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1. Introduction

In this paper, we investigate the following convex minimization problem
min(f(x) + g(), (1.1)

where H is a real Hilbert space, g : H — (—o0, +00] is proper, lower semicontinuous and covex and
f + H = Ris convex and differentiable with the Lipschitz continuous gradient denoted by Vf. It is
known that x* is a minimizer of f + g if and only if

0 € (g + V)(x), (1.2)

where dg denotes the subdifferential of g.

The convex minimization problem is an important mathematical models which unify numerous
issues in applied mathematics for example, signal processing, image reconstruction, machine learning
and so on. See [1,3,8,9,11,22,31].

The most popular algorithm for solving the convex minimization problem is the so-called forward-
backward algorithm (FB), which generates by a starting point x; € H and

Xn+l = prox/lg(xn - /lVf(Xn)), nx1 (13)
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where prox, is the proximal operator of g and the stepsize A € (0,2/L), L is the Lipschitz constant
of Vf.

Polyak [21] first proposed the inertial idea to improve the convergence speed of the method.
In recent years, many authors introduced various fast iterative methods via inertial technique, for
example, [7,8,10,15,16,18,23,25,26,32].

In 2009, Beck and Teboulle [4] introduced the fast iterative shrinkage-thresholding algorithm for
linear inverse problem (FISTA). Let 7y = 1 and xy, = x; € H. Compute

1+ J1+42

tﬂ+1 = 2 )
tho1— 1
en — n—1 ’
Iy
Yn = X+ 0,(Xy — Xpot1),
1
Xnyl = Proxi(ya = sz(yn)) nxl. (1.4)

This improves the convergence speed for O(1/n?). However, the stepsize is established under the
condition of the Lipschitz constant which is not known in general.

In 2000, Tseng [29] proposed a modified forward-backward algorithm (MFB) via the stepsize with
linesearch technique as follows. Given o > 0, p € (0, 1), 6 € (0, 1) and x; € H. Compute

Yn prox/lng(xn - /lnvf(-xn))’
Xn+1l = prox/lng(yn - /ln(vf(yn) - Vf(xn)))a nz 1 (15)
where A, is the largest A € {0, op, op?, ...} satisfying A||Vf(y,) = VL)l < |[yn — Xall.
In 2020, Padcharoen et al. [20] proposed the modified forward-backward splitting method based on
inertial Tseng method (IMFB). Given {4,} c (0, %), {a,} € [0,a] C [0, 1). Let xo, x; € H and compute

Wy, = Xp+ gn(xn - xn—l)’
Yn = prox/lng(wn - ﬂan(Wn)),
Xn+l = Yn— /ln(vf@n) - Vf(wn))’ n>1. (16)

They established weak convergence of the proposed method.

In 2015, Shehu et al. [24] introduced the modified split proximal method (MSP). Letr : H - H
be a contraction mapping with constant @ € (0, 1). Set ¢(x) = /|[VA(x)|]? + [[V£(x)|* with h(x):%ll(l -
prox)Ax|?, €(x) = 31I(I — prox,,, ;)x|I*. Given an initial point x; € H and construct

Yo = Xy —HaAT(I = prox,g)Ax,,

Xn+l = anr(x,,) + (1 - a’n)prox/ly,,fyna n>1, (17)
where the stepsize u, = lﬁn% with 0 < ¢, < 4. They proved strong convergence theorem for

proximal split feasibility problems.
In 2016, Cruz and Nghia [5] presented a fast multistep forward-backward method (FMFB) with a
linesearch. Given o > 0, u € (0, %), p € (0,1)and ¢ty = 1. Choose xy, x; € H and compute

1+ J1+42

tn+1 = 2 ’
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t-1—1
0, = 1 ,
Iy
Yn = Xpt Hn(xn - -xn—l)
Xn+l = prox/l,,g(yn - /lnvf(yn)), n>1 (18)

where 4, = op™ and m,, is the smallest nonnegative integer such that

/lnllvf(prox/lng(yn - /lnvf(yn)) - Vf(yn))” < ﬂ”P’”Oxa,,g(Yn - ﬁnf(yn)) - yn” (19)

Very recently, Malitsky and Tam [17] introduced the forward-reflected-backward algorithm (FRB).
Given 4y > 0,6 € (0,1),y € {1,8'}and 8 € (0, 1). Compute

X1 = Proxy,e(Xy = 4,V f(x) = Ayt (Vf(X0) = VI (Xp-1))), 121 (1.10)

where the stepsize 4, = yA,-; B with i being the smallest nonnegative integer satisfying A,||V f(x,+1) —
Vf(xn)” < g”-xn+l - xn”-

Very recently, Hieu et al. [13] proposed the modified forward-reflected-backward method (MFRB)
with adaptive stepsize. Given xy, x; € H, 49, 4; > 0, u € (0, %):

Xn+1l = prox/l,,g(xn - /anf(Xn) - /ln—l(vf(xn) - Vf(xn—l)))’

PllXn1 = Xall
" IV F ) VGl " (b

This stepsize allows the proposed method without knowing the Lipschitz constant to solve the
problem.

Inspired and motivated by previous works, we propose based on the adaptive stepsize, the inertial
proximal gradient algorithm for convex minimization problems. This method requires more flexible
conditions than the fixed stepsize does. We then establish weak convergence of our scheme under some
assumptions. Moreover, we present some numerical experiments in image deblurring. It reveals that
our algorithm outperforms other methods.

A1 = min{A

2. Basic definitions and lemmas

In this section, we provide some definitions and lemmas for proving our theorem.

Weak and strong convergence of a sequence {x,} C Q to z € Q are denoted by x, — zand x, — z,
respectively.

Let g : H — (—00,+00] be a proper, lower semicontinuous and convex function. We denote the
domain of g by domg = {x € H|g(x) < +oo}. For any x € domg, the subdifferential of g at x is defined
by

dg(x) = {v e H(v,y —x) < g(y) — g(x), y € H}.

Recall that the proximal operator prox, : dom(g) — H is given by proxg(x) = +089)7(z), z € H.
It is known that the proximal operator is single-valued. Moreover, we have
Z — prox, g(z)

) € 0g(prox,,(z)) forallze H, 1> 0. 2.1
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Definition 2.1. Let S be a nonempty subset of H. A sequence {x,} in H is said to be quasi-Fejér

convergent to S if and only if for all x € S there exists a positive sequence {&,} such that Z &, < +o0
n=1

and ||xps1 — X|* < 1%, = XI* + &, for all n > 1. If {&,} is a null sequence, we say that {x,} is Fejér

convergent to S.

Lemma 2.1. [6] The subdifferential operator dg is maximal monotone. Moreover, the graph
of 0g, Gph(dg) = {(x,v) € HX H : v € 0g(x)} is demiclosed, i.e., if the sequence {(x,,v,)} C Gph(dg)
satisfies that {x,} converges weakly to x and {v,} converges strongly to v, then (x,v) € Gph(dg).

Lemma 2.2. [19] Let {a,}, {b,} and {c,} be real positive sequences such that
api1 < (1 +cy)a, +b,, n>1.

IfX> ¢, < +o0and X7 b, < +oo, then lim a, exists.

n—-+0o

Lemma 2.3. [12] Let {a,} and {6,} be real positive sequences such that
any1 < (1 + gn)an + Qnan—la nx1.

Then, ay. < K-T1,(1+26;) where K = max{ay, ay}. Moreover, if 37, 0, < +co, then {a,} is bounded.

Lemma 2.4. /2, /4] If {x,} is quasi-Fejér convergent to S, then we have:
(i) {x,} is bounded.
(ii) If all weak accumulation points of {x,} is in S, then {x,} weakly converges to a point in S .

3. Main result

In this section, we assume that the following conditions are satisfied for our convergence analysis:

(A1) The solution set of the convex minimization problem (1.1) is nonempty, i.e., = argmin(f +
g)#0.

(A2) f,g : H — (—o0, +00] are two proper, lower semicontinuous and convex functions.

(A3) f is differentiable on H and V f is Lipschitz continuous on H with the Lipschitz constant L > 0.

We next introduce a new inertial forward-backward method for solving (1.1).

Algorithm 3.1. Inertial modified forward-backward method (IMFB)
Initialization: Let xo = x; € H, 11 > 0, 6; > 0 and 6 € (0, 1).
Iterative step: For n > 1, calculate x,,, as follows:

Step 1. Compute the inertial step:

Wy = Xn + 0,(Xn — Xpo1). (3.1)
Step 2. Compute the forward-backward step:
Yn = proxXa,(wy — A,V f(wy)). (3.2)
Step 3. Compute the x,., step:

Xns1 = Yn = An(Vf(¥n) = Vf(Wn)) (3.3)
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where

(3.4)

oy = M A IV FOr) = VFO # 0:
A, otherwise.

Set n = n+ 1 and return to Step 1.

Remark 3.1. It is easy to see that the sequence {A,} is non-increasing. From the Lipschitz continuity

of Vf, there exists L > 0 such that ||Vf(w,) — V)l < LIw, — y,|l. Hence,

> min{%, An}. (3.5)

0 n~— Yn
o = min{ Ol

s An
V) = VLGl

By the definition of {A,}, it implies that the sequence {A,} is bounded from below by min{A, %}. So, we
obtain lim,_,,o A4, = A > 0.

Lemma 3.1. Let {x,} be generated by Algorithm 3.1. Then

2ne1 = X < Jlw — XIP = (1 - =l = wall’, Vx* € Q. (3.6)

n+1

Proof. Let x* € Q. Then

yn = A(VFG) = Vf(w,)) — x|
= yu = x'1P + BAVFG0) = VEWIP
=20,(y0 = X", Vf(yn) = Vf(wn))
= |y = wo +w, = X"+ 2IVLQ,) = VWP
=24, = X, V) = V(W)
= Iwn = X' + [lyn = wall® + 20w, — 2%, 3, — w,.)
22,90 = X, VL) = VW) + LUVLG) = VWP
= wy = X+ 1lyn = Wall® + 200, = Yo + Yo = X5, 90 — W)
=22, = X, V) = VW) + LAV LG) = VW)
=, = X+ 1lyn = Wall® = 20 = Wiy Yo — W)
F20n = X Y0 = W) = 24,9, — X",V (y,) = VI (w,))
+2IV ) = VW)l
= wa = XN+ 1w = wall® = 2llyn = wall* + 200 — X%,y — W)
~20y = X, (V) = VW)Y + 2VFG,) = VI wa)IP
= w, = X7 =y, — wall®
20V = X Wy = Y+ (V) = V(W)
+ 20V ) = VLI 3.7)

2
ll41 = X7

Note that

(3.8)

0 n— Yn 0 n~— Jn
/1,,+1:min{ W, — yall }< lw,, = yall

Anp < :
VW) = VG VW) = VLGl
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It follows that

0
IVfw,) = VIl < 1 W, = yull. (3.9)
n+1
Combining (3.7) and (3.9), we obtain
232
||xn+1 - -)C*”2 < ”Wn - X*Hz - ||yn - Wn”Z + D) n”yn - W‘n”2
/1n+1
_2<yn - X*’ Wn = Yn + /ln(vf(yn) - Vf(wn))>
232
= lw, — X IP = (1 - lz—")llyn — wall®
n+1
_2<yn - X*a Wn = Yn + /ln(vf(yn) - Vf(wn))> (310)

From (3.2), we see that w, — 4,V f(w,) € (I + 4,02)y,. Since dg is maximal monotone, then there is
u, € 0g(y,) such that

Wy — /anf(Wn) =Ynt /lnun- (311)
This shows that
1
U, = /l_(wn - /lnvf(wn) - yn)- (312)

Since 0 € (Vf + dg)(x*) and Vf(y,) + u, € (Vf + dg)y,, we get
(VIO + t, yu — X 2 0. (3.13)

Substituting (3.12) into (3.13), we have

ﬂim VSO0 = Y+ AV FG) v — %) 2 0. (3.14)

This implies that (w, — 4,Vf(w,) =y, + ,Vf(,),y, — x*) > 0. Using (3.10), we derive

212

1 = X P < lwn = X1 = (4 = —)llyn — wall*- (3.15)
/12

n+1

O

Lemma 3.2. Let {x,} be generated by Algorithm 3.1. If 3", 6, < oo, then lim,_,«, ||x, — x*|| exists for
all x* € Q.

Proof. Let x* € Q. From Lemma 3.1, we see that
e = XN < llwn = X7l (3.16)

So, we have

a1 = X7 < lwn — X7
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”-xn + gn(xn - xn—l) - X*”

<l = X7+ Gallxn — Xl
<l = X+ Gulllx, = X7l + -1 = X7ID. (3.17)
Hence
1 = X711 < (1 + O)llx, — X7+ Gullox—r — X7l (3.18)
By Lemma 2.3, we conclude that
X1 = X7 < Kﬁ(l +26,) (3.19)

i=1

where K = max{||x; —x*||, [[x, — x*||}. Since Y., 8, < +oo, by Lemma 2.3, we have {x, —x"} is bounded.
Hence ), 6,llx, — x,-1|| < +co. By Lemma 2.2 and (3.17), we have lim ||x, — x*|| exists. |

Lemma 3.3. Let {x,} be generated by Algorithm 3.1. If 3", 6, < co, then
lim [[x,41 — x|l = 0.

Proof. We see that

2 2
lw, = x*I° = Xy + (X — X,-1) — X7|
2 2 2
= ”-xn - X*” + 29n<xn - X*’ Xn — xn—]) + 0n||x,, - xn—l”
112 2 2
<l = X517+ 26,01x, = X7, = Xt Il + G511, = X021 ]1° (3.20)

From (3.15) and (3.20), we have

2 2 2 2
n+l — * = n * nllAn — * n — An-1 nllAn = An—1
llx X7 < e = X7+ 26,010 — x7M1x = Xl + 611 — 2l
52 2
2
—-(1- Z Nwa = Yall (3.21)
n+l1

Note that 6,|x, — x,_1|| = 0 and lim ||x,, — x"|| exists by Lemma 3.2. From (3.1) and (3.21), we have

llw, = x,/l = 0 and |lw, — y,|| = O, respectively. It is easy to see that ||x, — y,|| — 0. Since Vf is
uniformly continuous, we obtain

lim IV £(w,) = V£l = 0, (3.22)
From (3.3) and (3.22), we get
%01 = yull = AWV n) = VW)l
- 0. (3.23)

Thus, we have

||xn+1 - xn” < ||xn+1 - yn” + ”yn - xn”
— 0. (3.24)

O
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Theorem 3.1. Let {x,} be generated by Algorithm 3.1. If 3", 6, < oo, then {x,} weakly converges to a
point in Q.

Proof. Since {x,} is bounded, there exists a subsequence {x,,} of {x,} such that x,, — X € H. From
Lemma 3.3, we obtain x,,,; — X. We note that

yl’lk = prox/lnkg(wnk - /ll’lj\vf(wnk)) (325)
From (2.1), we obtain

Wy — /lnkvf(wnk) — Yy
Ay

€ 9g(yn,)- (3.26)

Hence

Wnk - ynk

1 - Vf(wnk) + Vf(ynk) € ag(ynk) + Vf(ynk) (327)

Since ||x, —y,|l = 0, we also have y,, — X. Letting k — oo in (3.27) and using (3.22), by Lemma 2.1
and Remark 3.1, we get

0 € (Vf + dg)(®. (3.28)

So x € Q. From (3.21) we see that {x,} is a quasi-Fejer sequence. Hence, by Lemma 2.4, we conclude
that {x,} weakly converges to a point in . This completes the proof.
m]

4. Numerical experiment in image deblurring
The image deblurring can be modeled by the following linear equation system:
Ax=Db +v,
where A € RV ig the blurring matrix, x € R" the original image, b € R¥ the degraded image and

v € R is the noisy.
An approximation of the clean image can be found by the following LASSO problem [27]:

1
min { = |lb — Ax|[3 + 7]|x } 4.1
min {1l — A + @1
where 7 is a positive parameter, || - ||; is the £;-norm, and || - ||, is the Euclidean norm.

It is known that (4.1) can be written in the form (1.1) by defining f(x) = %||b—Ax||§ and g(x) = 7|xl;.
We compare our algorithm (IMFB) with FISTA, MFB, FRB, MFRB, IMFB, MSP and FMFB.

2
In method IMFB, we setty, =1, ¢, = I+ V12+4fn_1 and

b
Iy

S if 1 <n <1000
0 otherwise.
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The regularization parameters are chosen by 7 = 102 and xp = x; = (1,1, 1,...,1) € R¥. We set the
following parameters in Table 1.

Table 1. The parameters for each methods.

Parameters FISTA MFB FRB MFRB IMFB MSP FMFB IMFB
Ao =0.1 - v v - - -
/11 = 05 - - \/ - - \/
o=0.1 v - - - v -
p =038 v - - - v -
B=0.5 - v - - - -
y=1/B A, = 1/|IAIP - v - A, = 1/|AIF - - -
60=05 v v - - - v
u=0.2 - - v - v -
a, = nﬁ - - - v - -
=2 - - - v - -
r(x) = 4, - ;- :

In this example, we set all parameters as in Table 1. For the experiments, we use the sizes 251 X 189
for RGB images which are blurred by the following blur types:

(1) Motion blur with motion length of 45 pixels and motion orientation 180°.
(i1) Gaussian blur of filter size 5 X 5 with standard deviation 5.
(iii) Out of focus with radius 7.

We add Poisson noise and use a Fast Fourier Transform (FFT) for converting it to the frequency
domain. Structural similarity index measure (SSIM) [30] is used for measuring the similarity between
two images. Peak-signal-to-noise ratio (PSNR) in decibel (dB) [28] is defined by

2552 )

PSNR = 1010g10 (m

where MSE= ||x,, — x||* and x is the original image. It is noted that, a higher PSNR generally indicates
that the reconstruction is of higher quality. The resultant SSIM index is a decimal value between 0
and 1, and value 1 is indicates perfect structural similarity.

The numerical experiments have been carried out in Matlab environment (version R2020b) on
MacBook Pro M1 with ram 8 GB. For the results recovering the degraded RGB images, we limit
the iterations to 1,000. We report the numerical results in Table 2.

In Table 2, we see that IMFB has a higher PSNR than FISTA, MFB, FRB, MFRB, IMFB, MSP,
FMEFB for the same number of iterations. Moreover, SSIM of IMFB is closer to 1 than other methods.
This shows that our algorithm has a better convergence than other methods for this example. However,
we observe that IMFB has a less CPU time than other methods.
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Table 2. The comparison of PSNR, SSIM and CPU time in seconds for each methods of the
restored images.

Methods Motion blur Gaussian blur Out of focus
PSNR SSIM CPU PSNR SSIM CPU PSNR SSIM CPU

FISTA  25.1122 0.7694 48.0184 34.3744 0.9320 47.2637 30.9043 0.8672 47.2831
MFB 24.8516 0.7640 71.2241 349546 0.9405 71.4400 28.3107 0.8152 70.4725
FRB 27.5733 0.8536 113.2112 38.6119 0.9703 112.5153 31.8188 0.8886 111.3155
MFRB  25.5158 0.7893 77.6740 36.0870 0.9515 70.3914 29.3660 0.8412 69.7562
IMFB 33.6105 0.9453 42.8921 41.1854 0.9818 42.7064 34.8978 0.9293 42.9258
MSP 34.8218 0.9560 92.9287 38.0609 0.9675 93.2503 32.0816 0.8941 93.2242
FMFB  40.8550 0.9785 64.8279 43.9280 0.9888 64.9999 38.0780 0.9544 64.8632
IMFB 46.7885 0.9920 75.7321 47.3368 0.9939 75.5435 41.0665 0.9743 74.7891

We next show the different types of blurred RGB images with the PSNR in Figure 1.

Motion blur

(a)original  (b)blurred cropped cropped

image image image(a) image(b)
20.4054

Gaussian blur

(c)original  (d)blurred cropped cropped

image image image(c) image(d)
28.7148

Out of focus

(e)original  (f)blurred cropped cropped

image image image(e) image(f)
23.5639

Figure 1. (a), (c) and (e) show the original images for each blurred RGB images with noise,
(b), (d) and (f) show the images degraded by each blurred.

We next show the restored images of RGB images for Motion blur with the PSNR in Figure 2.
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(@) (b) (©) (d) (© ® (2 (h)
FISTA  MFB FRB MFRB  IMFB MSP FMFB IMFB
251122 24.8516  27.5733 255158  33.6105  34.8218  40.8550  46.7885

cropped cropped cropped cropped cropped cropped cropped cropped
image(a) image(b) image(c) image(d) image(e) image(f) image(g) image(h)

Figure 2. Recovered images via the different methods for degraded images by Motion blur.

We next show the restored images of RGB images for Gaussian blur with the PSNR in Figure 3.

i T
e,
-

(@) (b) (©) (d) (© ® (2 (h)
FISTA  MFB FRB MFRB  IMFB MSP FMFB IMFB
343744 349546 38.6119  36.0870  41.1854  38.0609  43.9280  47.3368

cropped cropped cropped cropped cropped cropped cropped cropped
image(a) image(b) image(c) image(d) image(e) image(f) image(g) image(h)

Figure 3. Recovered images via the different methods for degraded images by Gaussian blur.

We next show the restored images of RGB images for out of focus with the PSNR in Figure 4.
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(@) (b) (©) (d) (© ® (2 (h)
FISTA  MFB FRB MFRB  IMFB MSP FMFB IMFB
309043 283107  31.8188  29.3660  34.8978  32.0816  38.0780  41.0665

cropped cropped cropped cropped cropped cropped cropped cropped
image(a) image(b) image(c) image(d) image(e) image(f) image(g) image(h)

Figure 4. Recovered images via the different methods for degraded images by out of focus.

(3 100 200 300 400 600 700 800 %00 1000 (3 100 200 300 00 800 %00 1000

500 500
Number of terations Number of iterations.

(a) PSNR plotting of Motion blur (b) SSIM plotting of Motion blur

o 100 200 300 400 700 800 %00 1000 o 100 200 200 00 80 %0 1000

500 600 500 60
Number of terations Number of iterations

(c) PSNR plotting of Gaussian blur (d) SSIM plotting of Gaussian blur

700 800 %00 1000 (3 100 200 200

() 100 200 300 00 80 %00 1000

500 500 60
Number of iterations Number of iterations

(e) PSNR plotting of Out of focus (f) SSIM plotting of Out of focus

Figure 5. Graphs of PSNR and SSIM values for each blurred image and restored images by
FISTA, MFB, FRB, MFRB, IMFB, MSP, FMFB and IMFB.
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The results of the numerical experiments are summarized in Table 2. Figure 1 shows the original
and blurred images for this experiment. In Figures 2-5, we report all results that include the recovered
images via each algorithms. It is shown that IMFB outperforms FISTA, MFB, FRB, MFRB, IMFB,
MSP and FMFB in terms of PSNR and SSIM.

5. Conclusions

In this paper, we established the convergence theorem of the iterates generated by a new modified
inertial forward-backward algorithm with adaptive stepsize under some suitable conditions for convex
minimization problems. We applied our main result to image recovery. It was shown that our proposed
method outperforms other methods in terms of PSNR and SSIM. In future work, we will study the
convergence rate of the iteration.
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