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Abstract: In this paper, we mainly focus on extension-closed subcategories of extriangulated
categories. Let X be an extension-closed subcategory. We show that if C is X-projective and there
is a minimal right almost split deflation in X ending by C, then there is an s-triangle ending by C
which is very similar to an Auslander-Reiten triangle in X. We also show that if the extriangulated
category admits a negative first extension E−1, and X is self-orthogonal with respect to E−1, then X has
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1. Introduction

Exact and triangulated categories are two important structures in category theory. Recently,
Nakaoka and Palu [14] introduced the notion of extriangulated categories as a simultaneous
generalization of exact categories and extension-closed subcategories of triangulated categories. After
that, the study of extriangulated categories has become an active topic, and up to now, many results on
exact categories and triangulated categories can be unified in the same framework.

Extension-closed subcategories form an important class of subcategories in representation theory
of algebra. The existence of Auslander-Reiten sequences (resp., triangles) in extension-closed
subcategories of abelian (resp., triangulated) categories is a very important topic in representation
theory, for example, see [4, 12] for the abelian case and [10] for the triangulated case. Jørgensen
studied the Auslander-Reiten triangles in subcategories ending at non-Ext-projective objects in [11,
Theorem 3.1], and Iyama, Nakaoka and Palu studied the extriangulated version in [8, Proposition 5.15].
In [6], Fedele considered minimal right almost split morphisms ending at Ext-projective objects
in an extension-closed category of a triangulated category, and found something quite similar to
Auslander-Reiten triangles in a suitable extension-closed subcategory. Extension-closed subcategories
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admit sometimes nice categorical structures, for example, extension-closed subcategories of abelian
categories are exact categories. Extension-closed subcategories of triangulated categories are not
necessarily triangulated, but they are extriangulated. In [11], Jørgensen showed that an extension-
closed subcategory of a triangulated category admits an exact structure under some assumption. In [17],
Zhou considered n-extension closed subcategories of (n + 2)-angulated categories. Therefore, it is
natural to ask whether there is a framework in the setting of extriangulated categories for these results.
The aim of this paper is to prove the analogues of the triangulated results [6, Theorem A] and [11,
Proposition 2.5(i)] into the extriangulated setup.

In Section 2, we recall some terminologies. In Section 3, we show that given an s-triangle

Y α // X′
β // X δ // inK , if β is a minimal right almost split morphism in X, and X is X-projective, then:

(1) Y < X, (2) α is an X-envelope of Y , (3) Y is indecomposable. This generalizes Fedele’s result [6,
Theorem A]. In Section 4, letK be an extriangulated category admitting a negative first extension E−1.
In general, extension-closed subcategories of extriangulated categories are still extriangulated, but not
necessarily exact. We show that ifX is an extension-closed subcategory ofK satisfying E−1(X,X) = 0,
then X is an exact category, which generalizes Jørgensen’s result [11, Proposition 2.5(i)].

2. Preliminaries

We first recall some notions from [14].
In this section, K is an additive category and E : Kop × K → Ab is a biadditive functor, where Ab

is the category of abelian groups.
Let A,C ∈ K . An element δ ∈ E(C, A) is called an E-extension. Two sequences of morphisms

A x // B
y // C and A x′ // B′

y′ // C

in K are said to be equivalent if there exists an isomorphism b ∈ HomK (B, B′) such that x′ = bx and
y = y′b. We denote by [ A x // B

y // C ] the equivalence class of A x // B
y // C . In particular, we write

0 := [ A
(idA

0 ) // A ⊕C
(0 idC)// C ].

For an E-extension δ ∈ E(C, A), we briefly write

a?δ := E(C, a)(δ) and c?δ := E(c, A)(δ).

For two E-extensions δ ∈ E(C, A) and δ′ ∈ E(C′, A′), a morphism from δ to δ′ is a pair (a, c) of
morphisms with a ∈ HomK (A, A′) and c ∈ HomK (C,C′) such that a?δ = c?δ′.

Definition 2.1. ( [14, Definition 2.9]) Let s be a correspondence which associates an equivalence class
s(δ) = [ A x // B

y // C ] to each E-extension δ ∈ E(C, A). Such s is called a realization of E provided
that it satisfies the following condition.

(R) Let δ ∈ E(C, A) and δ′ ∈ E(C′, A′) be any pair of E-extensions with

s(δ) = [ A x // B
y // C ] and s(δ′) = [ A′ x′ // B′

y′ // C′ ].
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Then for any morphism (a, c) : δ → δ′, there exists b ∈ HomK (B, B′) such that the following
diagram

A x //

a
��

B
y //

b
��

C
c
��

A′ x′ // B′
y′ // C′

commutes.

Let s be a realization of E. If s(δ) = [ A x // B
y // C ] for some E-extension δ ∈ E(C, A), then one

says that the sequence A x // B
y // C realizes δ; and in the condition (R), the triple (a, b, c) realizes the

morphism (a, c).

For any two equivalence classes [ A x // B
y // C ] and [ A′ x′ // B′

y′ // C′ ], we define

[ A x // B
y // C ] ⊕ [ A′ x′ // B′

y′ // C′ ] := [ A ⊕ A′ x⊕x′// B ⊕ B′
y⊕y′// C ⊕C′ ].

Definition 2.2. ( [14, Definition 2.10]) A realization s of E is called additive if it satisfies the following
conditions.

(1) For any A,C ∈ K , the split E-extension 0 ∈ E(C, A) satisfies s(0) = 0.

(2) For any pair of E-extensions δ ∈ E(C, A) and δ′ ∈ E(C′, A′), we have s(δ ⊕ δ′) = s(δ) ⊕ s(δ′).

Definition 2.3. ( [14, Definition 2.12]) The triple (K ,E, s) is called an externally triangulated (or
extriangulated for short) category if it satisfies the following conditions.

(ET1) E : Kop × K → Ab is a biadditive functor.

(ET2) s is an additive realization of E.

(ET3) Let δ ∈ E(C, A) and δ′ ∈ E(C′, A′) be any pair of E-extensions with

s(δ) = [ A x // B
y // C ] and s(δ′) = [ A′ x′ // B′

y′ // C′ ].

For any commutative diagram

A x //

a
��

B
y //

b
��

C

A′ x′ // B′
y′ // C′

in K , there exists a morphism (a, c) : δ→ δ′ which is realized by the triple (a, b, c).

(ET3)op Dual of (ET3).

(ET4) Let δ ∈ E(C, A) and ρ ∈ E(F, B) be any pair of E-extensions with

s(δ) = [ A x // B
y // C ] and s(ρ) = [ B u // D v // F ].
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Then there exist an object E ∈ K , an E-extension ξ with s(ξ) = [ A z // D w // E ], and a
commutative diagram

A x // B
y //

u
��

C
s
��

A z // D w //

v
��

E

t
��

F F
in K , which satisfy the following compatibilities.

(i) s(y?ρ) = [ C s // E t // F ].
(ii) s?ξ = δ.

(iii) x?ξ = t?ρ.

(ET4)op Dual of (ET4).

Definition 2.4. ( [14, Definitions 2.15, 2.17 and 2.19]) Let K be an extriangulated category.

(1) A sequence A x // B
y // C in K is called a conflation if it realizes some E-extension δ ∈ E(C, A).

In this case, x is called an inflation and y is called a deflation.

(2) If a conflation A x // B
y // C in K realizes δ ∈ E(C, A), the pair (A x // B

y // C, δ) is called an
E-triangle (or s-triangle, extriangle), and write it in the following way:

A x // B
y // C δ // .

We usually do not write this “δ” if it is not used in the argument.

(3) Let A x // B
y // C δ // and A′ x′ // B′

y′ // C′ δ
′
// be any pair of E-triangles. If a triplet (a, b, c)

realizes (a, c) : δ→ δ′, then we write it as

A x //

a ��

B
y //

b ��

C
c ��

δ //

A′ x′ // B′
y′ // C′ δ

′
//

and call (a, b, c) a morphism of E-triangles.

If a, b, c above are isomorphisms, then A x // B
y // C δ // and A′ x′ // B′

y′ // C′ δ
′
// are said to be

isomorphic.

(4) Let X be a full additive subcategory of K , closed under isomorphisms. The subcategory X is said
to be extension-closed (or equivalently, closed under extensions) if, for any conflation A→ B→ C
which satisfies A,C ∈ X, then B ∈ X.

Example 2.5. Both exact categories and triangulated categories are extriangulated categories
(see [14, Proposition 3.22]) and extension closed subcategories of extriangulated categories are again
extriangulated (see [14, Remark 2.18]). Moreover, there exist extriangulated categories which are
neither exact categories nor triangulated categories, see [14, Proposition 3.30]. For more examples,
see also [7, Theorem 1.2], [16, Example 2.8], [18, Corollary 4.12 and Remark 4.13].
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Condition (WIC):

(1) Let f ∈ HomK (A, B), g ∈ HomK (B,C) be any composable pair of morphisms. If g f is an inflation,
then so is f .

(2) Let f ∈ HomK (A, B), g ∈ HomK (B,C) be any composable pair of morphisms. If g f is a deflation,
then so is g.

3. Envelopes and almost split morphisms in extension-closed subcategories

Assume that k is a field, and K a skeletally small k-linear Hom-finite Krull-Schmidt extriangulated
category satisfying Condition (WIC). All subcategories are full, and closed under isomorphisms and
direct summands.

Assume thatX is an additive subcategory ofK which is closed under extensions. We will investigate
minimal right almost split deflations in X, and give a relation between minimal right almost split
deflations of X-projective objects and X-envelopes in an s-triangle which generalizes [6, Theorem A].
The results follow closely part of Sections 2 and 3 from [6] and the proofs also follow by very similar
arguments.

Definition 3.1. Let A, B ∈ X.

(1) A morphism α : A → B is called right almost split in X if α is not a split epimorphism, and for
any C ∈ X, any morphism β : C → B which is not a split epimorphism factors through α. Dually,
the notion of left almost split morphisms is given.

(2) A morphism α : A → B is called minimal right almost split in X if it is both right minimal and
right almost split in X. A minimal left almost split morphism in X is defined dually.

Lemma 3.2. Let β : B → C be a right almost split morphism in X. Then C is indecomposable.
Moreover, if β is right minimal and β′ : B′ → C is a minimal right almost split morphism in X, then
there is an isomorphism ϕ : B→ B′ such that β = β′ϕ.

Proof. The proof follows from the same argument of [6, Proposition 2.7].
�

Definition 3.3. An object X ∈ X is called X-injective if E(X, X) = 0. An object X ∈ X is called
X-projective if E(X,X) = 0.

Lemma 3.4. ( [6, Lemma 3.4]) Assume that f = ( f1, f2) : A1 ⊕ A2 → B is right minimal in K . Then f1

and f2 are right minimal.

Lemma 3.5. Let A α // B
β // C δ // be an s-triangle in K . Then

(1) β ∈ radK (B,C) if and only if α is left minimal.
(2) α ∈ radK (A, B) if and only if β is right minimal.

Proof. (1) By [14, Proposition 3.3], there is an exact sequence

HomK (C, B)
HomK (β,B)// HomK (B, B)

HomK (α,B)// HomK (A, B).

Then the result holds by the dual of [9, Lemma 1.1].
(2) is similar. �
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Lemma 3.6. Let X ∈ X be indecomposable X-projective, and Y α // X′
β // X δ // be a non-split s-

triangle with X′ ∈ X. Then α is an X-envelope of Y.
Moreover, if β is right minimal, then Y is indecomposable.

Proof. Applying HomK (−,X) to the given s-triangle, we have an exact sequence

HomK (X′,X)
HomK (α,X)// HomK (Y,X) // E(X,X) .

Since X is X-projective, E(X,X) = 0, and hence HomK (α,X) is epic. This shows that α is an X-
preenvelope of Y .

Since K is Krull-Schmidt, we can write X′ = X′1 ⊕ · · · ⊕ X′t , where X′1, · · · , X
′
t are indecomposable,

and write β = (β1, · · · , βt), where βi : X′i → X, i = 1, · · · , t. Since δ , 0, β is not a split epimorphism,
and hence each βi is not a split epimorphism. By [3, Appendix, Proposition 3.5], each βi ∈ radK (X′i , X).
Thus β ∈ radK (X′, X) by [3, Appendix, Lemma 3.4]. By Lemma 3.5(1), α is left minimal, and hence α
is an X-envelope of Y .

Now let β be right minimal, and let Y = Y1 ⊕ · · · ⊕ Yr, where each Yi is indecomposable. Let
inc : Yi → Y be the inclusion. For any X′′ ∈ X, and any g : Yi → X′′, consider the diagram

Yi
α◦inc //

inc

!!
g

��

X′

h

��

Y

α

==

g
��

X′′.

Then there exists g : Y → X′′ such that g = g◦ inc. Since α is an X-envelope of Y , there is h : X′ → X′′

with g = hα. Thus g = g ◦ inc = h ◦ α ◦ inc, which shows that α ◦ inc : Yi → X′ is an X-preenvelope
of Yi. Since K is Krull-Schmidt, there exists an X-envelope αi : Yi → Xi. Thus we get an X-envelope
⊕r

i=1αi : ⊕r
i=1Yi → ⊕

r
i=1Xi. But X-envelopes are unique up to isomorphisms, so we may assume that

α = ⊕r
i=1αi and X′ = ⊕r

i=1Xi. Note that since each αi : Yi → Xi is anX-envelope, we have a commutative
diagram

Yi
αi //

��

inc
��

Xi

��
Y α // X′.

Then α ◦ inc is an inflation implies that αi is an inflation by Condition (WIC). Thus there exists an

s-triangle Yi
αi // Xi

γi // Zi
δi // . Consider the following diagram

Yi
αi //

��

inc
��

Xi
γi //

��

inc
��

Zi
δi //

Y α // X′
β // X δ // .
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where the left square is commutative. By (ET3), there exists wi : Zi → X such that the following
diagram

Yi
αi //

��

inc
��

Xi
γi //

��

inc
��

Zi
δi //

wi

��
Y α // X′

β // X δ //

commutates. Therefore, we get a commutative diagram

⊕t
i=1Yi

⊕t
i=1αi // ⊕t

i=1Xi
⊕t

i=1γi // ⊕t
i=1Zi

⊕t
i=1δi //

⊕t
i=1wi

��
Y α // X′

β // X δ // .

By [14, Corollary 3.6], X � ⊕t
i=1Zi. But X is indecomposable, so we may assume that X � Z1, and

Zi = 0 for i , 1. This shows that wi = γi = 0 and αi is an isomorphism for i , 1.
Now suppose that β = (β1, · · · , βr) is right minimal, by Lemma 3.4, each βi is right minimal. On

the other hand, for i , 1, βi = β ◦ inc = wiγi = 0, thus

β ◦ 0 = 0 = β = β ◦ 1Bi , ∀i , 1⇒ 0 = 1Bi , ∀i , 1
⇒ Xi = 0, ∀i , 1
⇒ Yi = 0, ∀i , 1
⇒ Y = Y1 is indecomposable.

�

Theorem 3.7. Let Y α // X′
β // X δ // be an s-triangle in K . Assume that β is a minimal right almost

split morphism in X, and X is X-projective. Then

(i) (1) Y < X,
(2) α is an X-envelope of Y,
(3) Y is indecomposable.

(ii) If there is an s-triangle Ỹ α̃ // X̃′
β̃ // X̃ δ̃ // such that β̃ is a minimal right almost split morphism in

X and X̃ is X-projective, then X � X̃ if and only if Y � Ỹ.

Proof. (i) Since β is a right almost split morphism in X, X is indecomposable by Lemma 3.2. Now
assume Y ∈ X. Since X is X-projective, we have E(X,Y) = 0, and hence δ = 0. Thus β is a split
epimorphism, which is a contradiction. Hence Y < X. By Lemma 3.6, α is an X-envelope of Y .
Moreover, since β is right minimal, Y is indecomposable by Lemma 3.6.

(ii) Using (i), we have that Ỹ < X, Ỹ is indecomposable, and α̃ is an X-envelope of Ỹ .
The “only if” part. Assume that X � X̃, that is, there is an isomorphism ϕ : X → X̃. Then

β̃ : X̃′ → X̃ and ϕβ : X′ → X̃ are minimal right almost split morphisms. By Lemma 3.2, there exists
an isomorphism ψ : X′ → X̃′ such that ϕβ = β̃ψ. Then we get the following commutative diagram

Y α //

φ
��

X′
β //

ψ
��

X δ //

ϕ
��

Ỹ α̃ // X̃′
β̃ // X̃ δ̃ // .
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By [14, Corollary 3.6], φ is an isomorphism, and hence Y � Ỹ .
The “if” part. Assume Y � Ỹ , that is, there is an isomorphism φ : Y → Ỹ . Then α and α̃φ are

X-envelopes of Y . Then X′ � X̃′ since envelopes are unique up to isomorphisms. That is, there exists
an isomorphism ψ : X′ → X̃′ such that α̃φ = ψα. Then we have the following commutative diagram

Y α //

φ
��

X′
β //

ψ
��

X δ //

ϕ
��

Ỹ α̃ // X̃′
β̃ // X̃ δ̃ // .

By [14, Corollary 3.6], ϕ is an isomorphism, and hence X � X̃. �

Example 3.8. Let Λ = kQ be a finite-dimensional hereditary path algebra over an algebraically closed
field k, where Q is the quiver

1← 2← 3.

Then the Auslander-Reiten quiver of Λ is as follows ( [3, Chapter IV, Example 4.10]):

[S 1]
&&

[S 2]
&&

[S 3]

[P2]
88

&&
[I2]

99

[P3],
88

where the symbol [M] denotes the isomorphism class of a module M, and

(1) S 1 = (k ← 0← 0), S 2 = (0← k ← 0) and S 3 = (0← 0← k) are all simple modules;
(2) P1 = S 1, P2 = (k ← k ← 0) and P3 = (k ← k ← k) are all indecomposable projective modules;
(3) I1 = P3, I2 = (0← k ← k) and I3 = S 3 are all indecomposable injective modules.

Let K = modΛ be the category of finitely generated left Λ-modules. Then modΛ is an extriangulated
category with E = Ext1

Λ. Set X = add(I2 ⊕ S 3). Then X is closed under extensions. Clearly, there is an

Auslander-Reiten sequence 0→ S 2
α
→ I2

β
→ I3 → 0 in modΛ. In particular, β is a minimal right almost

split morphism. Moreover, since Ext1
Λ(S 3, I2⊕S 3) � DHomΛ(I2⊕S 3, τS 3) = DHomΛ(I2⊕S 3, S 2) = 0,

we have that S 3 is X-projective. By Theorem 3.7, α is an X-envelope.

Remark 3.9. (1) An s-triangle in K of the form A α // B
β // C δ // with A, B,C ∈ X is said to be an

Auslander-Reiten s-triangle in X if

(i) δ , 0,
(ii) α is left almost split in X,

(iii) β is right almost split in X.

Clearly, the s-triangle given in Theorem 3.7 is not Auslander-Reiten s-triangle in X since the
starting object is not in X at least.

(2) Let K = T be a triangulated category, [1] the shift functor, and E = HomT (−,−[1]). Then
Theorem 3.7 recovers [6, Theorem A].

(3) Dual to Theorem 3.7, we have the following result: Let Y α // X′
β // X δ // be an s-triangle in K .

Assume that α is a minimal left almost split morphism in X, and Y is X-injective. Then
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(i) (a) X < X,
(b) β is an X-cover of X,
(c) X is indecomposable.

(ii) If there is an s-triangle Ỹ α̃ // X̃′
β̃ // X̃ δ̃ // such that α̃ is a minimal left almost split morphism

in X and Ỹ is X-injective, then Y � Ỹ if and only if X � X̃.

4. An exact structure of extension-closed subcategories

Assume that K is an extriangulated category, and X be an extension-closed subcategory of K .
By [14, Remark 2.18], X is also an extriangulated category. In this section, we will show that X
has an exact structure under some assumptions, which generalizes [11, Proposition 2.5]. The results
in this section follow closely part of Section 2 from [11] and that the proofs also follow by very
similar arguments. An important difference is that in our setup one has to add the assumption that the
extriangulated category has a negative first extension in order to obtain the needed exact sequences in
our arguments, while in [11] these exact sequences come for free from the triangulated structure.

Definition 4.1. A homotopy cartesian square in K is a commutative diagram

A x //

y
��

B
v
��

C u // D

in K such that A
(x

y) // B ⊕C
(−v,u) // D is a conflation.

Let X be an additive subcategory of K . We set

EX := {conflations X1 → X2 → X3 in K with X1, X2, X3 ∈ X}.

Definition 4.2. ( [1, Definition 2.3]) A negative first extension structure onK consists of the following
data:

(NE1) E−1 : Kop × K → Ab is an additive bifunctor.

(NE2) For each δ ∈ E(C, A), there exist two natural transformations

δ−1
] : E−1(−,C)→ HomK (−, A)

δ]
−1 : E−1(A,−)→ HomK (C,−)

such that for each E-triangle A
f // B

g // C δ // and each W ∈ K , two sequences

E−1(W, A)
E−1(W, f ) // E−1(W, B)

E−1(W,g) // E−1(W,C)
(δ−1
]

)W
// HomK (W, A)

HomK (W, f )// HomK (W, B)

E−1(C,W)
E−1(g,W) // E−1(B,W)

E−1( f ,W) // E−1(A,W)
(δ]
−1)W // HomK (C,W)

HomK (g,W)// HomK (B,W)

are exact.
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In this case, we call (K ,E, s,E−1) an extriangulated category with a negative first extension.

In what follows, we assume thatK is an extriangulated category with a negative first extension E−1,
and X is an additive subcategory of K which is closed under extensions and E−1(X,X) = 0.

Lemma 4.3. Each conflation X1
f // X2

g // X3 in EX is a kernel-cokernel pair in X.

Proof. For any X ∈ X, we have exact sequences

E−1(X, X3) // HomK (X, X1)
HomK (X, f ) // HomK (X, X2) // HomK (X, X3) (4.1)

and
E−1(X1, X) // HomK (X3, X)

HomK (g,X) // HomK (X2, X) // HomK (X1, X) . (4.2)

By assumption, E−1(X, X3) = 0 = E−1(X1, X). Thus the sequence (4.1) implies that f is a kernel of g,

and the sequence (4.2) implies that g is a cokernel of f . Thus X1
f // X2

g // X3 is a kernel-cokernel
pair in X. �

Lemma 4.4. Assume that the following diagram

X1
x //

y
��

X2

v
��

X3
u // X4

is a homotopy cartesian square with each Xi ∈ X. Then it is a pullback and a pushout in X.

Proof. By definition, there is an s-triangle X1
(x

y) // X2 ⊕ X3
(−v,u) // X4

δ // . For any X ∈ X, there are
exact sequences

E−1(X, X4) // HomK (X, X1) // HomK (X, X2 ⊕ X3) // HomK (X, X4) (4.3)

and
E−1(X1, X) // HomK (X4, X) // HomK (X2 ⊕ X3, X) // HomK (X1, X) . (4.4)

By assumption, E−1(X, X4) = 0 = E−1(X1, X). Thus the sequence (4.3) implies that the given diagram
is a pullback in X, and the sequence (4.4) implies that the given diagram is a pushout in X. �

We recall the definition of exact categories from [5, Definition 2.1]. As proven by Bühler, it is
equivalent to the original definition by Quillen from [15, Section 2]. Let C be an additive category. A
kernel-cokernel pair (i, p) in C is a pair of composable morphisms A i // B

p // C such that i is a kernel
of p and p is a cokernel of i. If a class E of kernel-cokernel pairs on C is fixed, a morphism i is called
an inflation if there is a morphism p with (i, p) ∈ E. Deflations are defined dually.

Let C be an additive category. An exact structure on C is a class E of kernel-cokernel pairs which is
closed under isomorphisms and satisfies the following axioms:

[E0] ∀A ∈ C, 1A is an inflation.
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[E0op] ∀A ∈ C, 1A is a deflation.

[E1] The class of inflations is closed under composition.

[E1op] The class of deflations is closed under composition.

[E2] The pushout of an inflation along an arbitrary morphism exists and yields an inflation.

[E2op] The pullback of a deflation along an arbitrary morphism exists and yields a deflation.

An exact category is a pair (C,E) consisting of an additive category C and an exact structure E on C.

Theorem 4.5. (X,EX) is an exact category.

Proof. We will check [E0], [E1], [E2] and their dual.

[E0] and [E0op]: For each X ∈ X, there are s-triangles X
1X // X // 0 0 // and 0 // X

1X // X 0 // .

Clearly, X
1X // X // 0 and 0 // X

1X // X belong to EX. Thus 1A is an inflation and a deflation.
[E1]: Let x : X0 → X1 and y : X1 → X2 be two inflations in X. Then there exist two conflations

X0
x // X1

// X3 and X1
y // X2

// X4 in EX. By (ET4), we have a commutative diagram

X0
x // X1

//

y
��

X3

��
X0

yx // X2
//

��

X5

��
X4 X4,

where all rows and columns are conflations. Since X3, X4 ∈ X, we have X5 ∈ X, and hence
X0

yx // X2
// X5 ∈ EX. Thus yx is an inflation in X. That is, inflations in X are closed under

compositions.
[E1op]: Dual to [E1].
[E2]: Given a diagram

X1
x //

y
��

X2

X3

in X, where x is an inflation. Then there is an s-triangle X1
x // X2

// X4
δ // with X4 ∈ X. By [13,

Proposition 1.20], there exists a morphism ϕ : X2 → X5 such that there is a morphism of s-triangles

X1
x //

y
��

X2
//

ϕ

��

X4
δ //

X3
φ // X5

// X4
y?δ //
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and meanwhile, there is a conflation X1
(x

y) // X2 ⊕ X3
(−ϕ,φ)// X5 . That is, the diagram

X1
x //

y
��

X2

ϕ

��
X3

φ // X5

is a homotopy cartesian diagram. Moreover, since X3, X4 ∈ X, we have X5 ∈ X. Thus by Lemma 4.4,
this homotopy cartesian diagram is a pushout in X, and φ is an inflation in X.

[E2op] Dual to [E2]. �

Remark 4.6. Let K = T be a triangulated category, [1] the shift functor, E = HomT (−,−[1]), and
E−1 = HomT (−[1],−). Then Theorem 4.5 recovers [11, Proposition 2.5(1)].

5. Conclusions

Let X be an extension-closed subcategory of an extriangulated category K . We show that if C is
X-projective and there is a minimal right almost split deflation in X ending by C, then there is an s-
triangle ending by C which is very similar to an Auslander-Reiten triangle in X, and it generalizes [6,
Theorem A]. We also show that if K admits a negative first extension E−1 and E−1(X,X) = 0, then the
subcategory X has an exact structure which generalizes [11, Proposition 2.5(i)].
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