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Abstract: It is well known that the prolongation of an almost complex structure from a manifold
M to the tangent bundle of order r on M is also an almost complex structure if it is integrable. The
general quadratic structure F2 = αF + βI is a generalization of an almost complex structure where
α = 0, β = −1. The purpose of this paper is to characterize a metallic structure defined by the general
quadratic structure F2 = αF + βI, α, β ∈ N, where N is the set of natural numbers. We show that the r-
lift of the metallic structure F in the tangent bundle of order r is also a metallic structure. Furthermore,
we deduce a theorem on the projection tensor in the tangent bundle of order r. Moreover, prolongations
of G-structures immersed in the metallic structure to the tangent bundle of order r and 2 are discussed.
Finally, we construct examples of metallic structures that admit an almost para contact structure on the
tangent bundle of order 3 and 4.
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1. Introduction

Let us consider the general quadratic equation x2 − αx − β = 0, α, β ∈ N, where N is the set
of natural numbers. In [18], De Spinadel presented the fascinating concept of metallic means family
(MMF) (or, metallic proportions) as the set of positive solutions σα,β = 1

2 [α+
√
α2 + 4β] of the equation

x2 − αx − β = 0, α, β ∈ N, where N is the set of natural numbers.
The name MMF was clearly explained by De Spinadel in [19]. In [19], the author declared that

“besides carrying the name of a metals, they have common mathematical properties that attach a
fundamental importance to them in modern investigations about the search of universal roads to chaos”.
These metallic numbers have seen several interesting modern applications in researches that “analyze
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the behavior of non linear dynamical systems when they proceed from a periodic regime to a chaotic
one” [17, 20].

Goldberg, Yano and Petridis [5, 6] defined and studied polynomial structures on the differentiable
manifold. The general quadratic structure satisfying J2 = αJ + βI, α, β ∈ N, where J is a tensor
field of type (1,1) and N is the set of natural numbers, is named metallic structure on the differentiable
manifold. Crasmareanu and Hretcanu [7] discussed metallic structures in the Riemannian manifolds.
Azmi introduced metallic structures on the tangent bundle of P-Sasakian manifolds and investigated
the integrability and parallelity of such metallic structures [1]. Recently, the geometry of metallic
structures have been studied in [2, 3, 8, 10].

On the other hand, liftings of tensor fields and connections to tangent bundle were defined and
studied by Yano and Davis [22], Ledger and Yano [12] and Yano [21]. Yano and Ishiharo [24]
developed the theory of prolongations of these geometric objects to the tangent bundle of order 2
and investigated integrability conditions. Morimoto [13] has studied prolongations of tensor fields,
connections and G-structures to the tangent bundle of higher order. The first author has studied the
prolongation of G-structure immersed in generalized almost r-contact structure on M to its tangent
bundle T M of order 2 [11].

The prolongation of some classical G-structure tensor fields and connections immersed in an almost
complex structure, f -structure, generalized almost r-contact structure, etc. to the tangent bundles of
order r have been investigated [11, 16, 23]. Inspired by the above mentioned studies, we define and
study liftings of metallic structures to tangent bundle of order r.

The main contributions of the paper can be listed as follows:

• The r-lift is applied to the metallic structure F and we show that it is also a metallic structure in
Tr(M).
• We show that the metallic structure F(r) in Tr(M) is integrable if and only if F is an integrable

metallic structure.
• The projection tensors are defined for the metallic structure and a theorem is proved about them.
• Some classical G-structures defined by tensor fields immersed in metallic structures in Tr(M) and

T2(M) have been investigated.
• Examples on metallic structures that admits an almost para contact structure in T3(M) and T4(M)

are constructed.

2. Preliminaries

2.1. The tangent bundle of order r and lifts of tensor fields

In an n-dimensional differentiable manifold, let r ≥ 1 be a fixed integer and R be the real line.
Consider the following equivalence relation ∼ among all differentiable mappings: “If the mappings
F : R→ M and G : R→ M meet the following criteria

Fh(0) = Gh(0),
dFh(0)

dt
=

dGh(0)
dt

, ....,
dFr(0)

dt
=

dGr(0)
dt

, (2.1)

where F and G are characterized respectively by xh = Fh(t) and xh = Gh(t), t is an element of R)
with respect to local coordinates (xh) in a coordinate neighborhood of {U, xh} containing the point
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P = F(0) = G(0), then we state that F ∼ G. Each equivalence relation is called r-jet of M and denoted
by jr

P(F), if this class contains a mapping F : R → M such that F(0) = P. The point P is called the
target of the r-jet jr

P(F). The set of all r-jets of M is called the tangent bundle of order r and denoted
by Tr(M)” [16].

Let πr be the bundle projection such that πr = Tr(M)→ M, i.e. jr
P(F) = P. We define πsr : Tr(M)→

Ts(M) for r > s by πsr( jr
P(F)) = js

P(F). Then we have πr = πs ◦ πsr.
Consider an r-jet jr

P(F) belonging to π−1(U) and the set

y(ν)h =
1
ν!

dµF(0)
dtν

, ν = 0, 1, ...., r, (2.2)

where xh = Fh(t), t is an element of R) of F in U and P = F(0). The r-jet jr
P(F) is represented by

the set (y(ν)h, ν = 0, 1, ...., r), where (y(0)h) = (xh) are coordinates of P in U. Therefore, the system of
coordinates (y(ν)h; ν = 0, 1, ...., r) is established in the open set π−1(U) of Tr(M) and called induced
coordinates in π−1(U) [15, 23].

The following notations will be used throughout the paper: Let =0
0(M), =1

0(M), =0
1(M), =1

1(M) be
the set of functions, vector fields, 1-forms and tensor fields of type (1,1) in M, respectively.

Let f be a function in M. The λ-lift f (λ) of a function f to Tr(M) is defined in [13] as

f (λ)( jr
P(F)) =

1
λ!

dλ( f ◦ F)
dtλ

, λ = 0, 1, ...., r. (2.3)

By virtue of (2.3), we have

( f g)(λ) =

λ∑
µ=0

f (µ)g(λ−µ) (2.4)

for all f , g ∈ =0
0(M), µ = 1, 2, ..., r.

Remark 2.1. In Tr(M) [4]:
For r = 1, T1(M) = T (M) (tangent bundle) f V = f (0), f C = f (1).
For r = 2, T2(M), i.e. tangent bundle of order 2, f 0 = f (0), f I = f (1), f II = f (2) for any f ∈ =0

0(M).

We shall first state the following propositions ( [23], p. 379, 383, 384).

Proposition 2.1. For any vector field X,Y ∈ =1
0(M), F ∈ =1

1(M), f ∈ =0
0(M), ω ∈ =0

1(M), the λ-lift
Xλ of X to Tr(M) is a known result:

[X(λ),Y (µ)] = [X,Y](λ+µ−r), X(λ) f (µ) = (X f )(λ+µ−r), (2.5)

( f X)(λ) =

λ∑
µ=0

f (µ)X(λ−µ), ( fω)(λ) =

λ∑
µ=0

f (µ)ω(λ−µ), (2.6)

ω(λ)(X(µ)) = (ω(X))(λ+µ−r), F(λ)X(µ) = (FX)(λ+µ−r), (2.7)

where λ, µ = 0, 1, ...., r.

Proposition 2.2. If for S̃ and T̃ ∈ =0
s(Tr(M)),

S̃ (X(r)
s , ....., X

(r)
1 ) = T̃ (X(r)

s , ....., X
(r)
1 ),

for X1, ....., Xs ∈ =
1
0(M), then S̃ = T̃ .
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2.2. Almost para contact structure

Let M be an n-dimensional differentiable manifold of class C∞. Suppose that there is given a tensor
field F of type (1,1) satisfying

F2 = I − U ⊗ ω, ω(U) = 1, FU = 0, ω ◦ F = 0, (2.8)

where U ∈ =1
0(M), ω ∈ =0

1(M).
The structure (F,U, ω) of such fields F, U, ω is said to be an almost para contact

structure ( [23], p. 66).

3. Lifts of metallic structures

Let M be an n-dimensional differentiable manifold and F ∈ =1
0(M). Then F is called metallic

structure on M satisfying [8]
F2 − αF − βI = 0, α, β ∈ N, (3.1)

where I is the unit vector field.
Let F and G be tensor fields of type (1,1) in M. Then ( [23], p. 393)

G(r)F(r) = (GF)(r).

Let P(t) be a polynomial of t and F(r) its r-lift in Tr(M). Then ( [23], p. 393)

P(F(r)) = (P(F))r,∀F ∈ =1
0(M). (3.2)

Theorem 3.1. Let F ∈ =1
0(M). Then F(r) is a metallic structure in Tr(M) if and only if F is a metallic

structure in M.

Proof. By operating the r-lift of Eq (3.1) and by using Eq (3.2), we obtain

(F2 − αF − βI)(r) = 0,
(F2)(r) − αF(r) − βI(r) = 0, I(r) = I,

(F(r))2 − αF(r) − βI) = 0.

Hence, F(r) is a metallic structure in Tr(M).

Theorem 3.2. Let F and F(r) be metallic structures in M and Tr(M), respectively. Then F(r) is
integrable in Tr(M) if and only if F is integrable in M.

Proof. Let NF and NF(r) denote the Nijenhuis tensors of F and F(r) respectively. Then ( [23], p. 393)

NF(r) = (NF)(r), (3.3)

since F is integrable if and only if NF = 0 [9]. So, from (3.3), we obtained NF(r) = 0. Hence, the proof
is completed.
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Let l and m be the projection tensors defined in [8]:

l =
F2 − αF

β
, (3.4)

and

m = I −
(

F2 − αF
β

)
, (3.5)

where I denotes the identity operator in M.

Theorem 3.3. Let l and m be the projection tensors. Then

l + m = 0,
l2 = l, m2 = m, lm = ml = 0, (3.6)
Fl = lF = F, Fm = mF = 0.

Proof. In the view of Eqs (3.4) and (3.5), then

l + m =
F2 − αF

β
+ I −

(
F2 − αF

β

)
= I,

l2 =

(
F2 − αF

β

) (
F2 − αF

β

)
=

(
F2 − αF

β

) (
βI
β

)
, as F2 − αF = βI,

= l,

m2 =

[
I −

(
F2 − αF

β

)]2

= I − 2
(

F2 − αF
β

)
+

(
F2 − αF

β

)2

= I − 2
(

F2 − αF
β

)
+

(
F2 − αF

β

) (
βI
β

)
= I − 2

(
F2 − αF

β

)
+

F2 − αF
β

= I −
(

F2 − αF
β

)
= m,

lm =

(
F2 − αF

β

) [
I −

(
F2 − αF

β

)]
,

= 0 = ml.

Similarly, other identities can be easily proved.
Let Dl and Dm be the complementary distributions corresponding to l and m, respectively in M. Let

rank(F) = s, therefore dimension of Dl is s and the dimension of Dm is (n − s), where the dimension
of M is n.

Theorem 3.4. Let m be a projection tensor in M. Then the r-lift m(r) of m is a projection tensor in
Tr(M) and the distribution D̃ determined by m(r) in Tr(M) is integrable if and only if the distribution D
determined by m is so in M.
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Proof. Let D be a distribution in M. D is determined by a projection tensor m, i.e. m is an element of
=1

1(M) such that m2 = m. From Eq (3.2) and m2 = m, we have

(m(r))2 = m(r),

that is the r-lift m(r) of m is a projection tensor in Tr(M). The distribution D is integrable if and only if

l[mX,mY] = 0, (3.7)

where l = I − m denotes a projection tensor complementary to m and [, ] is the Lie bracket.
By applying r-lift on (3.7), we obtain

l(r)[m(r)X(r),m(r)Y (r)] = 0, (3.8)

where l(r) = (I − m)(r) = I − m(r).
Thus, conditions (3.7) and (3.8) are equivalent to each other.
This finishes the proof.

4. Prolongation of G-structures immersed in metallic structures to the tangent bundle of order r

In this section, we study the tangent bundle of order r on some classical G-structures, which are
defined by tensor fields immersed in metallic structures.

Let P(M, π∗,G) be a G-structure over a manifold M, where G is a Lie subgroup of GL(n,R). “A
G-structure on M is a G-subbundle P(M, π∗,G) of the frame bundle FM over M” [14]. Let u = U be an
open covering of M such that in each U there exists an n-frame {Xi} which is adapted to the G-structure
P(M, π∗,G). The structure group Tr(GL(n,R)) of T (Tr(M)) is reducible to the tangent group Tr(G) of
order r, that is, the tangent bundle Tr(M) of order r admits a Tr(G)-structure P̃, which is called the
prolongation of G-structure P in M to T (Tr(M)) [23].

Let
o
F be a tensor field of type (1,1) in Rn, which is invariant by G. We consider that M admits a

G-structure P. Consider a coordinate neighborhood
{
U, Xh

}
of M and an n-frame

{
X(i)

}
in U. Thus, if

we set
o
F=

o
F

(h)

i X(h)θ
(i) (4.1)

in
{
U, θ(i)

}
being the n-coframe dual to

{
X(i)

}
in U and

o
F

(h)

i are the components of
o
F in Rn. The local

tensor field F is defined by Eq (4.1) in M. Hence F defines a global tensor field, which is called the
tensor field induced in M from (

o
F, P) [23].

Now, we state the following proposition for later use ( [23], p. 406).

Proposition 4.1. “The prolongation P̃ of a G-structure P given in M is integrable in the tangent bundle
T (M) if and only if the G-structure P is integrable in M”.

Theorem 4.1. Let M denote a manifold that admits a metallic structure P (as a G-structure) defined
by a tensor field F of type (1,1) such that F2 = αF + βI. Let the tangent bundle Tr(M) of order r be
P̃ of P is the metallic structure defined by the r-lift F(r) of F to Tr(M). Then the metallic structure P is
integrable in M if and only if P̃ of P to Tr(M) is integrable.
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Proof. Let
o
F be a tensor of type (1,1) in R2n such that

o
F

2
= α

o
F +βI and denote by GL(n,C) the group

of all elements of G = GL(2n,C) which leave
o
F invariant. Then the r-lift

o
F

(r)
of

o
F to Tr(R2n) is a tensor

of type (1,1) satisfying (
o
F

(r)
)2 = α

o
F

(r)
+βI and the tangent group Tr(G) leaves

o
F

(r)
invariant. Thus, we

obtain Tr(G) = GL(3n,C). By Proposition 4.1, the metallic structure P is integrable in M if and only
if P̃ of P to Tr(M) is integrable.

This finishes the proof.

Theorem 4.2. If a manifold M of 2n-dimension admits almost para contact structure P (as a G-
structure) determined by (F,U, ω) given in Eq (2.8), then, on the tangent bundle T2(M), P̃ of P is the
metallic structure determined by the tensor field

o
J=

α

2
− (

2σα,β − α

2
)(

o
F

II
+

o
η

0
⊗

o
ξ

0

+
o
η

II
⊗

o
ξ

II

),
o
U=

o
ξ

I

,
o
ω=

o
η

I
.

Proof. G = GL(n,C) × I. Let the rank of
o
F be 2s. Let

o
ξ denote a contravariant vector field and

o
ω a

1-form in R2n such that

o
F

2
= I−

o
η ⊗

o
ξ, (4.2)

where

(i)
o
F ◦

o
ξ= 0,

(ii)
o
η (

o
F) = 0, (4.3)

(iii)
o
η (

o
ξ) = 1.

If we denote by G, the group of all the elements of GL(2n,C), which leave
o
F,

o
ξ,

o
η invariant, then it is

obvious that
G = GL(n,C) × I ⊂ GL(2n,R),

where I denotes the trivial group.
We set

o
J=

α

2
− (

2σα,β − α

2
)(

o
F

II
+

o
η

0
⊗

o
ξ

0

+
o
η

II
⊗

o
ξ

II

),
o
U=

o
ξ

I

,
o
ω=

o
η

I
. (4.4)

By operating 2-lift of both sides of (4.2) and (4.3), we get

(F II)2 = (F2)II = I − ηII ⊗ ξ0 − η0 ⊗ ξII , (4.5)
η0(ξII) = ηII(ξ0) = 1, η0(ξ0) = ηII(ξII) = 0, (4.6)
F II(ξ0) = F II(ξII) = 0, η0 ◦ F II = ηII ◦ F0 = 0. (4.7)

Then

o
J (

o
ξ

0

) =
α

2

o
ξ

0

−(
2σα,β − α

2
)(

o
ξ

II

), (4.8)

o
J (

o
ξ

II

) =
α

2

o
ξ

II

−(
2σα,β − α

2
)(

o
ξ

0

), (4.9)
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o
J (F II X̃) =

α

2
F II X̃ − (

2σα,β − α

2
)(X̃ − η0(X̃)ξ0 − ηII(X̃)ξII) (4.10)

and
o
J

2
(X̃) = α

o
J (X̃) + β(X̃).

So, (
o
J,

o
η,

o
ξ) is a metallic structure in T2(r). Hence, T2(R2n) leaves (

o
J,

o
η,

o
ξ) invariant. Thus, we obtain

T (G) ⊂ GL(3n,C) × I ⊂ GL(6n,R).

This finishes the proof.

5. Examples of metallic structures admitting an almost para contact structure

Let M be a 2n-dimensional differential manifold and T3(M) and T4(M) be its tangent bundles of
order 3 and 4. We construct the following examples on metallic structures that admits an almost para
contact structure.
Example 5.1. If a manifold M of 2n-dimension admits an almost para contact structure P (as a G-
structure) determined by (F,U, ω) given in Eq (2.8). Then, on the tangent bundle T3(M), P̃ of P is the
metallic structure is determined by the tensor field

J̃ =
α

2
I − (

2σα,β − α

2
)(F II + η0 ⊗ ξ0 + ηI ⊗ ξI − ηII ⊗ ξII − ηIII ⊗ ξIII).

Example 5.2. If a manifold M of 2n-dimension admits an almost para contact structure P (as a G-
structure) determined by (F,U, ω) given in Eq (2.8), then, on the tangent bundle T4(M), P̃ of P is the
metallic structure is determined by the tensor field

J̃ =
α

2
I − (

2σα,β − α

2
)(F(4) + η(0) ⊗ ξ(0) + η(1) ⊗ ξ(1) − η(3) ⊗ ξ(3)) − η(4) ⊗ ξ(4)),

Ũ = ξ(2), ω̃ = η(2).

6. Conclusions

In this work, we have characterized a metallic structure given by the general quadratic structure
F2 = αF + βI, α, β ∈ N, where N is the set of natural numbers. We have proved that the r-lift of
the metallic structure F in the tangent bundle of order r is also a metallic structure. Furthermore, the
projection tensor in the tangent bundle of order r is studied. Moreover, we have discussed prolongations
of G-structures immersed in the metallic structure to the tangent bundle of order r and 2. Finally, the
examples are given to validate obtained results. Future studies could fruitfully explore this issue further
by considering the polynomial structure Q(F) = Fn + anFn−1 + ..... + a2F + a1I, where F is the tensor
field of type (1,1) on the differentiable manifold M.
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