸∗∗) have been plotted by using the 
MATLAB database and shown in Figure 5a and Figure 5b respectively. 
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(a) 

 
(b) 

Figure 5. Eigenvalues of the Jacobean at the endemic equilibrium point (a) Case 2; (b) Case 3. 

These figures show that the spectral radius in both cases remains less than 1 for each time step. 
This implies that all the eigenvalues of the Jacobin matrices at the endemic equilibrium points lie in a 
unit circle, which guarantees that the FNSFD scheme is convergent for each time step used. 

4. Results and discussions 

In this section, we presented the graphical results of the proposed FNSFD method. 
We can examine the behavior of the fuzzy NSFD method for the SEIQR epidemic model for 

COVID-19 spread in the above graphs. The behavior of the graphs is investigated for various values 
of ℎ. In Figure 6, the compartments of subpopulations susceptible, exposed, infected, quarantined 
and recovered have been shown at step size ℎ = 0.1 at the DFE point. The results show the positive 
behavior and convergence of the proposed FNSFD method. From this, we conclude that the 
developed method can illustrate the actual behavior of the disease dynamics at the DFE point. 

Figure 7 shows the convergence of the FNSFD method to the true equilibrium points of the 
continuous model at step size, ℎ = 0.1 at first endemic equilibrium point. The figures show that the 
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FNSFD method remains convergent and retains all the essential properties of the continuous 
dynamical system. 

 
(a)                                    (b) 

 
(c)                                    (d) 

 
(e) 

Figure 6. The portions of subpopulations at ℎ = 0.1 for Case 1. 
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(a)                                    (b) 

 
(c)                                    (d) 

 
(e) 

Figure 7. The portions of subpopulations at ℎ = 0.1 for Case 2. 

Figure 8 shows the convergence of the FNSFD method to the true equilibrium points of the 
continuous model for an increasing step size ℎ = 15 at the first endemic equilibrium point. The 
figures show that the FNSFD method remains convergent for an increasing time step and preserves 
all the essential properties of the continuous dynamical system. 
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(a)                                    (b) 

 
(c)                                    (d) 

 
(e) 

Figure 8. The portions of subpopulations at ℎ = 15 for Case 2. 

In Figure 9, the behavior of the FNSFD method is shown at the second endemic equilibrium 
point at a small step size ℎ = 0.1. The results show that the method remains convergent and 
preserves all the essential properties of the continuous dynamical system. 
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(a)                                    (b) 

 
(c)                                    (d) 

 
(e) 

Figure 9. The portions of subpopulations at ℎ = 0.1 for Case 3. 

In Figure 10, the behavior of the FNSFD method is shown at the second endemic equilibrium 
point for an increasing step size ℎ = 15. The results show that the method is converging to the same 
equilibrium point and the step size does not affect it. Again we conclude that this method is a reliable 
tool for reflecting the actual behavior of the model. 
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(a)                                    (b) 

 
(c)                                    (d) 

 
(e) 

Figure 10. The portions of subpopulations at ℎ = 15 for Case 3. 

Convergence, stability and positivity are the main features of epidemic models. It is clear from 
the graphs that the proposed FNSFD method converges to the same equilibrium points at different 
step sizes at all equilibrium points. The graphs also reveal that the method shows stable behavior and 
positivity at all equilibrium points. It is an explicit numerical scheme, easy to implement, shows 
stable behavior numerically and demonstrates a good agreement with analytic results possessed by 
continuous model. Moreover, it preserves all the essential features of a continuous dynamical system. 
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5. Conclusions 

In this study, we have considered a fuzzy SEIQR system that models the transmission of 
COVID-19. We assumed that the infected persons do not transmit the disease equally and each 
individual has a different degree of transfer of disease infectivity which depends on the quantity of 
virus possessed by an individual. Similarly, the recovery rate and disease induced death rate are also 
not same for each individual. We considered the disease transmission rate 𝛽𝛽(𝜐𝜐), the recovery rate 
𝛾𝛾(𝜐𝜐) and the additional death rate 𝜉𝜉(𝜐𝜐) as fuzzy variables depending on the amounts of virus. 
These parameters have fixed values in deterministic models and do not depend on the virus load 
directly. Therefore, the fuzzy model can be considered more flexible and balanced than the crisp 
system. The use of fuzzy theory helps to deal with issues of uncertainty quantification in mathematical 
disease modeling.  

Since fuzzy variables are functions of the virus load which depend on the amounts of virus, we 
analyzed it for different amounts of virus. Keeping this in mind, we discussed fuzzy equilibrium 
points of the studied model by considering the amounts of virus in the population. We proved that if 
the amount of virus is less than the minimum amount required for disease transmission in the 
population, the disease-free equilibrium point is obtained. We reached the endemic equilibrium 
points, when the amounts of virus in the population were greater than the minimum amounts of virus 
required for disease transmission. 

We calculated the basic reproduction number by utilizing the concept of the next-generation 
matrix method. Again, we analyzed it for different amounts of virus. We obtained fuzzy basic 
reproduction number by using the expected value of a fuzzy number. 

Furthermore, we have developed a FNSFD scheme. The developed scheme has been analyzed 
for different amounts of virus. The positivity of the solutions of such dynamic population models 
must be preserved by the proposed numerical technique that can be visualized in this article. The 
proposed method showed positivity at small and large step sizes for different amounts of virus.  

Fuzzy stability, another essential characteristic, is studied at equilibrium points and it is shown 
that all of the three equilibrium points have the same stability properties for the studied model. The 
proposed numerical scheme showed stable behavior numerically and demonstrated a good agreement 
with analytic results possessed by the continuous model.  

We performed some numerical experiments to confirm our theoretical results. The simulation 
results also confirmed the numerical results. Thus, the developed method explored a 
structure-preserving technique for solving a mathematical system in epidemiology. 

The present work mainly focuses on the construction, implementation and analysis of an 
explicit first-order numerical scheme in fuzzy non-standard finite difference environments. In the 
future, this work could be extended to fuzzy stochastic, fuzzy delayed, or fuzzy fractional dynamic 
senses. NSFD modeling theory could also be extended to age-structured fuzzy epidemic models. 
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