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1. Introduction

In this paper, we investigate the following convex minimization problem

min
x∈H

( f (x) + g(x)), (1.1)

where H is a real Hilbert space, g : H → (−∞,+∞] is proper, lower semicontinuous and covex and
f : H → R is convex and differentiable with the Lipschitz continuous gradient denoted by ∇ f . It is
known that x∗ is a minimizer of f + g if and only if

0 ∈ (∂g + ∇ f )(x∗), (1.2)

where ∂g denotes the subdifferential of g.
The convex minimization problem is an important mathematical models which unify numerous

issues in applied mathematics for example, signal processing, image reconstruction, machine learning
and so on. See [1, 3, 8, 9, 11, 22, 31].

The most popular algorithm for solving the convex minimization problem is the so-called forward-
backward algorithm (FB), which generates by a starting point x1 ∈ H and

xn+1 = proxλg(xn − λ∇ f (xn)), n ≥ 1 (1.3)
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where proxg is the proximal operator of g and the stepsize λ ∈ (0, 2/L), L is the Lipschitz constant
of ∇ f .

Polyak [21] first proposed the inertial idea to improve the convergence speed of the method.
In recent years, many authors introduced various fast iterative methods via inertial technique, for
example, [7, 8, 10, 15, 16, 18, 23, 25, 26, 32].

In 2009, Beck and Teboulle [4] introduced the fast iterative shrinkage-thresholding algorithm for
linear inverse problem (FISTA). Let t0 = 1 and x0 = x1 ∈ H. Compute

tn+1 =
1 +

√
1 + 4t2

n−1

2
,

θn =
tn−1 − 1

tn
,

yn = xn + θn(xn − xn−1),

xn+1 = prox 1
L g(yn −

1
L
∇ f (yn)) n ≥ 1. (1.4)

This improves the convergence speed for O(1/n2). However, the stepsize is established under the
condition of the Lipschitz constant which is not known in general.

In 2000, Tseng [29] proposed a modified forward-backward algorithm (MFB) via the stepsize with
linesearch technique as follows. Given σ > 0, ρ ∈ (0, 1), δ ∈ (0, 1) and x1 ∈ H. Compute

yn = proxλng(xn − λn∇ f (xn)),
xn+1 = proxλng(yn − λn(∇ f (yn) − ∇ f (xn))), n ≥ 1 (1.5)

where λn is the largest λ ∈ {σ,σρ, σρ2, ...} satisfying λ‖∇ f (yn) − ∇ f (xn)‖ ≤ ‖yn − xn‖.
In 2020, Padcharoen et al. [20] proposed the modified forward-backward splitting method based on

inertial Tseng method (IMFB). Given {λn} ⊂ (0, 1
L ), {αn} ⊂ [0, α] ⊂ [0, 1). Let x0, x1 ∈ H and compute

wn = xn + θn(xn − xn−1),
yn = proxλng(wn − λn∇ f (wn)),

xn+1 = yn − λn(∇ f (yn) − ∇ f (wn)), n ≥ 1. (1.6)

They established weak convergence of the proposed method.
In 2015, Shehu et al. [24] introduced the modified split proximal method (MSP). Let r : H → H

be a contraction mapping with constant α ∈ (0, 1). Set ϕ(x) =
√
‖∇h(x)‖2 + ‖∇`(x)‖2 with h(x)=1

2‖(I −
proxλg)Ax‖2, `(x) = 1

2‖(I − proxλµn f )x‖2. Given an initial point x1 ∈ H and construct

yn = xn − µnA∗(I − proxλg)Axn,

xn+1 = αnr(xn) + (1 − αn)proxλµn f yn, n ≥ 1, (1.7)

where the stepsize µn = ψn
h(xn)+`(xn)
ϕ2(xn) with 0 < ψn < 4. They proved strong convergence theorem for

proximal split feasibility problems.
In 2016, Cruz and Nghia [5] presented a fast multistep forward-backward method (FMFB) with a

linesearch. Given σ > 0, µ ∈ (0, 1
2 ), ρ ∈ (0, 1) and t0 = 1. Choose x0, x1 ∈ H and compute

tn+1 =
1 +

√
1 + 4t2

n−1

2
,
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θn =
tn−1 − 1

tn
,

yn = xn + θn(xn − xn−1)
xn+1 = proxλng(yn − λn∇ f (yn)), n ≥ 1 (1.8)

where λn = σρmn and mn is the smallest nonnegative integer such that

λn‖∇ f (proxλng(yn − λn∇ f (yn)) − ∇ f (yn))‖ ≤ µ‖proxλng(yn − λn f (yn)) − yn‖. (1.9)

Very recently, Malitsky and Tam [17] introduced the forward-reflected-backward algorithm (FRB).
Given λ0 > 0, δ ∈ (0, 1), γ ∈ {1, β−1} and β ∈ (0, 1). Compute

xn+1 = proxλng(xn − λn∇ f (xn) − λn−1(∇ f (xn) − ∇ f (xn−1))), n ≥ 1 (1.10)

where the stepsize λn = γλn−1β
i with i being the smallest nonnegative integer satisfying λn‖∇ f (xn+1) −

∇ f (xn)‖ ≤ δ
2‖xn+1 − xn‖.

Very recently, Hieu et al. [13] proposed the modified forward-reflected-backward method (MFRB)
with adaptive stepsize. Given x0, x1 ∈ H, λ0, λ1 > 0, µ ∈ (0, 1

2 ):

xn+1 = proxλng(xn − λn∇ f (xn) − λn−1(∇ f (xn) − ∇ f (xn−1))),

λn+1 = min{λn,
µ‖xn+1 − xn‖

‖∇ f (xn+1) − ∇ f (xn)‖
}, n ≥ 1. (1.11)

This stepsize allows the proposed method without knowing the Lipschitz constant to solve the
problem.

Inspired and motivated by previous works, we propose based on the adaptive stepsize, the inertial
proximal gradient algorithm for convex minimization problems. This method requires more flexible
conditions than the fixed stepsize does. We then establish weak convergence of our scheme under some
assumptions. Moreover, we present some numerical experiments in image deblurring. It reveals that
our algorithm outperforms other methods.

2. Basic definitions and lemmas

In this section, we provide some definitions and lemmas for proving our theorem.
Weak and strong convergence of a sequence {xn} ⊂ Ω to z ∈ Ω are denoted by xn ⇀ z and xn → z,

respectively.
Let g : H → (−∞,+∞] be a proper, lower semicontinuous and convex function. We denote the

domain of g by domg = {x ∈ H|g(x) < +∞}. For any x ∈ domg, the subdifferential of g at x is defined
by

∂g(x) = {v ∈ H|〈v, y − x〉 ≤ g(y) − g(x), y ∈ H}.

Recall that the proximal operator proxg : dom(g) → H is given by proxg(x) = (I + ∂g)−1(z), z ∈ H.
It is known that the proximal operator is single-valued. Moreover, we have

z − proxλg(z)

λ
∈ ∂g(proxλg(z)) for all z ∈ H, λ > 0. (2.1)
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Definition 2.1. Let S be a nonempty subset of H. A sequence {xn} in H is said to be quasi-Fejér

convergent to S if and only if for all x ∈ S there exists a positive sequence {εn} such that
∞∑

n=1

εn < +∞

and ‖xn+1 − x‖2 ≤ ‖xn − x‖2 + εn for all n ≥ 1. If {εn} is a null sequence, we say that {xn} is Fejér
convergent to S .

Lemma 2.1. [6] The subdifferential operator ∂g is maximal monotone. Moreover, the graph
of ∂g, Gph(∂g) = {(x, v) ∈ H × H : v ∈ ∂g(x)} is demiclosed, i.e., if the sequence {(xn, vn)} ⊂ Gph(∂g)
satisfies that {xn} converges weakly to x and {vn} converges strongly to v, then (x, v) ∈ Gph(∂g).

Lemma 2.2. [19] Let {an}, {bn} and {cn} be real positive sequences such that

an+1 ≤ (1 + cn)an + bn, n ≥ 1.

If Σ∞n=1cn < +∞ and Σ∞n=1bn < +∞, then lim
n→+∞

an exists.

Lemma 2.3. [12] Let {an} and {θn} be real positive sequences such that

an+1 ≤ (1 + θn)an + θnan−1, n ≥ 1.

Then, an+1 ≤ K ·
∏n

i=1(1+2θi) where K = max{a1, a2}. Moreover, if
∑∞

n=1 θn < +∞, then {an} is bounded.

Lemma 2.4. [2, 14] If {xn} is quasi-Fejér convergent to S , then we have:
(i) {xn} is bounded.
(ii) If all weak accumulation points of {xn} is in S , then {xn} weakly converges to a point in S .

3. Main result

In this section, we assume that the following conditions are satisfied for our convergence analysis:
(A1) The solution set of the convex minimization problem (1.1) is nonempty, i.e., Ω = argmin( f +

g) , ∅.
(A2) f , g : H → (−∞,+∞] are two proper, lower semicontinuous and convex functions.
(A3) f is differentiable on H and ∇ f is Lipschitz continuous on H with the Lipschitz constant L > 0.
We next introduce a new inertial forward-backward method for solving (1.1).

Algorithm 3.1. Inertial modified forward-backward method (IMFB)
Initialization: Let x0 = x1 ∈ H, λ1 > 0, θ1 > 0 and δ ∈ (0, 1).
Iterative step: For n ≥ 1, calculate xn+1 as follows:
Step 1. Compute the inertial step:

wn = xn + θn(xn − xn−1). (3.1)

Step 2. Compute the forward-backward step:

yn = proxλng(wn − λn∇ f (wn)). (3.2)

Step 3. Compute the xn+1 step:

xn+1 = yn − λn(∇ f (yn) − ∇ f (wn)) (3.3)
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where

λn+1 =

min{ δ‖wn−yn‖

‖∇ f (wn)−∇ f (yn)‖ , λn} i f ‖∇ f (wn) − ∇ f (yn)‖ , 0;

λn otherwise.
(3.4)

Set n = n + 1 and return to Step 1.

Remark 3.1. It is easy to see that the sequence {λn} is non-increasing. From the Lipschitz continuity
of ∇ f , there exists L > 0 such that ‖∇ f (wn) − ∇ f (yn)‖ ≤ L‖wn − yn‖. Hence,

λn+1 = min
{

δ‖wn − yn‖

‖∇ f (wn) − ∇ f (yn)‖
, λn

}
≥ min{

δ

L
, λn}. (3.5)

By the definition of {λn}, it implies that the sequence {λn} is bounded from below by min{λ0,
δ
L }. So, we

obtain limn→∞ λn = λ > 0.

Lemma 3.1. Let {xn} be generated by Algorithm 3.1. Then

‖xn+1 − x∗‖2 ≤ ‖wn − x∗‖2 − (1 −
δ2λ2

n

λ2
n+1

)‖yn − wn‖
2,∀x∗ ∈ Ω. (3.6)

Proof. Let x∗ ∈ Ω. Then

‖xn+1 − x∗‖2 = ‖yn − λn(∇ f (yn) − ∇ f (wn)) − x∗‖2

= ‖yn − x∗‖2 + λ2
n‖∇ f (yn) − ∇ f (wn)‖2

−2λn〈yn − x∗,∇ f (yn) − ∇ f (wn)〉
= ‖yn − wn + wn − x∗‖2 + λ2

n‖∇ f (yn) − ∇ f (wn)‖2

−2λn〈yn − x∗,∇ f (yn) − ∇ f (wn)〉
= ‖wn − x∗‖2 + ‖yn − wn‖

2 + 2〈wn − x∗, yn − wn〉

−2λn〈yn − x∗,∇ f (yn) − ∇ f (wn)〉 + λ2
n‖∇ f (yn) − ∇ f (wn)‖2

= ‖wn − x∗‖2 + ‖yn − wn‖
2 + 2〈wn − yn + yn − x∗, yn − wn〉

−2λn〈yn − x∗,∇ f (yn) − ∇ f (wn)〉 + λ2
n‖∇ f (yn) − ∇ f (wn)‖2

= ‖wn − x∗‖2 + ‖yn − wn‖
2 − 2〈yn − wn, yn − wn〉

+2〈yn − x∗, yn − wn〉 − 2λn〈yn − x∗,∇ f (yn) − ∇ f (wn)〉
+λ2

n‖∇ f (yn) − ∇ f (wn)‖2

= ‖wn − x∗‖2 + ‖yn − wn‖
2 − 2‖yn − wn‖

2 + 2〈yn − x∗, yn − wn〉

−2〈yn − x∗, λn(∇ f (yn) − ∇ f (wn))〉 + λ2
n‖∇ f (yn) − ∇ f (wn)‖2

= ‖wn − x∗‖2 − ‖yn − wn‖
2

−2〈yn − x∗,wn − yn + λn(∇ f (yn) − ∇ f (wn))〉
+λ2

n‖∇ f (yn) − ∇ f (wn)‖2. (3.7)

Note that

λn+1 = min
{

δ‖wn − yn‖

‖∇ f (wn) − ∇ f (yn)‖
, λn

}
≤

δ‖wn − yn‖

‖∇ f (wn) − ∇ f (yn)‖
. (3.8)
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It follows that

‖∇ f (wn) − ∇ f (yn)‖ ≤
δ

λn+1
‖wn − yn‖. (3.9)

Combining (3.7) and (3.9), we obtain

‖xn+1 − x∗‖2 ≤ ‖wn − x∗‖2 − ‖yn − wn‖
2 +

δ2λ2
n

λ2
n+1

‖yn − wn‖
2

−2〈yn − x∗,wn − yn + λn(∇ f (yn) − ∇ f (wn))〉

= ‖wn − x∗‖2 − (1 −
δ2λ2

n

λ2
n+1

)‖yn − wn‖
2

−2〈yn − x∗,wn − yn + λn(∇ f (yn) − ∇ f (wn))〉. (3.10)

From (3.2), we see that wn − λn∇ f (wn) ∈ (I + λn∂g)yn. Since ∂g is maximal monotone, then there is
un ∈ ∂g(yn) such that

wn − λn∇ f (wn) = yn + λnun. (3.11)

This shows that

un =
1
λn

(wn − λn∇ f (wn) − yn). (3.12)

Since 0 ∈ (∇ f + ∂g)(x∗) and ∇ f (yn) + un ∈ (∇ f + ∂g)yn, we get

〈∇ f (yn) + un, yn − x∗〉 ≥ 0. (3.13)

Substituting (3.12) into (3.13), we have

1
λn
〈wn − λn∇ f (wn) − yn + λn∇ f (yn), yn − x∗〉 ≥ 0. (3.14)

This implies that 〈wn − λn∇ f (wn) − yn + λn∇ f (yn), yn − x∗〉 ≥ 0. Using (3.10), we derive

‖xn+1 − x∗‖2 ≤ ‖wn − x∗‖2 − (1 −
δ2λ2

n

λ2
n+1

)‖yn − wn‖
2. (3.15)

�

Lemma 3.2. Let {xn} be generated by Algorithm 3.1. If
∑∞

n=1 θn < ∞, then limn→∞ ‖xn − x∗‖ exists for
all x∗ ∈ Ω.

Proof. Let x∗ ∈ Ω. From Lemma 3.1, we see that

‖xn+1 − x∗‖ ≤ ‖wn − x∗‖. (3.16)

So, we have

‖xn+1 − x∗‖ ≤ ‖wn − x∗‖
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= ‖xn + θn(xn − xn−1) − x∗‖

≤ ‖xn − x∗‖ + θn‖xn − xn−1‖

≤ ‖xn − x∗‖ + θn(‖xn − x∗‖ + ‖xn−1 − x∗‖). (3.17)

Hence

‖xn+1 − x∗‖ ≤ (1 + θn)‖xn − x∗‖ + θn‖xn−1 − x∗‖. (3.18)

By Lemma 2.3, we conclude that

‖xn+1 − x∗‖ ≤ K
n∏

i=1

(1 + 2θi) (3.19)

where K = max{‖x1− x∗‖, ‖x2− x∗‖}. Since
∑∞

n=1 θn < +∞, by Lemma 2.3, we have {xn− x∗} is bounded.
Hence

∑∞
n=1 θn‖xn − xn−1‖ < +∞. By Lemma 2.2 and (3.17), we have lim

n→∞
‖xn − x∗‖ exists. �

Lemma 3.3. Let {xn} be generated by Algorithm 3.1. If
∑∞

n=1 θn < ∞, then

lim
n→∞
‖xn+1 − xn‖ = 0.

Proof. We see that

‖wn − x∗‖2 = ‖xn + θn(xn − xn−1) − x∗‖2

= ‖xn − x∗‖2 + 2θn〈xn − x∗, xn − xn−1〉 + θ2
n‖xn − xn−1‖

2

≤ ‖xn − x∗‖2 + 2θn‖xn − x∗‖‖xn − xn−1‖ + θ2
n‖xn − xn−1‖

2. (3.20)

From (3.15) and (3.20), we have

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 + 2θn‖xn − x∗‖‖xn − xn−1‖ + θ2
n‖xn − xn−1‖

2

−(1 −
δ2λ2

n

λ2
n+1

)‖wn − yn‖
2. (3.21)

Note that θn‖xn − xn−1‖ → 0 and lim
n→∞
‖xn − x∗‖ exists by Lemma 3.2. From (3.1) and (3.21), we have

‖wn − xn‖ → 0 and ‖wn − yn‖ → 0, respectively. It is easy to see that ‖xn − yn‖ → 0. Since ∇ f is
uniformly continuous, we obtain

lim
n→∞
‖∇ f (wn) − ∇ f (yn)‖ = 0. (3.22)

From (3.3) and (3.22), we get

‖xn+1 − yn‖ = λn‖∇ f (yn) − ∇ f (wn)‖
→ 0. (3.23)

Thus, we have

‖xn+1 − xn‖ ≤ ‖xn+1 − yn‖ + ‖yn − xn‖

→ 0. (3.24)

�
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Theorem 3.1. Let {xn} be generated by Algorithm 3.1. If
∑∞

n=1 θn < ∞, then {xn} weakly converges to a
point in Ω.

Proof. Since {xn} is bounded, there exists a subsequence {xnk} of {xn} such that xnk ⇀ x̄ ∈ H. From
Lemma 3.3, we obtain xnk+1 ⇀ x̄. We note that

ynk = proxλnk g(wnk − λnk∇ f (wnk)). (3.25)

From (2.1), we obtain

wnk − λnk∇ f (wnk) − ynk

λnk

∈ ∂g(ynk). (3.26)

Hence

wnk − ynk

λnk

− ∇ f (wnk) + ∇ f (ynk) ∈ ∂g(ynk) + ∇ f (ynk). (3.27)

Since ‖xn−yn‖ → 0, we also have ynk ⇀ x̄. Letting k → ∞ in (3.27) and using (3.22), by Lemma 2.1
and Remark 3.1, we get

0 ∈ (∇ f + ∂g)(x̄). (3.28)

So x̄ ∈ Ω. From (3.21) we see that {xn} is a quasi-Fejer sequence. Hence, by Lemma 2.4, we conclude
that {xn} weakly converges to a point in Ω. This completes the proof.

�

4. Numerical experiment in image deblurring

The image deblurring can be modeled by the following linear equation system:

Ax = b + v,

where A ∈ RN×M is the blurring matrix, x ∈ RN the original image, b ∈ RM the degraded image and
v ∈ RM is the noisy.

An approximation of the clean image can be found by the following LASSO problem [27]:

min
x∈RN

{1
2
‖b − Ax‖22 + τ‖x‖1

}
, (4.1)

where τ is a positive parameter, ‖ · ‖1 is the `1-norm, and ‖ · ‖2 is the Euclidean norm.
It is known that (4.1) can be written in the form (1.1) by defining f (x) = 1

2‖b−Ax‖22 and g(x) = τ‖x‖1.
We compare our algorithm (IMFB) with FISTA, MFB, FRB, MFRB, IMFB, MSP and FMFB.

In method IMFB, we set t0 = 1, tn =
1+
√

1+4t2n−1
2 and

θn =

 tn−1−1
tn

, if 1 ≤ n ≤ 1000
0 otherwise.
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The regularization parameters are chosen by τ = 10−5 and x0 = x1 = (1, 1, 1, ..., 1) ∈ RN . We set the
following parameters in Table 1.

Table 1. The parameters for each methods.

Parameters FISTA MFB FRB MFRB IMFB MSP FMFB IMFB
λ0 = 0.1

λn = 1/‖A‖2

- X X

λn = 1/‖A‖2

- - -
λ1 = 0.5 - - X - - X
σ = 0.1 X - - - X -
ρ = 0.8 X - - - X -
β = 0.5 - X - - - -
γ = 1/β - X - - - -
δ = 0.5 X X - - - X
µ = 0.2 - - X - X -
αn = 1

n+1 - - - X - -
ψ = 2 - - - X - -
r(xn) = 1

2 xn - - - X - -

In this example, we set all parameters as in Table 1. For the experiments, we use the sizes 251×189
for RGB images which are blurred by the following blur types:

(i) Motion blur with motion length of 45 pixels and motion orientation 180◦.

(ii) Gaussian blur of filter size 5 × 5 with standard deviation 5.

(iii) Out of focus with radius 7.

We add Poisson noise and use a Fast Fourier Transform (FFT) for converting it to the frequency
domain. Structural similarity index measure (SSIM) [30] is used for measuring the similarity between
two images. Peak-signal-to-noise ratio (PSNR) in decibel (dB) [28] is defined by

PS NR = 10 log10

( 2552

MS E

)

where MSE= ‖xn − x‖2 and x is the original image. It is noted that, a higher PSNR generally indicates
that the reconstruction is of higher quality. The resultant SSIM index is a decimal value between 0
and 1, and value 1 is indicates perfect structural similarity.

The numerical experiments have been carried out in Matlab environment (version R2020b) on
MacBook Pro M1 with ram 8 GB. For the results recovering the degraded RGB images, we limit
the iterations to 1,000. We report the numerical results in Table 2.

In Table 2, we see that IMFB has a higher PSNR than FISTA, MFB, FRB, MFRB, IMFB, MSP,
FMFB for the same number of iterations. Moreover, SSIM of IMFB is closer to 1 than other methods.
This shows that our algorithm has a better convergence than other methods for this example. However,
we observe that IMFB has a less CPU time than other methods.
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Table 2. The comparison of PSNR, SSIM and CPU time in seconds for each methods of the
restored images.

Methods Motion blur Gaussian blur Out of focus
PSNR SSIM CPU PSNR SSIM CPU PSNR SSIM CPU

FISTA 25.1122 0.7694 48.0184 34.3744 0.9320 47.2637 30.9043 0.8672 47.2831
MFB 24.8516 0.7640 71.2241 34.9546 0.9405 71.4400 28.3107 0.8152 70.4725
FRB 27.5733 0.8536 113.2112 38.6119 0.9703 112.5153 31.8188 0.8886 111.3155
MFRB 25.5158 0.7893 77.6740 36.0870 0.9515 70.3914 29.3660 0.8412 69.7562
IMFB 33.6105 0.9453 42.8921 41.1854 0.9818 42.7064 34.8978 0.9293 42.9258
MSP 34.8218 0.9560 92.9287 38.0609 0.9675 93.2503 32.0816 0.8941 93.2242
FMFB 40.8550 0.9785 64.8279 43.9280 0.9888 64.9999 38.0780 0.9544 64.8632
IMFB 46.7885 0.9920 75.7321 47.3368 0.9939 75.5435 41.0665 0.9743 74.7891

We next show the different types of blurred RGB images with the PSNR in Figure 1.

Motion blur

(a)original
image
20.4054

(b)blurred
image

cropped
image(a)

cropped
image(b)

Gaussian blur

(c)original
image
28.7148

(d)blurred
image

cropped
image(c)

cropped
image(d)

Out of focus

(e)original
image
23.5639

(f)blurred
image

cropped
image(e)

cropped
image(f)

Figure 1. (a), (c) and (e) show the original images for each blurred RGB images with noise,
(b), (d) and (f) show the images degraded by each blurred.

We next show the restored images of RGB images for Motion blur with the PSNR in Figure 2.
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(a)
FISTA
25.1122

(b)
MFB
24.8516

(c)
FRB
27.5733

(d)
MFRB
25.5158

(e)
IMFB
33.6105

(f)
MSP
34.8218

(g)
FMFB
40.8550

(h)
IMFB
46.7885

cropped
image(a)

cropped
image(b)

cropped
image(c)

cropped
image(d)

cropped
image(e)

cropped
image(f)

cropped
image(g)

cropped
image(h)

Figure 2. Recovered images via the different methods for degraded images by Motion blur.

We next show the restored images of RGB images for Gaussian blur with the PSNR in Figure 3.

(a)
FISTA
34.3744

(b)
MFB
34.9546

(c)
FRB
38.6119

(d)
MFRB
36.0870

(e)
IMFB
41.1854

(f)
MSP
38.0609

(g)
FMFB
43.9280

(h)
IMFB
47.3368

cropped
image(a)

cropped
image(b)

cropped
image(c)

cropped
image(d)

cropped
image(e)

cropped
image(f)

cropped
image(g)

cropped
image(h)

Figure 3. Recovered images via the different methods for degraded images by Gaussian blur.

We next show the restored images of RGB images for out of focus with the PSNR in Figure 4.
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(a)
FISTA
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(b)
MFB
28.3107

(c)
FRB
31.8188

(d)
MFRB
29.3660

(e)
IMFB
34.8978

(f)
MSP
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(g)
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(h)
IMFB
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cropped
image(a)
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Figure 4. Recovered images via the different methods for degraded images by out of focus.

(a) PSNR plotting of Motion blur (b) SSIM plotting of Motion blur

(c) PSNR plotting of Gaussian blur (d) SSIM plotting of Gaussian blur

(e) PSNR plotting of Out of focus (f) SSIM plotting of Out of focus

Figure 5. Graphs of PSNR and SSIM values for each blurred image and restored images by
FISTA, MFB, FRB, MFRB, IMFB, MSP, FMFB and IMFB.
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The results of the numerical experiments are summarized in Table 2. Figure 1 shows the original
and blurred images for this experiment. In Figures 2–5, we report all results that include the recovered
images via each algorithms. It is shown that IMFB outperforms FISTA, MFB, FRB, MFRB, IMFB,
MSP and FMFB in terms of PSNR and SSIM.

5. Conclusions

In this paper, we established the convergence theorem of the iterates generated by a new modified
inertial forward-backward algorithm with adaptive stepsize under some suitable conditions for convex
minimization problems. We applied our main result to image recovery. It was shown that our proposed
method outperforms other methods in terms of PSNR and SSIM. In future work, we will study the
convergence rate of the iteration.
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11. R. Gu, A. Dogandžić, Projected nesterov’s proximal-gradient algorithm for sparse signal recovery,
IEEE T. Signal Proces., 65 (2017), 3510–3525. http://dx.doi.org/10.1109/TSP.2017.2691661

12. A. Hanjing, S. Suantai, A fast image restoration algorithm based on a fixed point and optimization
method, Mathematics, 8 (2020), 378. http://dx.doi.org/10.3390/math8030378

13. D. Hieu Van, P. Anh, L. Muu, Modified forward-backward splitting method for variational
inclusions, 4OR-Q. J. Oper. Res., 19 (2021), 127–151. http://dx.doi.org/10.1007/s10288-020-
00440-3

14. A. Iusem, B. Svaiter, M. Teboulle, Entropy-like proximal methods in convex programming, Math.
Oper. Res., 19 (1994), 790–814. http://dx.doi.org/10.1287/moor.19.4.790

15. S. Khan, W. Cholamjiak, K. Kazmi, An inertial forward-backward splitting method for solving
combination of equilibrium problems and inclusion problems, Comp. Appl. Math., 37 (2018),
6283–6307. http://dx.doi.org/10.1007/s40314-018-0684-5

16. J. Liang, T. Luo, C. Schönlieb, Improving “fast iterative shrinkage-thresholding algorithm”: faster,
smarter and greedier, arXiv:1811.01430.

17. Y. Malitsky, M. Tam, A forward-backward splitting method for monotone inclusions without
cocoercivity, SIAM J. Optimiz., 30 (2020), 1451–1472. http://dx.doi.org/10.1137/18M1207260

18. A. Moudafi, M. Oliny, Convergence of a splitting inertial proximal method for monotone operators,
J. Comput. Appl. Math., 155 (2003), 447–454. http://dx.doi.org/10.1016/S0377-0427(02)00906-8

19. M. Osilike, S. Aniagbosor, G. Akuchu, Fixed points of asymptotically demicontractive mappings
in arbitrary Banach spaces, Panamerican Mathematical Journal, 12 (2002), 77–88.

20. A. Padcharoen, D. Kitkuan, W. Kumam, P. Kumam, Tseng methods with inertial for solving
inclusion problems and application to image deblurring and image recovery problems, Comput.
Math. Method., 3 (2021), 1088. http://dx.doi.org/10.1002/cmm4.1088

21. B. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comp. Math.
Math. Phys., 4 (1964), 1–17. http://dx.doi.org/10.1016/0041-5553(64)90137-5

22. D. Reem, S. Reich, A. De Pierro, A telescopic Bregmanian proximal gradient method without
the global Lipschitz continuity assumption, J. Optim. Theory Appl., 182 (2019), 851–884.
http://dx.doi.org/10.1007/s10957-019-01509-8

23. Y. Shehu, P. Cholamjiak, Iterative method with inertial for variational inequalities in Hilbert spaces,
Calcolo, 56 (2019), 4. http://dx.doi.org/10.1007/s10092-018-0300-5

AIMS Mathematics Volume 7, Issue 5, 8147–8161.

http://dx.doi.org/http://dx.doi.org/10.21136/AM.2019.0323-18
http://dx.doi.org/http://dx.doi.org/10.1186/s13660-019-2097-4
http://dx.doi.org/http://dx.doi.org/10.1186/s13660-019-2097-4
http://dx.doi.org/http://dx.doi.org/10.1155/2021/3653807
http://dx.doi.org/http://dx.doi.org/10.1109/TSP.2017.2691661
http://dx.doi.org/http://dx.doi.org/10.3390/math8030378
http://dx.doi.org/http://dx.doi.org/10.1007/s10288-020-00440-3
http://dx.doi.org/http://dx.doi.org/10.1007/s10288-020-00440-3
http://dx.doi.org/http://dx.doi.org/10.1287/moor.19.4.790
http://dx.doi.org/http://dx.doi.org/10.1007/s40314-018-0684-5
http://dx.doi.org/http://dx.doi.org/10.1137/18M1207260
http://dx.doi.org/http://dx.doi.org/10.1016/S0377-0427(02)00906-8
http://dx.doi.org/http://dx.doi.org/10.1002/cmm4.1088
http://dx.doi.org/http://dx.doi.org/10.1016/0041-5553(64)90137-5
http://dx.doi.org/http://dx.doi.org/10.1007/s10957-019-01509-8
http://dx.doi.org/http://dx.doi.org/10.1007/s10092-018-0300-5


8161

24. Y. Shehu, G. Cai, O. Iyiola, Iterative approximation of solutions for proximal split feasibility
problems, Fixed Point Theory Appl., 2015 (2015), 123. http://dx.doi.org/10.1186/s13663-015-
0375-5

25. S. Suantai, N. Pholasa, P. Cholamjiak, The modified inertial relaxed CQ algorithm for
solving the split feasibility problems, J. Ind. Manag. Optim., 14 (2018), 1595–1615.
http://dx.doi.org/10.3934/jimo.2018023

26. R. Suparatulatorn, W. Cholamjiak, S. Suantai, Existence and convergence theorems for global
minimization of best proximity points in Hilbert spaces, Acta Appl. Math., 165 (2020), 81–90.
http://dx.doi.org/10.1007/s10440-019-00242-8

27. R. Tibshirani, Regression shrinkage and selection via the lasso, J. R. Stat. Soc. B, 58 (1996), 267–
288. http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x

28. K. H. Thung, P. Raveendran, A survey of image quality measures,
Proceeding of International Conference for Technical Postgraduates, 2009, 1–4.
http://dx.doi.org/10.1109/TECHPOS.2009.5412098

29. P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM
J. Control Optim., 38 (2020), 431–446. http://dx.doi.org/10.1137/S0363012998338806

30. Z. Wang, A. Bovik, H. Sheikh, E. Simoncelli, Image quality assessment: from error
visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600–612.
http://dx.doi.org/10.1109/tip.2003.819861

31. F. Wang, H. Xu, Weak and strong convergence of two algorithms for the split fixed point problem,
Numer. Math. Theor. Meth. Appl., 11 (2018), 770–781. http://dx.doi.org/10.4208/nmtma.2018.s05

32. D. Yambangwai, S. Khan, H. Dutta, W. Cholamjiak, Image restoration by advanced
parallel inertial forward–backward splitting methods, Soft Comput., 25 (2021), 6029–6042.
http://dx.doi.org/10.1007/s00500-021-05596-6

c© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 7, Issue 5, 8147–8161.

http://dx.doi.org/http://dx.doi.org/10.1186/s13663-015-0375-5
http://dx.doi.org/http://dx.doi.org/10.1186/s13663-015-0375-5
http://dx.doi.org/http://dx.doi.org/10.3934/jimo.2018023
http://dx.doi.org/http://dx.doi.org/10.1007/s10440-019-00242-8
http://dx.doi.org/http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://dx.doi.org/http://dx.doi.org/10.1109/TECHPOS.2009.5412098
http://dx.doi.org/http://dx.doi.org/10.1137/S0363012998338806
http://dx.doi.org/http://dx.doi.org/10.1109/tip.2003.819861
http://dx.doi.org/http://dx.doi.org/10.4208/nmtma.2018.s05
http://dx.doi.org/http://dx.doi.org/10.1007/s00500-021-05596-6
http://creativecommons.org/licenses/by/4.0

	Introduction
	Basic definitions and lemmas
	Main result
	Numerical experiment in image deblurring
	Conclusions

